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ABSTRACT

Andean highland soils contain significant quanti-

ties of soil organic carbon (SOC); however, more

efforts still need to be made to understand the

processes behind the accumulation and persistence

of SOC and its fractions. This study modeled SOC

variables—SOC, refractory SOC (RSOC), and the
13C isotope composition of SOC (d13CSOC)—using

machine learning (ML) algorithms in the Central

Andean Highlands of Peru, where grasslands and

wetlands (‘‘bofedales’’) dominate the landscape

surrounded by Junin National Reserve. A total of

198 soil samples (0.3 m depth) were collected to

assess SOC variables. Four ML algorithms—random

forest (RF), support vector machine (SVM), artifi-
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cial neural networks (ANNs), and eXtreme gradient

boosting (XGB)—were used to model SOC vari-

ables using remote sensing data, land-use and land-

cover (LULC, nine categories), climate topography,

and sampled physical–chemical soil variables. RF

was the best algorithm for SOC and d13CSOC pre-

diction, whereas ANN was the best to model RSOC.

‘‘Bofedales’’ showed 2–3 times greater SOC

(11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and

more depleted d13CSOC (- 27.0 ± 0.44 &) than

other LULC, which reflects high C persistent,

turnover rates, and plant productivity. This high-

lights the importance of ‘‘bofedales’’ as SOC reser-

voirs. LULC and vegetation indices close to the

near-infrared bands were the most critical envi-

ronmental predictors to model C variables SOC and

d13CSOC. In contrast, climatic indices were more

important environmental predictors for RSOC. This

study’s outcomes suggest the potential of ML

methods, with a particular emphasis on RF, for

mapping SOC and its fractions in the Andean

highlands.

Key words: Artificial neural networks; Bofedales;
13C isotope composition; Extreme gradient boost-

ing; Grasslands; Random forest; Refractory C frac-

tion; Support vector machine.

HIGHLIGHTS

� ML algorithms consistently modeled SOC vari-

ables with high performance

� Free publicly available remote sensing data was

useful for SOC variables prediction

� Bofedales and grasslands were the most impor-

tant reservoirs of SOC and fractions

INTRODUCTION

The High Andes, located between 5�S and 20�S and

above 4000 m.a.s.l., are characterized by their rich

agro biodiversity (Monge-Salazar and others 2022)

and ecosystem services (Rolando and others

2017a). However, the high melting rate of their

glaciers (Zemp and others 2019), high frequency

and intensity of extreme events (heavy rainfalls,

frosts, strong winds, droughts, among others; Po-

veda and others 2020), and changes in land use

(mainly agricultural intensification and encroach-

ment; Rolando and others 2017a) make these areas

especially vulnerable to climate change. Rising

temperatures have led to an expansion of crops to

higher elevations (Skarbø and VanderMolen 2016),

promoting an increasing incidence of pests (Dan-

gles and others 2008) and diseases.

Global warming drives crop encroachment on

the Andes’s higher lands (Rolando and others

2017a), which causes a substantial land-use change

and the reduction of soil organic carbon (SOC)

pools. External market demand, environmental

policy, and management of high Andean grasslands

have led to regrettable examples of landscape

degradation and transformation. In the Andean

highlands of Junin-Peru, the so-called ‘‘boom’’ of

maca (Lepidium meyenii), a ‘‘superfood’’ appreciated

for its energizing nutritional power with high de-

mand in the Asian market during 2011–2015

(Turin and others 2018), has transformed a land-

scape dominated by highland grassland cover to a

prevalence of bare soil degraded by maca cultiva-

tion. This cultivation process involves burning and

plowing the grassland with heavy machinery,

releasing significant amounts of carbon (123–

136 t ha-1; Rolando and others 2017b). Further-

more, other activities put to risk the conservation

and functioning of high Andes wetlands named

‘‘bofedales,’’ which are crucial for water security in

lowlands (MINAM 2015) and for conserving sig-

nificant soil C stocks (Monge-Salazar and others

2022; Hribljan and others 2016) and biodiversity

(Polk and others 2019; Maldonado 2014). These

activities involve extracting compact blocks of

vegetation with a thin layer of soil, which is then

used as alternative energy for heating and cooking

(Caro and others 2014) and the overgrazing caused

by domestic livestock (Cochi Machaca and others

2018).

Andean soil contains high quantities of SOC, the

carbon that remains in the soil after the partial

decomposition of organic matter by microorgan-

isms (Alavi-Murillo and others 2022). However,

few studies address SOC assessment and modeling

in the Andean highlands region. Refractory SOC

(RSOC) represents a fraction that persists in soil

and has a finite turnover time of thousands of years

(Krull and others 2003). It represents one of the

significant global SOC pools (Jagadamma and oth-

ers 2010), and its quantification is crucial for

understanding C dynamics (decomposition and

stabilization processes). Also, the 13C isotope com-

position of SOC (d13CSOC) constitutes another cru-
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cial soil trait because it may be used to estimate

plant inputs into soil organic matter (Ehleringer

and others 2000; Bernoux and others 1998).

Moreover, d13CSOC has been shown to vary with

SOC turnover rate, and sources of SOC under land-

use change (Ehleringer and others 2000; Xia and

others 2021; Han and others 2023). Predictions of

quantity and turnover rate based on d13CSOC are

subject to errors associated with climate variability,

temporal differences, and anthropogenic contami-

nation. Therefore, it is essential to quantify these

errors and compare them with other results to

achieve robustness. Artificial intelligence methods,

including machine learning (ML) and deep learn-

ing, emerged in the last two decades in pedometrics

and have been demonstrated to outperform other

SOC modeling approaches, such as linear regres-

sion and geostatistical approaches, due to their

ability to find nonlinear patterns in a multidimen-

sional set of potential environmental predictions

(Somarathna and others 2016; Keskin and others

2019; Veronesi and Schillaci 2019; Chen and others

2022; Grunwald 2022; Zhu and others 2022).

However, multiple algorithms are commonly tested

and compared because no rule exists for choosing

the best ML algorithm. This is because ML models

are considered black boxes (the underlying pro-

cesses for prediction are unknown), and the algo-

rithms fit differently depending on the input data.

Remote sensing data have been used as a primary

source of predictor variables. Multispectral ima-

gery, including Landsat (Ayala Izurieta and others

2021), MODIS (Sreenivas and others 2016), SPOT

(Liu and others 2015a), and others, is used as a

nondestructive data source to study SOC variability

(Gehl and Rice 2007; Chatterjee and others 2021)

through the calculation of different spectral indices.

