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Abstract
Minimal-invasive surgery (MIS) and robotic surgery (RS) offer multiple advantages over open surgery (Vajsbaher et al. in 
Cogn Syst Res 64:08, 2020). However, the lack of haptic feedback is still a limitation. Surgeons learn to adapt to this lack 
of haptic feedback using visual cues to make judgements about tissue deformation. Experienced robotic surgeons use the 
visual interpretation of tissue as a surrogate for tactile feedback. The aim of this review is to identify the visual cues that are 
consciously or unconsciously used by expert surgeons to manipulate soft tissue safely during Minimally Invasive Surgery 
(MIS) and Robotic Surgery (RS). We have conducted a comprehensive literature review with papers on visual cue identi-
fication and their application in education, as well as skill assessment and surgeon performance measurement with respect 
to visual feedback. To visualise our results, we provide an overview of the state-of-the-art in the form of a matrix across 
identified research features, where papers are clustered and grouped in a comparative way. The clustering of the papers 
showed explicitly that state-of-the-art research does not in particular study the direct effects of visual cues in relation to the 
manipulation of the tissue and training for that purpose, but is more concentrated on tissue identification. We identified a gap 
in the literature about the use of visual cues for educational design solutions, that aid the training of soft-tissue manipulation 
in MIS and in RS. There appears to be a need RS education to make visual cue identification more accessible and set it in 
the context of manipulation tasks.

Keywords Visual cues in surgery · Visual feedback in robotic surgery · Visual cues in surgical education

Introduction

Minimal-invasive surgery (MIS) and robotic surgery (RS) 
offer multiple advantages over open surgery (Vajsbaher et al. 
1 in Cogn Syst Res 64:08, 2020). If we look at the evolution 
from open surgery to laparoscopy to robotic surgery [2], we 
see a shift from relying a lot on haptic feedback in open sur-
gery [3] to using visual feedback in robotic surgery [4] and 

laparoscopy providing a partial combination of both stimuli. 
In [5], it is argued that the importance of haptic feedback 
during robotic surgery is controversial. It is also hypoth-
esized in that study that experienced surgeons are able to 
identify visual cues that help them to not apply excessive 
force to tissue during a manipulation task. On the basis of 
this, we form our research question for this review as: which 
visual cues are used by expert surgeons for manipulation 
tasks of soft tissue and can we use this for surgical educa-
tion? After a short summary of the methodology applied 
in this review and the key words used to find the relevant 
literature as part of the Introduction, Section 2 focuses on 
soft-tissue manipulation in minimal-invasive surgery (MIS). 
Here, the visual cues found in the literature are described 
in detail as well as how they are used in the visual process 
of surgeons during surgery. In Section 3, we categorise the 
literature and thereby identify potential gaps in research. 
Here, we construct a matrix of the main literature in a con-
tent dependant order. For that, we have identified and used 
features of the related research that provide us with useful 
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information to categorise the literature with regards to our 
research question. Current research focuses mainly on what 
and how we can teach robots or computer vision systems to 
do or see what we humans can. Some researchers however 
think that this is not a one-way situation, but that robots 
and automation systems can augment the way we learn and 
educate [6]. In this particular case, there is the question on 
how robotic systems can enhance the education of surgeons, 
making it more effective in terms of time, cost, and out-
come. That is why, this paper also reviews a considerable 
amount of related literature on computer vision, neural net-
works, and robotic surgery applications instead of review-
ing only medical research. From that, we hope that we can 
gain a broad understanding on how to solve surgical and 
educational problems with the aid of visual cues. For this 
review, we searched Web of Science, PubMed, and Google 
Scholar for the most cited papers in the area of visual cues 
in surgery and we used a backward snowballing approach, 
i.e., looking at the citations of a paper [7]. The main terms 
we searched for included: “visual cues in surgery”, “visual 

feedback in surgery OR surgical education”, and “visual 
cues for manipulation”.