The Andean highlands have received little atten-

tion for quantifying soil C fractions. No approaches

for developing predictive models that help to

understand C process dynamics and the main dri-

vers for this system have been validated, perhaps

due to the high spatial heterogeneity and limited

resources to conduct sampling. In this study, SOC,

RSOC, and d13CSOC (referred to as soil C target

variables hereafter) were measured and used to

develop predictive models using ML algorithms and

publicly available remote sensing data in the An-

dean highlands of Junin-Peru. This study aims: i) to

compare the soil C target variables among the most

important land uses in the zone, ii) to analyze the

performance of some ML methods for predictive

modeling, iii) to find their most important envi-

ronmental predictors related to land use, climate,

topography, and soil properties, and iv) to spatially

model SOC across the study area.

MATERIALS AND METHODS

Study Area

The study was conducted in the central Peruvian

Andean highlands within the districts of Junin and

Carhuamayo in the department of Junin (10� 01¢ S,
76� 07¢ W, 4200 m a.s.l.). The study area comprised

about 800 km2 within the Junin National Reserve

buffer zone (Figure 1), whose primary purpose is to

protect the grassland and bofedal ecosystems and

biodiversity of Junin�s lake and the surrounding

central Andean highlands. The Ramsar Convention

identifies this site as an essential wetland area (site

number 882; RSIS 2021). The climate is rainy and

cold, with dry autumn/winter according to the

Thornthwaite climatic classification system (SE-

NAMHI 2022). The annual average maximum

temperature, minimum temperature, and precipi-

tation are 9–19 �C, -3–3 �C, and 500–1200 mm,

respectively (period 1981–2010; SENAMHI 2022).

The soil in the study area is characterized mainly by

a predominance of Inceptisols with a trend of high

SOC concentrations and acidic pH (Rolando and

others 2018).

As grasslands and ‘‘bofedales’’ dominate the

landscape, the primary land use and the main

livelihood is grazing livestock consisting of cattle

and sheep, which coexist with wild vicuñas (Vi-

cugna vicugna). In some cases, subsistence agricul-

ture is practiced with crops of potato and maca and

is limited to a few small spots of land. However,

from the 1990s to the present day, maca cultivation

has had a significant expansion, becoming the

primary driver of land-use change and the leading

disruptor of the high Andean drylands (‘‘puna’’)

ecosystem (Turin and others 2018).

Measured Soil Data

The soil sampling sites were selected following the

Latin Hypercube sampling (LHS) statistical method,

which provides an efficient way of sampling vari-

ables, ensuring a good representation of the envi-

ronmental characteristics of the study area (Carré

and others 2007; Wang and others 2022; Stein

1987; McKay and others 1979). The LHS method

used the multidimensional distributions of the

slope, precipitation, minimum and maximum

temperatures, normalized difference vegetation

index (NDVI), and land cover estimated by a

supervised classification from Landsat 8 imagery

from the United States Geological Survey (USGS
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2020) to determine the sampling locations. The

sampling locations were adjusted in practice due to

high slopes and accessibility, resulting in the

selection of 198 sites. A composite soil sample

(� 5 kg) was gathered at each sampling site from

five locations: one central point and four points

positioned 2 m apart in the N, S, E, and W cardinal

directions. These samples were collected using an

auger from the 0.3 m soil profile (Art’s Manufac-

turing & Supply Inc., model Mud Augers, USA). In

addition, a pit measuring 0.8 9 0.7 9 0.5 m3 was

dug at the central point for bulk density measure-

ments within the 0–0.3 m soil profile, using metal

cylinders of 0.05 m in diameter. Then, C stock was

estimated by multiplying SOC (see its determina-

tion below) with bulk density following Rolando

and others’ (2017b) procedure. Unfortunately, bulk

density measurements were made for just 64% of

the sites selected due to operational inconve-

niences; therefore, LULC averaged values are re-

ported.

Composite soil samples were analyzed for texture

and pH using a hydrometer and suspension

potentiometer (water in 1:1 relation) at the Soil

Laboratory of the National Agrarian University La

Molina—Lima, Peru. The soil C target variables’

values were determined using a Combustion

Module coupled to a Cavity Ring-Down Spec-

Figure 1. The study area and the 198 soil sample locations in the proximities of Junin Lake are located in the Central

Peruvian Andean Region of the Province of Junin. Advanced Land Observing Satellite (ALOS) Phased Array type L-band

Synthetic Aperture Radar (PALSAR) digital elevation model was used for mapping.
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troscopy (CM-CRDS) system based on Liu and

other’s (2018) procedure for SOC and d13CSOC.

Thus, a soil subsample per site was sieved to < 2

mm, dried at 60 �C, and ground with a mortar and

pestle. Then, the final soil sample weights to be

analyzed were determined by land-use type based

on their mean expected soil C concentration.

Hence, 0.015, 0.030, 0.027, and 0.0075 g were

packaged in tin capsules for maca crops, fallow and

cultivated pastures, native grasslands and improved

pastures, and wetlands (‘‘bofedales,’’ see below),

respectively. For RSOC, a second soil subsample per

site was oxidized using H2O2, according to Jaga-

damma and others (2010), with slight modifica-

tions. Thus, 1 g of sieved soil (< 2 mm) was

oxidized by adding 90 ml of 10% H2O2 for 2–

3 days, centrifugated for 15 min, washed three

times with deionized water, and freeze-dried. From

the remaining soil, 0.075 g was weighed and

packaged in tin capsules. Finally, all tin capsules

were submitted to a CM-CRDS system (G2131-iA-

nalyzer, Picarro Inc., USA). d13CSOC was estimated

from the 13C/12C natural abundance values re-

ported by the equipment relative to international

standard VPDB (Vienna Pee Dee Belemnite) using

the equations by Liu and others (2018). All the

analyses were performed in the Schaeffer Lab in

the Department of Biosystems Engineering and Soil

Science at the University of Tennessee, Knoxville,

USA.

Environmental Predictors and Land-Use
and Land-Cover Categories

Given that the soil C target variables result from

complex processes and interactions of several

environmental factors—including topography, cli-

mate, soil properties, and vegetation—the primary

environmental predictors underpinning their un-

ique processes are likely to vary in significance.