Methodology

The period for this review was over a year. The following 
keywords were used for identification: visual cues in sur-
gery, visual feedback in robotic surgery, and visual cues 
in surgical education. We followed the conventions of the 
PRISMA flow diagram for paper selection (see Fig. 1). For 
screening, duplicates were removed and the remaining 153 
records were skimmed through to mark the ones that are 
relevant to our topic. During that process, 50 records were 
excluded. A total of 103 articles were found eligible for a 
complete review. Throughout the review, the references of 
the selected papers were surveyed and the relevant articles 
that were not initially identified were added, thus increasing 
the total number of eligible record to 113. The work progres-
sions and duplicate publications were removed to lead to the 

Fig. 1  PRISMA flow diagram



Journal of Robotic Surgery (2024) 18:401 Page 3 of 13 401

101 articles included in this review. From the 101 referenced 
records in this review, 16 were put and sorted inside a table 
for an easier comparison and overview of the papers’ rel-
evancy regarding the different visual-cue-related subtopics 
that we defined in this review (see Table 1).

Soft‑tissue manipulation in MIS and robotic 
surgery

The visual process of a soft-tissue manipulation task of a 
surgeon can be divided into three different mechanisms [8]: 
Identification [9], Motion Planning/Navigation [9–11], and 
Manipulation [9], (see Fig. 2). The surgeon switches con-
stantly between these three modes during the surgery of soft 
tissue. The surgeon switches constantly between these three 
modes during the surgery of soft tissue.

Inferring information from visual feedback is essential 
during MIS and RS due to the distorted haptic feedback 
as mentioned before. It is therefore important to study the 
effects that surgeons have to face because of it. One phe-
nomenon is that it gets harder for the surgeon to estimate 
how much force is actually and how much force needs to be 
applied, without the intuitive sense of touch [12]. In [13], 
the authors were studying the effects on gripping force with 
total lack of haptic feedback. They were numbing the tactile 
sensing of participants by anaesthetising their hands. The 
participants were still able to manipulate the objects suc-
cessfully without slippage but with the result of an increased 
gripping force applied to the objects. The direction in which 
forces are applied to the tissue matter in terms of visual 
accessibility to the observer. Therefore, it can be hypoth-
esised that everything that is done by moving the tool in the 
x–y-plane is easier to assess for the viewer than for example 
a gripping force that is in direct contact interaction with the 
tissue without moving it in a particular direction.

Visual cues in surgery

The literature defines visual cues in surgery as key points or 
features of visual information presented to the observer, that 
are used to make judgements or predictions about the behav-
iour of tis- sue. During this literature review, we have identi-
fied several visual cues that were used either in the context 
of computer vision tasks or that were quantitatively analysed 
by surgeons or researchers in an educational context. The 
phrasing ‘visual cues’ is used in different contexts within 
the literature. There are visual cues that are given as raw 
data from the visual scene of the laparoscope or there are 
artificially induced visual cues [14] that are used to provide 
the surgeon with a visual representation of the forces (visual 
feedback) [15], e.g., pseudo-haptics or augmented-reality 
features. This literature review is concerned with the visual 

cues that occur as visual sensory input to the surgeons whilst 
operating. Since both laparoscopy and robotic surgery have 
less or no haptic feedback compared to open surgery [16], 
surgeons have to rely more or only on visual cues to make 
judgements about the applied force or tension to tissue [17]. 
There have been several studies that show that the lack of 
haptic feedback does not affect the performance of surgeons 
[18, 19] or lead to more tissue injury. Visual feedback can 
act as a surrogate for haptic feedback [20]. The following 
visual cues have been identified during the review of the 
literature to play a role during minimal-invasive surgery:

• Depth cues [21, 22]
• Colour changes [20, 23]
• Texture [20]
• Elasticity and stretchability [24]
• Reflectance [25, 26]
• Shades [25].

These visual cues can be subdivided into more specific 
key features of visual perception of the operative scene. 
It must me noted that these features cannot be viewed in 
isolation but can influence one another or are closely 
interconnected.

Depth cues

There is a distinction between the binocular visual cues the 
surgeon gets only in 3D vision [27] and the monoscopic (2D) 
visual cues [28]. Monoscopic visual cues are

• Motion parallax
• Relative position
• Accommodation
• Familiar size
• Object interposition
• Texture gradient
• Aerial perspective.