Despite this complexity and considering the limited

ML experience in predicting soil C variables beyond

SOC, this study utilized an identical set of features

(environmental predictors hereafter) for SOC,

RSOC, and d13CSOC. Thus, the environmental pre-

dictors considered for the models were obtained

from publicly available remote sensing data, soil lab

analysis, and vegetation type and condition at soil

sampling (see definitions in Table 1). The topo-

graphic variables were elevation (DEM—Digital

elevation model), slope, aspect, and topographic

wetness index (TWI), derived from the Advanced

Land Observing Satellite (ALOS) Phased Array type

L-band Synthetic Aperture Radar

(PALSAR)—Radiometric Terrain Correction prod-

uct. The climate indices were the minimum and

maximum of the average monthly minimum

(TMNN and TMNX, respectively) and maximum

temperatures (TMXN and TMXX, respectively) and

the average annual total precipitation (PREC),

calculated from WorldClim version 2.1 climate data

(period 1970–2000 with � 1 km resolution).

Vegetation also plays a vital role in these carbon

variables, so the nine spectral bands and several

vegetation indexes were estimated from a Landsat

8 Operational Land Imager (OLI) imagery from

November 26th, 2014 (see list in Table 1). Remote

sensing data was preprocessed using Environmen-

tal Systems Research Institute (ESRI) ArcGIS soft-

ware (ESRI, 2011, Redlands, CA).

In addition, as the predominant vegetation was

grasslands and grasslands converted into maca

fields, finer land-use and land-cover (LULC) cate-

gories were defined depending on the type of

grassland, condition, and history (see Figure 2).

‘‘Vigorous grasslands’’ (n = 45) was defined as

healthy, tall grasslands with good cover and sparse

bare soil. ‘‘Partially degraded grasslands’’ (n = 57)

were referred to as medium-sized, sparse grasslands

with some bare soil, whereas ‘‘degraded grass-

lands’’ (n = 47) were typified as low and sparse

grasslands covered surrounded by abundant bare

soil. All grassland categories are land used neither

for cropping activities nor perturbed. ‘‘Improved

pastures’’ (n = 5) referred to grasslands with

introduced cultivated species such as white clover

(Trifolium pratense) and red clover (Trifolium repens)

through inter-seeding, implying a minimum per-

turbation since it does not require plowing. ‘‘Cul-

tivated pastures’’ (n = 24) was defined to transform

native grasslands into an association of species such

as king grasses (Lolium multiflorum, Lolium perenne)

and clovers (Trifolium spp.), introduced 40 years

ago in the case of the multi-communal cooperative

system and 15 years ago in the farmer community

system. ‘‘Bofedales’’ (n = 10) is a type of Andean

highland wetland with hydromorphic vegetation

and generally accumulates peat, seasonally or per-

manently saturated with water (Monge-Salazar

and others 2022). ‘‘Fallow 1’’ (n = 13) referred to

bare soils from recently harvested maca crops or up

to 2 years of fallow, which in turn come from the

recent conversion of vigorous or partially degraded

grasslands plowed to be converted to maca crop-

land. ‘‘Fallow 2’’ (n = 20) was composed of bare

soils with invasive sparse grass species, coming

from maca crops harvested 3 to 5 years ago, which

in turn result from the conversion of ‘‘vigorous’’ or

‘‘partially degraded grasslands’’ that have been

plowed to be transformed into maca cropland.
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Table 1. Features Considered as Potential Environmental Predictors in Soil Organic Carbon Prediction

Variables Abbreviation Equation Source

Land-use and land-cover condition at

sampling

LULC Field sampling

Soil texture particle sizes: sand con-

tent (%)

SAND

Soil texture particle sizes: silt content

(%)

SILT

Soil texture particle sizes: clay con-

tent (%)

CLAY

pH in water pH

Closest Euclidean distance to the lake DLAKE d(lake, sample)

Average annual precipitation (mm) PREC Climate variables:

WorldClim v2.1, cli-

mate data from 1970–

2000. 30 s resolution

(� 1 km)

Minimum of average monthly mini-

mum temperature (�C)
TMNN min(Tmin)

Maximum of average monthly mini-

mum temperature (�C)
TMNX max(Tmin)

Minimum of average monthly maxi-

mum temperature (�C)
TMXN min(Tmax)

Maximum of average monthly max-

imum temperature (�C)
TMXX max(Tmax)

Global-Aridity index ARID CGIAR Consortium for

Spatial Information

(CSI)

Global-Potential evapotranspiration PET

Ultra-blue band (435 – 451 nm) UBLUE Landsat 8 Operational

Land Imager (OLI)Blue band (452 – 512 nm) BLUE

Green band (533 – 590 nm) GREEN

Red band (636 – 673 nm) RED

Near-infrared band (851 – 879 nm) NIR

short-wave infrared-1 band (1566 –

1651 nm)

SWIR1

Short-wave infrared-2 band (2107 –

2294 nm)

SWIR2

Spectral vegetation indexes 1 SER1 Red=Green Derived vegetation in-

dexes from Landsat 8

OLI

Spectral vegetation indexes 2 SER2 Red=SWIR2

Spectral vegetation indexes 3 SER3 SWIR1=SWIR2

Normalized Difference Vegetation

Index

NDVI NIR� Redð Þ= NIRþ Redð Þ

Enhanced Vegetation Index EVI 2:5� NIR�Red
NIRþ6�Red�7:5�Blueþ1

� �

Soil-Adjusted Vegetation Index.

L = 0.5

SAVI 1þ Lð Þ � NIR� Redð Þ= NIRþ Red þ Lð Þð Þ

Modified Soil Adjusted Vegetation

Index

MSAVI
2�NIRþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�NIRþ1ð Þ2�8� NIR�Redð Þ

p
2

Normalized Difference Moisture In-

dex

NDMI NIR� SWIR1ð Þ= NIRþ SWIR1ð Þ

Normalized Burn Ratio 1 and 2 NBR1 NIR� SWIR2ð Þ= NIRþ SWIR2ð Þ
Normalized Burn Ratio 1 and 2 NBR2 SWIR1� SWIR2ð Þ= SWIR1þ SWIR2ð Þ
Digital Elevation Model DEM ALOS PALSAR*

Slope in degrees SLOPE Derived topographic

properties from DEMAspect ASPECT

Topographic Wetness Index** TWI ln a=tanbð Þ

(*) Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR).
(**) Calculated according to Quinn and others (1991), where a ¼ ðTotalcatchmentareaÞ=ðFlowwidthÞ and b ¼ Slope:
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‘‘Fallow-3’’ (n = 12) referred to invasive grass

species with sparse low vegetation resulting from

long-standing maca fallow (> 5 years) of trans-

formed grasslands into maca cropland. (Table 2).