There are controversial results in the literature about 
whether 3D vision facilitates depth cue interpretation tasks 
in the context of laparoscopy [29]. The authors of [30] com-
pared to 2D and 3D depth cues in surgical skill acquisition 
in novices. They found that additional binocular cues in 
stereoscopic visualisation lead to cognitive overload of the 
novices. In contradiction to their hypothesis, novices did 
not perform better with additional binocular cues. Another 
study, on the other hand, found that 3D visualisation sig-
nificantly enhanced performance of participants given phan-
tom surgical tasks [31]. The study in [32] claimed that their 
results show an improvement in skill acquisition of novices 
in laparoscopy due to 3D vision implementation. Partici-
pants were able to perform more complex laparoscopic tasks 
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in a decreased amount of time and with fewer errors. One 
explanation for the contradicting results from different stud-
ies investigating if 3D visualization can improve surgical 
performance may be that the performance is very much task-
dependant and experience-dependant [33]. This means that 
binocular cues from 3D vision might be more important in 
tasks that are considered to be more complex such as knot-
tying, but are less important in basic tasks such as pegboard 
transfer. In other words, this suggests that the importance of 
3D vision depth cues depends on task complexity.

Another example of a depth cue or 3D orientation cue is 
the “alignment of suturing material” as described in [34].

Colour changes

Colour patterns and changes play an important role during 
identification, navigation, and manipulation of soft tissue 
[23].

An example given by [34] for a colour-defined visual 
cue is “discolouration and deformation of the bowel during 
grasping”. The grasping instrument interrupts the blood flow 
in the area of the grasp and the delicate, very compliant tis-
sue of the bowel changes colour from a darker to a lighter 
reddish tone. It must be noted that we found a large amount 
of literature about the identification of tissue characteristics 
with the aid of colour change cues, e.g., the identification 
of certain organs or the identification of injuries and tissue 
abnormalities. What we did not find was the application of 
colour change cues in tissue manipulation. The only example 
we found was the one given above about the bowel grasping 
task. To the best of our knowledge, there is no research on 
how exactly different tissues change colour when manipu-
lated (e.g., the tissue gets lighter when it is pulled).

Texture cues

Texture can be a depth cue or a visual cue in itself [33, 35]. It 
is also closely correlated with reflectance and shades, since 
humans perceive texture through reflectance and shadow 
cues. Texture is a crucial visual cue to distinguish vital 
organs, which tend to exhibit a narrow variety of colour 
[25]. The shape of an instance in the operative field can 

be inferred from the texture. By analyzing the distortion of 
the texture projected in an image, the 3D coordinates of a 
surface in a scene are recovered [36]. The authors of [36] 
explain that texture distortion is measured by assuming a 
property of the object such as homogeneity, isotropy, or 
spectral content, on the original texture of an object. Then, 
the prior information based on the original is compared with 
the properties of the texture in the observed image.

Elasticity and stretchability

The elasticity of the tissue helps surgeons to make judge-
ments on how to manipulate the tissue in a safe manner. 
With the knowledge about tissue stretchability and local tis-
sue deformation, surgeons can estimate how much tension 
and force can be used in a pulling, gripping, retraction, or 
needle insertion [37] without risking tissue injury or tear-
ing [5]. Another elasticity-related visual cue is the tension 
of suturing material used on the anatomical structures [34]. 
The tension of the suture material is easier to access than 
the surrounding soft tissue because of its contrasting colour. 
The literature suggests that in the event of a discrepancy 
between the present visual and haptic cues, humans tend to 
rely more on visual cues to judge the softness of compliant 
objects [38].

Reflectance and shades

It could be argued that reflectance and shades are a subcat-
egory of colour changes, but since they play a special role 
with respect to navigation and manipulation, they are worthy 
mentioning separately.

From specular highlights, surgeons can infer the tex-
ture and the elasticity of tissue as well as position of the 
endoscope. Cues of specular reflectance are derived from 
binocular disparity, motion in- formation, and the proper-
ties of highlights [26]. These properties are brightness and 
geometry of the highlights relative to diffuse shading on 
the surface [39]. When you comparing the two pictures in 
Fig. 3, you can see a very particular change of reflections 
where the tissue is pulled. The tissue in the top picture that 
is not pulled has more round reflections, whereas in the sec-
ond picture, these reflections become a sharp white line that 
runs exactly along the edge of the stretched tissue. These 
change of reflection shape can be picked up easily by a cam-
era system.