Modeling Approach

From the 42 potential environmental predictors

considered for this study (33 numerical and nine

categorical from LULC, Table 1), some may be

nonessential or repetitive, and it is always better to

identify and exclude them from the model build-

ing. Addressing and preselecting the minimum-

optimal and all-relevant features to include (fea-

ture selection) helps optimize the model prediction

and reduce overfitting (Parsaie and others 2021).

Among the feature selection methods, the Boruta

method (Kursa and Rudnicki 2010) has yielded

better results when working with environmental

processes like SOC decomposition due to its ability

to identify linear and nonlinear relationships from

complex processes (Keskin and others 2019; Zer-

aatpisheh and others 2022). This study used Boruta

to select all-relevant and tentative environmental

predictors for building the models for every soil C

target variable. Based on a random forest (RF)

classification algorithm, this method creates ran-

domness in the system and determines the unim-

portant, meaningful, and tentative attributes of a

given variable. After the Boruta feature selection,

the new dataset underwent balancing and parti-

tioning, including the selected environmental pre-

dictors and the soil C target variables. This

partitioning for model training and testing was

based on the values of the soil C target variable,

utilizing a fivefold approach (Yates and others

2022). The approach comprises five cycles of model

training and testing, where each iteration involves

permuting four folds for training (75%) and

reserving onefold for testing (25%). The four top-

performing algorithms in predicting SOC (John and

others 2020; Emadi and others 2020)—RF, artificial

neural Networks (ANN), Support Vector Machine

(SVM), and eXtreme Gradient Boosting

(XGB)—were employed to develop predictive

models for the soil C target variables. Due to the

differences in the ranges and distributions of the

environmental predictors’ values, feature scaling

(transformations of values) through scaling (sub-

tracting feature mean and dividing by feature

standard deviation, mean 0, and standard deviation

1) and normalization (dividing by the feature

maximum, range from 0 to 1), was executed and

tested to determine the most effective method for

enhancing model performance. Following the lit-

erature recommendation, especially for regression

and when variable importance is of interest, feature

scaling was applied even for the tree-based algo-

rithms RF and XGB (Strobl and others 2007; Bal-

abaeva and Kovalchuk, 2019). Then,

hyperparameters were tuned using ‘‘out-of-bag,

‘‘tenfold cross-validation repeated three times, and

‘‘leave-one-out cross-validation’’ resampling

methods for RF, SVM, and ANN-XGB. For every

soil C target variable modeled, performance metrics

were averaged across the fivefold partitions for

both the training and testing phases (see next sec-

tion) and compared to identify the best predictive

ML model. Once the best model was found and due

to the small dataset, the ML model was retrained

using the whole dataset (without partitioning), and

the important variables were evaluated. The ML

models were built and assessed using R 3.6.1 and

the packages ‘‘Boruta’’ v7.0.0 (Kursa and Rudnicki

2010) for feature selection and ‘‘caret’’ v6.0.86

(Kuhn and others 2019) for applying the RF, ANN,

SVM, and XGB algorithms.

Finally, its spatial distribution was mapped, and

SOC was identified as the primary variable of

interest. The RF model was recalibrated by

retraining it, using the most important spatially

available environmental predictors, which included

LULC, SER2, NDMI, MSAVI, NDVI, DLAKE,

SWIR2, and NBR1. For LULC, a land-cover classi-

fication was performed using the RF classification

algorithm in Google Collaboratory. This classifica-

tion used the 198 sample sites across the nine LULC

categories and categories for water bodies, inun-

dated areas, urban areas, rocks, and cattails (Man-

tas and Caro 2023) and the same Landsat imagery

used in this study. These additional land-use cate-

gories were masked together and defined as ‘‘Non-

carbon storing surfaces’’ for mapping purposes.

Furthermore, a raster depicting the Euclidean dis-

tance—the shortest distance—to Junin Lake

(DLAKE) was generated based on the lake’s

boundary. The remaining predictors were Landsat-

based indices, which were already spatially avail-

able. The training samples for classification, the

DLAKE raster, and the process of raster snapping

(at 30 m resolution) for all variables were con-

ducted in ArcGIS.

Statistical Comparison of Soil Organic C
Variables and Models Performance
Assessment

The Kruskal–Wallis rank sum test was used to test

significant differences among LULC for the soil C

target variables, followed by Dunn’s post hoc test
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with Holm’s correction method for adjusting p-

values for multiple comparisons. For that analysis,

the R packages ‘‘stats’’ (R Core Team 2022) and

‘‘DescTools’’ (Signorel and others 2022) were used.

Next, the coefficient of determination (R2) and root

mean square error (RMSE) were used to assess the

performance of the ML models tested. R2 represents

the proportion of variance explained by each ML

model, and RMSE indicates the accuracy of the

predicted values (Yang and others 2014). R2 and

RMSE were calculated as follows:

R2 ¼ N
PN

i¼1 XiX̂i �
PN

i¼1 Xi

PN
i¼1

bXiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
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2
i �
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� �2h i
N
PN

i¼1 X̂
2
i �
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i¼1 X̂i

� �2h ir

0
BB@
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CCA

2

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðX̂i � XiÞ2

N

s

where X̂i, Xi, and N are the model predicted values,

observed values, and, total number of observed

values, respectively. Higher R2 (close to 1) and

lower RMSE (close to 0) mean better ML model

performance. Model performance metrics were

calculated as the average across the fivefold parti-

tions for training and testing.

RESULTS

Soil C Measurements by LULC

SOC values ranged between 1.67–17.77%, with the

lowest value found in ‘‘degraded grasslands,’’

which was significantly lower than that of ‘‘bofe-

dales’’ (p-value < 0.001) and ‘‘partially degraded

grasslands’’ (p-value < 0.01) (Figure 3A,

Table S1). The highest SOC value was found in

‘‘bofedales,’’ being significantly (p-value < 0.05)

Figure 2. Photos of land-use and land-cover categories (see definition in Materials and Methods section): A Bofedales, B

Cultivated pastures, C Improved pastures, D Vigorous grasslands, E Partially degraded grasslands, F Degraded Grasslands,

G Fallow areas fallow with 0–2 years after maca cultivation (Fallow 1), H Fallow areas fallow with 3–5 years after maca

cultivation (Fallow 2), I Fallow areas fallow with > 5 years after maca cultivation (Fallow-3).
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2–3 times higher than that of the other LULC cat-

egories except for ‘‘improved pastures’’ (Figure 3A,

Table S1). RSOC values ranged between 0.01 and

2.58%, being the lowest and highest ones found in

‘‘fallow–1’’ and ‘‘bofedales,’’ respectively (Fig-

ure 3B). ‘‘Cultivated’’ and ‘‘improved pastures’’

were not significantly (p-value > 0.05) lower than

‘‘bofedales’’ which was 2–3 times higher than the

other LULC categories (Table S1). Values of d13CSOC

ranged between - 29.09–20.35 & being the high-

est one found in ‘‘fallow–3’’ (Figure 3C). The

lowest value was found in ‘‘bofedales’’ (all its val-

ues were below the overall mean of -

24.76 ± 0.074 &) which was significantly different

to all the other LULC categories except to ‘‘culti-

vated’’ and ‘‘improved pastures’’ (Figure 3C,

Table S1). ‘‘Fallow–3’’ (p-value < 0.01), ‘‘de-

graded grasslands’’ (p-value < 0.01), and ‘‘par-

tially degraded grasslands’’ (p-value < 0.05)

showed significant differences compared to ‘‘Cul-

tivated pastures’’ (Table S1). Bulk density in ‘‘bo-

fedales’’ was approximately half compared to other

LULC categories (0.49 t m-3 vs. 0.98–1.09 t m-3),

while carbon stock was nearly twice as high

(210.9 t ha-1 vs. 97.4–126.3 t ha-1) (Table S2).

Model Performance and Comparison

Overall, RF consistently outperformed other ML

algorithms in modeling soil C target variables

models, achieving R2 > 0.87 during training, ex-

cept for XGB in the RSOC model (0.95), and

R2 > 0.42 during testing, except for ANN in the

RSOC model (R2 = 0.50) (Table 2). Thus, following

the criteria indicated in Sect. ’’Statistical Compar-

ison of Soil Organic C Variables and Models Per-

formance Assessment’’ and analyzing the average

fivefold R2 and RMSE values for training and test-

ing, respectively (Table 2), RF was selected as the

most appropriate model for predicting SOC and

d13CSOC, and ANN for predicting RSOC.

Explanatory Variables

The environmental predictors excluded (see selec-

tion criteria in Sect. ’’Modeling Approach’’) from

the model building of the soil C target variables

were SILT (silt content), CLAY (clay content),

BLUE (blue band), GREEN (green band), SWIR1

(short-wave infrared-1 band), SLOPE, ASPECT,

Table 2. Model Performance Metrics
(R2—Coefficient of Determination and
RMSE—Root mean Square Error) for Random
Forest (RF), Artificial Neural Networks (ANNs),
Support Vector Machine (SVM), and eXtreme
Gradient Boosting (XGB) Algorithms on the
Models’ Training and Testing of Soil Organic
Carbon (SOC), Refractory SOC (RSOC), and 13C
Isotopic Composition of SOC (d13CSOC)

Soil C variable Model Training Testing

RMSE R2 RMSE R2

SOC RF 0.77 0.87 1.47 0.49

ANN 1.15 0.70 1.49 0.43

SVM 1.11 0.72 1.66 0.36

XGB 0.92 0.81 1.53 0.42

d13CSOC RF 0.35 0.89 0.79 0.42

ANN 0.60 0.66 0.85 0.29

SVM 0.42 0.84 0.88 0.26

XGB 0.30 0.84 0.81 0.37

RSOC RF 0.10 0.87 0.19 0.46

ANN 0.12 0.80 0.18 0.50

SVM 0.14 0.75 0.20 0.46

XGB 0.05 0.95 0.20 0.41

Figure 3. A Soil organic carbon (SOC), B refractory SOC

(RSOC), and C 13C isotopic composition of SOC

(d13CSOC) on different land-use and land-cover

categories (see definition in Materials and Methods

section). Red dashed horizontal line represents the

global average.
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TWI, TMNN, TMNX, and ‘‘Cultivated pastures’’

(data not shown). A total of 23, 22, and 20 out of

the 42 environmental predictors were selected (see

selection criteria in Sect. ’’Modeling Approach’’)

for building the models for SOC, d13CSOC, and

RSOC, respectively (data not shown). From the

selected environmental predictors, ‘‘bofedales’’

were identified as the most critical for SOC, fol-

lowed by SER2 (Spectral vegetation indexes 2) and

NDMI (Normalized Difference Moisture Index),

both of which were considerably less important

(Figure 4A). Regarding d13CSOC, ‘‘bofedales’’ also

were the most critical environmental predictor,

followed by NDMI and DLAKE, which had similar

importance, and then by NIR (Near-infrared band)

and pH, which were the next ones in importance

(Figure 4B). For RSOC, pH was as critical as ‘‘Fal-

low-3,’’ followed by SWIR2 (short-wave infrared-2

band), ‘‘bofedales,’’ and EVI (Enhanced Vegetation

Index) with lower importance (Figure 4C).

SOC Mapping

The land-cover classification yielded accuracies of

95% during training and 60% during testing. Pre-

dicted SOC values within the study area ranged

from 2.7 to 11.5% (Figure 5). The highest SOC

values were predominantly found north and south

of Junin�s lake, mainly in the ‘‘bofedales’’ zone.

Areas with the next highest SOC values were found

in the southernmost part of the study area, pri-

marily corresponding to cultivated pasture zones.

Conversely, the lowest SOC values were predicted

in the western Reserve Buffer Zone.

DISCUSSION

‘‘Bofedales’’ as Essential Reservoirs
of Soil Organic Carbon in the Andes
Highlands

Bofedales showed higher SOC amounts compared

to other assessed land uses (Figure 2). Even though

these wetlands have been recognized as an essen-

tial reservoir of SOC in the Andes (Alavi-Murillo

and others 2022; Segnini and others 2013), their

relevance in policy incidences and conservation/

restoration actions is scarce, or null (Maldonado

2014). The SOC range of values in this study (3.2–

17.8%) was in the lower range of values reported

by other studies (13.2– 83.2%) (Cooper and others

2010; Segnini and others 2010; Alavi-Murillo and

others 2022; Monge-Salazar and others 2022).