Identification and navigation

During our research, we found that visual processing by a 
surgeon can be divided into three different decision-making 
processes: Identification of tissue [20, 41] (e.g., classifica-
tion of different organs, identification of dissection planes), 

Fig. 2  Visual process during surgery
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Navigation in the operational field [42] (e.g., angle and posi-
tion of the endoscope or path planning of cutting pattern), 
and Manipulation of the tissue [43] (e.g., gripping and pull-
ing in direct contact with the tissue).

An essential precondition for the safe manipulation of tis-
sue is the thorough and reliable identification of the correct 
tissue components as well as a detailed motion and naviga-
tion planning by the surgeon. In [44], it was found that most 
errors during MIS were related to surgeon perception, i.e., 
due to incorrect identification or no visual perception of the 
impacted structures. In the context of this literature review, 
it is interesting to notice that the authors of the above study 
proved the visual aspect of the operation to be more prone 
to lead to errors than motor skill imprecision of the surgeon. 
To identify a pathology of tissue, findings showed that vis-
ual cue interpretation during laparoscopic cholecystectomy 
could relate to the identification of different pathological 
states, such as distinguishing the appearance of chronic 
inflammation from that of normal tissue [40]. The authors 
of [40] analysed several learning situations of laparoscopy, 
by recording audio as well as video material of two operat-
ing surgeons, one being a senior the other being a trainee in 
real laparoscopy. In these instances, the trainer might use an 
adjective or simile to draw the trainee’s attention to subtle 
changes in appearance. For example, after remarking that the 
gallbladder wall appears adenomyotic (adenomyomyosis is 
a rare disease of the gallbladder characterised by epithelial 

proliferation and the formation of mucosal pouches through 
the thickened muscular layer of the gallbladder wall), he 
uses the adjective ‘marbled’ to draw the trainee’s attention 
to the visual features. It was observed that in cases that were 
more difficult, with more complex anatomy, more time was 
spent on ‘interpreting visual cues’. It must be noted that the 
visual descriptors used by the trainer were solely about tis-
sue identification rather than about describing and teaching 
the right manipulation cues.

Modelling of visual cues

There are several approaches to the modelling of visual cues 
[45]. Many have used models of visual cues for video seg-
mentation of laparoscopy videos [46–48]. The segmentation 
of the videos could then be used to improve surgical training 
for students. The automatic classification of different proce-
dural steps of a recorded laparoscopy taught students how 
to identify each step of an operation in a cost-effective way.

(i) Elasticity. Mass–spring models [49] and finite-element 
modelling are two standard techniques used to simu-
late the visualisation of soft-tissue deformation during 
rigid-tool/soft-tissue interaction on the soft-tissue com-
puter model. Both techniques have some disadvantages: 
mass–spring models ignore the impact of the indenter 
diameter on the soft-tissue deformation, whilst the use 
of finite-element modelling cannot usually achieve real-
time performance due to high computational complex-
ity [50].

  There are several virtual models of soft tissue that are 
used in VR simulators [51–54]. One strategy used to 
visualise haptic feedback is the integration of pseudo-
haptics. The concept of pseudo-haptics uses visual 
feedback such as active cursor displacements to cre-
ate the visual illusion of actual force feedback. This 
approach can be used to model compliance or elasticity 
of tissue visually. Since pseudo-haptic feedback gen-
erates virtual forces through visual feedback only, it 
is considered to be a cost-effective alternative to con-
ventional haptics solutions [50]. Pseudo- haptics has 
mainly been investigated in the context of palpation 
tasks [55], e.g., identifying tumour nodes in a tissue. 
The authors of [50] combined Pseudo-haptics with 
force feedback and it was found that this combination 
of feedback methods performed as well as manual pal-
pation of the tissue.

(ii) Colour. The paper [25] identified several visual cues in 
videos, which were assumed to be used by surgeons for 
inferring information. The authors classified the visual 
cues as local and global descriptors of the scene. A 
feature space was created with the visual cues to depict 

Fig. 3  Changes in specular reflection during soft-tissue retraction 
(still images extracted from Video Clip S6 of the Supporting Material 
from [40]); (top) tissue is not stretched, (bottom) tissue is pulled
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the principal axes of variability. Then, a classification 
model was used to segment videos of surgery.

  To detect specific steps of a surgical procedure from 
videos, colour features can be used in several ways. 
Pixel values can be used as features directly. In [25], the 
authors used RGB/HSV components to augment both 
the local descriptor (colour values) and global descrip-
tor (colour histogram).

(iii) Position. Relative position of organs and instruments 
is an important visual cue. The paper [25] encoded the 
position of SURF detected keypoints with an 8 × 8 grid 
sampling of a Gaussian surface centred around the key-
point. The variance of the Gaussian defines the spatial 
“area of influence” of a keypoint.

(iv) Shape. Shape is an important visual cue for computer 
vision applications. It is used for example in detect-
ing instruments in educational videos of surgery. The 
cues help to identify and thereby segment the phase of 
the surgery video. Shape can be encoded with various 
techniques, such as the Viola–Jones object detection 
framework, using image segmentation to isolate the 
instruments and match against artificial 3D models, 
and other methods. [25]

(v) Texture. Texture is a crucial visual cue to distinguish 
vital organs, which tend to exhibit a narrow variety of 
colour. Texture for example can be extracted using a 
co-occurrence matrix with Haralick statistical features, 
by a sampling of representative patches to be evaluated 
with a visual descriptor vector for each patch, and other 
methods. [25]

Manipulation

Manipulation is the interaction with an object in direct con-
tact with another object that is applying a force and thereby 
controlling the objects movement or behaviour [56]. It can 
be assumed that a prediction of the behaviour of an object 
just from visual feedback alone is much harder to do for 
manipulation tasks as it is for identification or naviga-
tion tasks [57]. This is because at the contact points dur-
ing manipulation, the tool that one is manipulating with is 
occluding the object being manipulated in the contact point. 
Since occlusion means one is getting no visual feedback at 
the point of occlusion, these points form gaps of sensory 
information, if one receives only visual information.

Visual cues in surgical training

There is a manifold of different surgical training techniques 
such as virtual reality simulators [58], wet labs, box train-
ers, video-based training, or augmented-reality simulators, 
all of which deliver different visual cues to the observer. 
Virtual reality simulators are aiming to capture the reality of 

soft-tissue behaviour as closely as possible [59, 60]. Whilst 
the progress that has been made in modelling reality virtu-
ally is important in the pursue of finding low-cost solutions 
for surgical training, fine details of the real operating scene 
are still very hard to capture. Until now, the visual cues per-
ceived during minimal-invasive surgery remain to be seen 
only on recorded endoscopic videos.

Cope et al. (2015) stress the importance for students to 
learn visual cue interpretation [40]. Mastering visual cue 
interpretation means having a certain amount of mental 
exemplars of visual cues and their contextual meaning 
stored in their memory (see section on sensory substitu-
tion). The more experience the surgeon has, the richer their 
memory about visual cue interpretation [61, 62]. When con-
sidering the practical implications of the above, the study 
[63] stresses that students face the problem of increasingly 
restricted training hours. The authors argue that this can 
make it more difficult for students to acquire a rich memory 
bank of visual exemplars [64] to be used to make judgements 
during MIS and RS.

Simulation-based learning methods are an important part 
of the skill acquisition process for MIS and RS and useful 
when trying to find cost-effective solutions that are avail-
able to students whenever they need training hours. How-
ever, “the identification of the plane for dissection—made 
by interpreting subtle differences in colour or texture of the 
tissues, and how they dynamically re-spond to tension—can 
seldom be adequately simulated” [63]. Even though current 
simulation techniques have made immense progress with 
respect to accuracy, they are still an estimation of reality 
[65] using different modelling techniques. Therefore, the 
study concludes that “one potential avenue for surgical 
education is the design of educational interventions that 
specifically address visual cue interpretation” [65]. There 
are several educational design solutions that aim to make 
medical education more cost-effective and available to a 
broader audience. Fig. 4  depicts a robotic training system 
from Heriot-Watt University that is designed as a low-cost 
training solution for robotic surgery. A substantial amount 
of simulators like the ProMIS (Haptica) or LapMENTOR 
(Simbionix) were introduced during the last two decades to 
cover every aspect of surgical training. Considering the con-
ventional measures of surgeon performance used in training 
platforms, such as time taken, instrument path length, and 
smoothness of motion might not be the best choice to meas-
ure surgical ability in terms of result-oriented skill assess-
ment [66]. The authors of [63] suggest that “appropriateness 
of the surgeon’s actions” might provide a more sensible met-
ric for the measurement of the quality of surgical ability. The 
simulators for example evolved to analyse if the surgeon cuts 
in the correct place rather than only measuring completion 
time or other quantitative metrics [67]. When these errors 
are also considered in the context of their severity, the paper 