Plant biomass extraction from the soil through

‘‘champeo’’ and overgrazing has been reported in

the study area (Caro and others 2007, 2014; Sal-

vador and others 2014; Mantas and Caro 2023);

these perturbations could promote SOC reduction.

On the other hand, C stock values (in the 0–0.3 m

soil profile) found in this study (Table S2) were

Table 3. Caused Impacts by the Primary Land-Use Changes in the Study Area and Highland Andean
Ecosystems Reported by Literature

Effect

The main land-use

changes

Drivers in the study area Soil/land components & function Ecosystem

services

� Native

‘‘bofedales’’/grasslands

to Degraded

‘‘bofedales’’/grassland

Fuel demand and inappro-

priate management

(‘‘champeo’’, overgrazing)

SOM reduction a, erosion b, loss of plant

diversity and soil degradation c,d, water

retention d, loss of productivity e

fl FWFP, fl
CS, fl NC

� Native grasslands to cul-

tivated grassland

Agricultural policy reforms > soil aggregation and potential soil C

sequestration f, > plant productivity and

soil fertility f,g

› FWFP, ›
CS, › SF,

›NC
� Native grasslands to

maca crop

External market demand Soils macroaggregate disruption f, > nutrient

mineralization and soil fertility g
› FP, › SF

� Maca crop to the fallow

areas

External market demand SOC reduction f, slow plant recovery
f, > proneness to erosion and runoff f,g

fl FWFP, fl
CS, fl
NC, flWR

aAdler and Morales (1999), b Rolando and others (2017a), c Catorci and others (2014), d Cochi Machaca and others (2018), e Caro and others (2014), fRolando and others
(2017b), gRolando and others (2018). Likely positive (›) and adverse (fl) effects on provisioning (FWFP = food, wool, and fiber provision, FP = food provision), regulating
(CS = carbon sequestration, WR = water regulation), and supporting (SF = soil fertility, NC = nutrient cycling,) ecosystem services are referred based on Millennium
Ecosystem Assessment (Corvalán and others 2005). In bold are the processes directly and indirectly observed/measured in this study.
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slightly lower than those values reported in the

literature for ‘‘bofedales’’ (211 vs. 230–306 t ha-1

from Segnini and others 2010), grasslands (102–

126 vs. 135–144 t ha-1 from Farley and others

2013), fallows (106–11 vs. � 123 t ha-1 from Ro-

lando and others 2017b) and pastures (97–119 vs.

136 t ha-1 from Rolando and others 2017b). There

were no significant differences in C stock values

among LULC categories except for ‘‘bofedales’’,

which was almost twice as high (Table S2). In

‘‘bofedales,’’ C stocks are more extensive and pro-

found than the other LULC categories and range

from 30–700 t C ha-1 per meter of peat depth (peat

thickness can reach as deep as 15 m). The study

findings highlighted the importance of ‘‘bofedales’’

as a reservoir of SOC and its stable C fractions and

called for its conservation and restoration (see

Scale, Reach, and Impacts of Land-use Changes and

their Implications for Conservation Section).

The highest depletion of d13CSOC (ranged

from - 29.5 to - 25.0 &) in ‘‘bofedales’’ than

other LULC suggested that SOC was formed from

plants under no water restriction conditions and

better photosynthetic performance discriminating

against 13C (Farquhar and others 1989; More and

others 2022). This finding highlights the potential

for relatively high primary productivity in ‘‘bofe-

dales’’ in this Andean ecosystem. On the other

hand, high enrichment of d13C is also related to

higher fractions of persistent SOC pools (Ehleringer

and others 2000), which is consistent with our

findings considering that ‘‘bofedales’’ showed the

highest RSOC (1.10 ± 0.23%) than other LULC

(Figure 3C). Furthermore, Segnini and others

(2010) found an increase in persistent SOC pools

with soil depth in Andean- ‘‘bofedales.’’

Highland grasslands have been reported as other

important reservoirs of C stocks and SOC in the

Andes (Gibbon and others 2010; Zimmermann and

others 2010; Farley and others 2013). In our study

area, Rolando and others (2017b) detected that

cultivated pastures showed similar values of SOC

but a higher depletion of d13C (4.5 ± 0.2% and -

26.0 ± 0.1 &, respectively) than native grasslands

(4.6 ± 0.3% and - 25.6 ± 0.1&, respectively) and

fallow areas (4.1 ± 0.3% and - 25.6 ± 0.1 &,

respectively). This has been interpreted as a higher

depletion of d13C in cultivated pastures from incor-

porating N-fixer species (white clover) and long-s-

tanding perennial grasses (like ryegrass), manure,

and supplemental irrigation. In this study (in

agreement with Rolando and others 2017b), ‘‘cul-

tivated pastures’’ LULC showed significantly more

depleted d13CSOC (- 25.4 ± 0.16 &) than ‘‘partially

degraded’’ (- 24.6 ± 0.12 &) and ‘‘degraded

grasslands’’ (- 24.5 ± 0.12 &), and fallows area

after three years (- 23.7 ± 0.46 &) (Figure 3). This

result suggested that vegetation that formed SOC in

cultivated pastures had better physiological perfor-

mance and that soil in degraded grasslands and fal-

low areas likely had more labile C forms.

RF as Promising ML Algorithm
for Predicting Soil C Variables
in the Andean Highlands

Overall, among the ML algorithms, RF performed

the best, capturing C processes’ nonlinear interac-

Figure 4. Rankings of the top most important

environmental predictors defined for the best-

performed machine learning model for soil organic

carbon (SOC) with random forest (A, in %), 13C

isotopic composition of SOC (d.13CSOC) with random

forest (B, in &), and refractory SOC (RSOC) with

Artificial Neural Network (C, in %). Importance is

defined as the increase in the MSE prediction when the

variables are permuted. The environmental predictors are

described in Table 1.
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tions with acceptable and consistent R2 and RMSE

performances (Table 2), which agrees with most of

the reported SOC modeling studies. In the litera-

ture, the performance of ML algorithms predicting

SOC is highly variable. It depends on multiple

factors, like the observed sample size, number and

type of covariates, time–space resolution, extent of

the study area, and model algorithm (Grunwald

2022). Sample size has a more significant effect

than the model algorithm on the model perfor-

mance (Somarathna and others 2017). R2 is among

the most reported model performance indicators for

ML regression algorithms for soil C models due to

its more straightforward interpretation, especially

Figure 5. Predicted spatial distribution of soil organic carbon across the Lake Junı́n Region, Junı́n, Peru. This map

showcases the distribution, as inferred by a random forest algorithm utilizing the eight most significant environmental

predictors available spatially. Non-carbon storing surfaces correspond to classes such as water bodies, inundated surfaces,

cattails, rocks, and urban areas.