 Journal of Robotic Surgery (2024) 18:401401 Page 8 of 13

[67] argues that one can reliably differentiate between expert 
and novice surgeons. This brings us to the conclusion that 
qualitative metrics can have more impact in surgical training 
than quantitative metrics like completion time or smooth-
ness of movements. This could be an indication, that if we 
can identify and define visual cues that are actually used 
by expert surgeons to manipulate tissue safely, we could 
potentially enhance surgical training in a meaningful way. 
The appropriateness of certain actions could potentially be 
defined more clearly by building a library of visual cues that 
is found to be sensible by expert surgeons and maps manipu-
lation actions of soft tissue to the appropriate visual cues.

Error mechanisms and performance measurements

In [68], the authors studied what kind of errors happened 
and how frequently they occurred during laparoscopy pro-
cedures, what manipulation mechanism had led to the error, 
and what consequences were incurred. The authors ana-
lysed 50 videos of laparoscopies from different surgeons. 
The most frequently observed errors were: use of too much 
force, too much distance between tool and tissue, "inade-
quate visualisation and wrong orientation of the instrument 
or dissection plane. These errors led to different injuries with 
varying severity. The error mechanisms can be measured 
visually and thereby it can be concluded that the right set 
of visual cues should be studied, matched to the respective 
situation, and used for educational purposes to improve stu-
dent’s learning outcome or to aid the performance of fully 
trained surgeons. Another factor that could play a role in the 

learning process of MIS is the oblique effect [69]. It can be 
hypothesised that expert surgeons learn to compensate for 
the errors that the oblique effect produces. Human percep-
tion is more accurate for vertical and horizontal movements 
than for oblique ones. This effect leads to a misperception 
of the direction of motions. This, in our opinion, stresses the 
importance of a stable movement and fixation of the endo-
scope with a stable horizon whilst learning to manipulate 
tissue with tools. This will help students to learn how to use 
velocity redundancies that can be used to compensate for 
the oblique effect.

It is not an easy task to estimate the interaction forces and 
reactions in an ongoing contact task visually [70, 71]. When 
studying how visual cues can be exploited one keep in mind 
that sensory input for a surgeon from different sources are 
interconnected and the surgeon will have learned to inter-
pret, perhaps unconsciously, this complex set of feedback 
[72], i.e., one sensory feedback influencing the other in the 
context of motor control [73]. An interesting study was con-
ducted by Adams et al. (2013), where the subjects were only 
given visual feedback whilst handling an object in their hands. 
When studying the effects of interrupting haptic and tactile 
sensory information of subjects, the study [13] found that the 
subject’s gripping force increased significantly. They injected 
local anaesthetics into the hands of the subjects and made them 
grip objects with only visual feedback helping them control 
their actions. They concluded that the increased gripping force 
is a strategic response of the nervous system to secure a grip 
without slippage of the object despite the deficit of sensory 
information. On the other hand, another study [74] that was 
researching ways to estimate forces applied to soft tissue with 
vision-based methods found that in a wet lab experiment, it 
was possible to predict how much force was applied to the 
tissue with a mean absolute error of 0.814 N. However, the 
model was trained on the indentation force of the tool only. 
Indentation force means an object is indented with a one-direc-
tional force, whereas a gripping force has two counteracting 
forces. It seems logical that an estimation of gripping force 
from vision only is inherently harder [75], since one side of 
the gripping tool tip is occluded by the tissue or the visually 
perceptible changes are much smaller, since the applied force 
is interacting from two directions making it harder to visually 
estimate elasticity. The model described above was exploiting 
the elasticity of the tissue as a crucial visual cue. However, if 
the tissue is gripped and pinned inside the two counteracting 
sides of the tool tip, there is less deformation to be observed on 
the tissue, hence again making gripping force prediction more 
difficult to predict visually than one-directional indentation 
force [76]. Several studies have tried to implement objective 
measures for the skill differentiation of expert surgeons and 
trainee surgeons . The metrics in the literature include: time 
to complete a particular defined surgical task [77, 78], hand 
path length [78, 79], number of movements [80], smoothness 

Fig. 4  An experimental low-cost Robotic Surgery Training setup at 
Heriot-Watt University
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of hand movements [81, 82], and force–torque signatures of 
particular movements [63]. Another metric is eye tracking. The 
studies [83] and [84] found that there is a reliable distinction in 
eye movement patterns between expert and novice surgeons. 
A critical review of the metrics above has been given in Sec-
tion 4, “Visual Cues in Surgical Training”.

Sensory substitution

Hagen et al. (2008) investigated sensory substitution of hap-
tic feedback with visual feedback [34]. They concluded that 
real haptic feedback is not a necessity for expert surgeons to 
perform MIS or RS in a safe manner . The more experience 
a surgeon has, the more they experience something that the 
authors of [20] called the ‘reverse Braille effect’. Therefore, 
these papers argue that visual cues can act as a surrogate 
for haptic feedback [5, 20, 34]. The authors of Hagen et al. 
(2008) also investigated the effect of the absence of haptic 
feedback in robotic surgery and found that the surgeon at 
the console “learns” to translate optics into tactiles subcon-
sciously and is able to use this information in the course 
of the procedure’ [34]. They described this phenomenon as 
“a neurological form of conditioning”. This conditioning 
provides the surgeons with a mental heuristic that estimates 
how much force is applied, because the surgeon connects the 
visual cues of the applied force with a certain “feeling”. An 
experienced surgeon would have a richer understanding [61, 
85] (consciously or unconsciously) of how a specific grip on 
a piece of bowel would lead to a specific amount of discol-
ouration, how that discolouration would “feel”, and therefore 
how much force they apply. From a neurological perspective, 
the concept of sensory substitution can be explained by how 
humans perceive. Human perception can be described as a 
weighted sum of sensory input. According to the study in 
[63], this means that surgeons combine information from 
visual and haptic cues, weighting them depending on the 
context and the quality of the cues available to them. If the 
quality of visual feedback perceived by an observer is higher 
than the quality of haptic feedback perceived, than it would 
follow from the above that the decision is determined mainly 
by the visual stimuli. There are several studies that support 
the assumption that haptic feedback learned first in detail, 
by touching and manipulating the tissue in open surgery or 
wet labs and then being less present in laparoscopy, can be 
translated mentally into visual cue interpretation sufficiently.

Review of visual cue identification 
and applications

In Table 1, we have collected the most relevant studies 
related to the concept of visual cues in surgery and pre-
sent it in the form of a matrix that relates the studies to 

a number of factors we have identified. The rows of the 
table correspond to the studies identified as most relevant 
to this review.

The rows, hence the collection of studies, have been 
grouped under three categories: Skill/Performance, VC 
identification, and VC Identification and application in edu-
cation. The first category is composed of three papers that 
include an educational design solution in which they apply 
the visual cues they identified in their study [5, 25, 40]. The 
second category shows research papers that are mainly con-
cerned with the identification of visual cues but have no 
educational application with respect to visual cues [20, 24, 
34, 38, 63, 86]. The third category summarises the work that 
has focussed on skill or performance of surgeons without the 
context of specific visual cues but with visual components 
such as video analysis. Since we want to investigate the con-
nection between visual cues and their application in surgi-
cal education, it seemed sensible to review the literature on 
how surgeon’s skill and performance is actually measured. 
Therefore, the third category is a collection of papers that 
investigate error mechanisms of surgeons as well as good 
performance measures (see also Section 3.3 [68, 87–91]).