910 M. Carbajal and others



when comparing multiple site applications where

target value ranges and/or units may differ to use

RMSE. However, most of these R2 values ranged

from 0.24 to 0.68 (from first to third quartile)

(Grunwald 2022), reflecting little understanding of

the main drivers and methods for predicting SOC.

For this study, the R2 of predicted soil C target

variables varied from 0.42 to 0.50 for the best ML

algorithms, agreeing with other studies with small

sampling sizes and similar covariates (Zeraatpisheh

and others 2022). Using multi-temporal data or soil

nutrient indicators as covariates has been a strategy

to counter the effect of a small sample size, allow-

ing somewhat higher R2, 0.58–0.68 (John and

others 2020; Shafizadeh-Moghadam and others

2022). Therefore, the moderate performance of the

models, especially in predicting d13CSOC, suggested

that the processes involved are too complex for the

given small sample size and/or some essential

variables at the correct time–space scale were

missing as covariates. Regarding the RMSE, pre-

dicting SOC got 1.47%, which seems high, but

considering the small sample size and high SOC

values from ‘‘bofedales,’’ it is fair and in the mid-

range of the reported values from 0.59 to 2.7 across

multiple SOC studies (Padarian and others 2019;

Peng and others 2015; Safanelli and others 2020).

Few studies modeled other C fractions apart from

SOC with ML techniques; for example, Adi and

Grunwald (2020) and Keskin and others (2019)

modeled persistent C fraction at 0–0.2 m depth for

Florida State using 850 and 1014 soil samples and

151 and 327 environmental predictors, respec-

tively. When employing the RF algorithm, these

studies achieved acceptable R2 values of 0.68 and

0.72, respectively. This suggests that model per-

formances could be improved by adding sampled

data and potential environmental predictors. The

ANN model was selected for RSOC predictions due

to its balanced performance in the training and

testing phases. Although XGB and RF demon-

strated superior learning capabilities during train-

ing, ANN performed well in training and exhibited

the best generalization to unseen data in the testing

phase (Table 2).

Vegetation and Climatic Indices
as Essential Predictors of Soil Organic
Carbon

Quality and quantity of SOC are mainly deter-

mined by a soil’s physical and chemical environ-

ment, physical accessibility of organic matter to

biological agents (that is, microbes and/or en-

zymes), and the ratio of C inputs to losses (Krull

and others 2003; Luo and others 2017; Sing and

others 2018; Dynarski and others 2020). Even

though land use significantly affects both labile and

persistent C pools (Liu and others 2020; Padb-

hushan and others 2022; Smith 2008), the latter

responds much slower than labile C pools to land-

use and other human-induced changes (for exam-

ple, land management) (Dynarski and others 2020;

Padbhushan and others 2022; Sainepo and others

2018). Thus, LULC was one of the leading envi-

ronmental predictors, ‘‘bofedales’’ the most rele-

vant for SOC and d13CSOC, and ‘‘Fallow-3’’ for

RSOC. Several studies have highlighted the

importance of LULC as a predictor variable for SOC

(Emadi and others 2020; Keskin and others 2019;

Xiong and others 2014) and RSOC (Keskin and

others 2019; Xiao and others 2022) using ML

algorithms. Regarding d13CSOC, Wang and others

(2015) stress that the litter quality and soil water

can increase the carbon isotope fractionation dur-

ing organic matter decomposition. Because soil 13C

isotope composition (d13C) is strongly influenced

by leaf (litter) d13C, variations in this variable can

be influenced by LULC because it determines the

type and quality of litter inputs into the soil (Smith

and Chalk 2021; Wang and others 2013). Thus,

d13C values in labile C pools (that is, relatively

‘‘new’’ material) would reflect d13C values closer to

the current vegetation, whereas d13C values in

persistent C pools (that is, older material) shows

relatively enriched d13C values due to isotopic dis-

crimination of the heavy isotope in soil organic

matter compounds (Wang and others 2013). In

addition, the crucial role of soil water and soil

temperature and pH during soil organic matter

decomposition has been highlighted as they in-

crease the activity of soil fauna and microorganisms

(Wang and others 2013; Wang and others 2015;

Smith and Chalk 2021). Thus, we found that for

‘‘bofedales,’’ some indicators of soil water (DLAKE

and NDMI) and vegetation (SER2), and pH were

relevant environmental predictors for d13CSOC and

RSOC (Figure 3). The greater relevance of pH for

RSOC and d13CSOC than for SOC could be due to its

impact on the activity and growth of microorgan-

isms, which metabolize the different forms of C,

resulting in a variation in the organic carbon iso-

topic composition of the soil (Neina 2019; Klink

and others 2022). Also, soil pH can affect the

interactions between soil minerals and organic

matter, which determines the preservation and

stability of C (Neina 2019). Although some soil

variables, such as clay content, were reported as

essential predictors for SOC (John and others 2020;

Davy and Koen 2013), in this study, it was not of
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high relevance, likely due to the importance of pH

against other chemical indicators to explain SOC in

Andean highlands soils (Alavi-Murillo and others

2022).

The relationship between SOC and remotely

sensed and easily accessible variables has rarely

been reported (Mirchooli and others 2020). How-

ever, Lamichhane and others (2019) reported that

these variables were among the top five for SOC

prediction. NDMI is a vegetation index that detects

vegetation water content and is a good predictor for

measuring SOC using ML methods (John and

others 2020). Mirchooli and others (2020) found

that coloration index and NDMI are the most crit-

ical environmental predictors for SOC prediction in

the RF model, followed by elevation, NDVI, and

slope. NDMI is indirectly related to soil moisture in

the surface layers (0–0.3 m), and the latter can

prevent the net loss of organic soils through oxi-

dation (Liu and others 2015b). In this study, NDMI

was the main environmental predictor in both SOC

and d13CSOC under the RF model, followed by

SER2, NIR, and NBR1. These last variables are

closely related by the NIR and SWIR2 bands, found

in the spectrum�s wavelengths from 850 to

2200 nm. Bishop and others (2008) found a strong

absorption near 1400 nm (also for Kaolinite) and

1900 nm, indicating the presence of water bound

in the interlayer lattices of soil. This could provide

the conditions for a physical protection mechanism

through the interaction of SOC with the soil min-

eral matrix and the stabilization process by aggre-

gate formation (Krull and others 2003). Also, Al-

abbas and others (1972) reported an inverse rela-

tionship to SOC approximately near this region of

the spectrum, and with all this, it could have ob-

tained the affinity to be one of the best environ-

mental predictors for SOC and d13CSOC.