The columns of Table 1 correspond to the factors we use 
to examine and compare the literature. The first column of 
the table indicates the research that has identified specific 
visual cues in their work, for example analysing specific col-
our patterns or identifying depth cues. The second column 
“Visual Cues as a Surrogate for Haptic Feedback” depicts 
the papers that argue that expert surgeons rely heavily on 
visual feedback when compared to haptic feedback. They 
assume that the need for haptic feedback is overestimated 
by novices and that it can be substituted by visual cues in an 
efficient way. The column “Sensory Substitution” is closely 
related to the previous column, but it is more general. Whilst 
the previous column focuses on papers with experimental 
application of haptic feedback substitution, the category 
in the third column refers to the papers that have some 
aspect of comparison between the use of haptic feedback 
and visual feedback during surgery as well as being related 
to the theory behind sensory substitution (see section 3.4). 
The next three columns are summarised under the category 
“Research methods”. They mark which papers have used 
which research methods for their studies. The three research 
methods that were identified during this review are “Mod-
elling of visual cues”, “Video analysis”, and “Subjective 
two-choice experiment”. It is noticeable that video analysis 
is the main method used, especially in surgeon skill and per-
formance research. Furthermore, it can be noticed that most 
papers, even if they identified specific visual cues, did not 
proceed to modelling the visual cues for further application. 
The next category, “Visual Cue application”, is composed 
of three columns. Here, we mark which of the reviewed 
papers have an educational design solution, which identified 
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characteristics of tissue, and which include motion planning 
or navigation with the aid of visual cues.

As the reader can see from the table, most of the papers 
remained in the first stage of identification of visual cues 
and visual characteristics of tissue. Some of them used these 
results to create an educational design solution, and only 
one of them used the visual cues for motion planning or 
navigation tasks. Although it is part of the visual process 
of surgery (as you can see from Fig. 1), we chose to make 
the last category “Tissue Manipulation” a separate category 
rather than including it in “Visual Cue Applications”. This 
is because we wanted to show that, although there are a lot 
of papers about tissue manipulation, none of these study the 
impact of visual cues on tissue manipulation. This depicts 
the lack of research in vision-focussed tissue manipulation.

Comparative recap of the review

The knowledge we gain from the matrix of Table 1 and 
from the review of the literature in general point to a lack of 
research in the domain of visual cue application for manip-
ulation and education. The question we ultimately ask is: 
what does the review tell us for potential future research? 
To answer this question, we clustered the papers contentwise 
and categorised them in a way that exemplified the lack of 
research in visual cue application for soft-tissue manipula-
tion and that showed an emphasis on visual identification of 
tissue in the current literature. Since a large amount of the 
literature is also about the application of haptic feedback 
[93] [94] in MIS or surgical training, it is sensible to com-
ment on the relationship between haptic and visual feedback 
and how they can be connected for educational purposes. 
Ström et al. (2006) have shown that early exposure to haptic 
feedback enhances performance in surgical simulator train-
ing significantly [95]. It can be hypothesized that a with-
drawal process [96] of haptic feedback towards the use of 
visual feedback only could be beneficial for the learning 
process.

Conclusion

This literature review aims to add value by summarising 
empirical insights on visual cues in surgery and thereby 
providing a synthesis of what is already known and what is 
not. The main output is to reflect the state of knowledge in 
current research and show potential gaps in the literature [7]. 
The literature reviewed in this work investigates visual cues 
and their application in surgical education. The clustering 
of the papers showed explicitly that state-of-the-art research 
does not in particular study the direct effects of visual cues 
in relation to manipulation of the tissue and training for that 

purpose but is more concentrated on tissue identification. 
Therefore, there seems to be a gap in literature about the 
use of visual cues for educational design solutions, that aid 
the training of manipulation of soft tissue in MIS and in 
RIS [97]. By addressing that gap, visual cue identification 
could be made more accessible and set it in the context of 
manipulation tasks. Approaches such as e-learning environ-
ments for medical education are limited in providing the 
realism needed to train students [98]. These environments 
are particularly limited to provide the students with the nec-
essary feedback of visual cues whilst performing the task. 
To address these problems, advanced visual cues could be 
used to improve medical training and learning performance 
as well as potentially produce better surgery outcomes. More 
accurate visual cues can enable better decision making by 
trainees and surgeons alike whilst performing soft-tissue 
manipulation tasks. A good knowledge of visual cues and 
skills to interpret those in a correct and useful way might 
result in less damage to the manipulated tissue and give 
trainees and surgeons more confidence in their ability to 
manipulate soft tissue safely.
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