Scale, Reach, and Impacts of Land-use
Changes and Their Implications
for Conservation

The extraction of vegetation and part of the topsoil

of ‘‘bofedales’’ and grasslands (an activity locally

called ‘‘champeo’’) has been carried out for decades

by rural inhabitants (Caro and others 2014).

‘‘Champeo’’ allows the local population to guar-

antee fuel for domestic use (mainly cooking);

however, it also constitutes a critical perturbation

affecting SOC accumulation (Table 3). Overgrazing

caused by domestic livestock is another activity

reported in the study area (Caro and others 2007;

Salvador and others 2014) that reduces peat pro-

duction and can affect SOC pools from the assessed

‘‘bofedales’’ and grasslands. Both perturbations

(‘‘champeo’’ and overgrazing) are the most

important drivers that impact the change from

vigorous/native to degraded ‘‘bofedales’’/grass-

lands, reducing SOC (Figure 3) and provisioning,

regulation, and supporting ecosystem services (Ta-

ble 3). Land policy reforms during the’70 s pro-

moted establishing a multi-communal agrarian

company (SAIS Tupac Amaru) in the region, cov-

ering more than 0.2 Mha, to increase grassland

productivity for livestock (Diez 2020). Through

these reforms, the natural grasslands from these

lands were managed by incorporating productive

pastures (ryegrass-white clover), irrigation, inor-

ganic–organic fertilization, and rotational livestock

grazing (Rolando and others 2017b). The land-use

change from native to cultivated grasslands was the

only one that was not considered a perturbation; it

increased plant productivity (see first Discussion

section) and soil health, promoting provisioning,

regulation, and supporting ecosystem services (Ta-

ble 3). Land-use changes caused by crop

encroachment in highland grasslands are consid-

ered one of the most critical perturbations that

threaten the ecosystem services of these landscapes

in the highland Andes region (Tovar and others

2013; Rolando and others 2017a). Climate change

facilitating the upward expansion of agriculture

(Tovar and others 2012; Arce and others 2019) and

socioeconomic factors like the increase of interna-

tional market demand (like quinoa, Gamboa and

others 2020) have been crucial drivers of Andes

grasslands transformation.

In the study area, maca (Lepidium meyenii) culti-

vation was gradually extended in the grasslands of

Junin since the early 90 s for local, American, and

European markets. Still, its expansion was massive

in 2011–2015 to cover the high demands of the

Asian markets. This led to a rapid transformation of

the high Andean landscape with direct conse-

quences on ‘‘puna’’ ecosystem services, such as the

decrease of grassland primary production, reduced

grazing areas, reduced land cover, loss of water

infiltration and retention capacity of soils, besides

changes in the main livelihood (Turin and others

2018) (see Table 3). This study corroborates find-

ings previously reported in the field (Rolando and

others 2017b, 2018), highlighting the occurrence of

a degradation process following maca cultivation

(as indicated in Table 3), particularly in steep ter-

rains. Swift restorative measures are imperative to

reinstate ecosystem services provided by grasslands.

Despite the inclusion of high Andean natural pas-

ture management for greenhouse gas reduction

within the National Determined Contribution
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(NDC), outlined by the Peruvian multisectoral

working group (MINAM 2019), further measures

are warranted to ensure the preservation of soil C

stored within grasslands and unique ‘‘bofedales’’

ecosystems. Economic and social incentives for

pastoralists must be implemented to guarantee the

establishment of best management practices (rota-

tional grazing, improved fallows with legumes,

water harvesting, wetland, and grassland restora-

tion) to avoid the expansion of the agricultural

frontier. Special attention must be provided to

‘‘bofedales’’ which occupy around 0.8% of the

Peru surface (� 1.05 Mha) and are found pre-

dominantly in mine concessions (41% of total

‘‘bofedales’’ surface), keeping 21% of them under

the custody of rural inhabitants (Fuentealba and

Rios 2023). Despite that, an increase of + 2% year-

1 in areas of ‘‘bofedales’’ (by greater availability of

water resources in dry seasons due to deglaciation)

has been reported for the 1986–2005 period in the

southern Andes (Pauca-Tanco and others 2020), in

recent years there has been a reduction of areas of

‘‘bofedales.’’ Thus, some studies reported an area

loss rate of - 3.8 to - 0.4% year-1 during the

2005–2016 period (Machuca-Crespo 2018; Pauca-

Tanco and others 2020; Pamo-Sedano and Oscco-

Coa 2022). These ecosystems can be restored by

establishing artificial ‘‘bofedales,’’ which can pre-

serve the same ecosystem services as natural ones,

as was remarked in recent studies (Monge-Salazar

and others 2022).

The present study was conducted in the Junin

National Reserve, which covers 5303.9 and

3608.8 ha of ‘‘bofedales’’ of the Junin and Pasco

departments, respectively (Fuentealba and Rios

2023). Conservation areas can be crucial as a life

lab to test and monitor restoration activities

involving local communities, thus improving the

geospatial modeling of SOC to build an interoper-

able public digital infrastructure that can serve as a

monitoring-verification system for future compen-

sation schemes for the benefit of indigenous pas-

toralists and rural inhabitants. Focusing on the

ecologically significant and delineated regions of

the Junin National Reserve and its buffer zone, our

predictive mapping depicted distinct variations in

SOC distribution. Specifically, within the reserve

itself, approximately 32% of the C storing surfaces

had SOC values over 9.6%, compared to only 8%

within its buffer zone (Figure 5). While RSOC and

d13CSOC are key variables that provide valuable

information, the significant importance of pH—a

site-specific sampled predictor—in their models

limited our ability to produce accurate spatial dis-

tribution maps.

CONCLUSION

Processes that drive SOC and fractions like RSOC

and d13CSOC in high Andean rangeland systems

have not been studied yet, challenging the choice

of environmental predictors (LULC identification

and classification, remote sensing products, climate

and soil variables, among others) for their model-

ing. Under this context, ML algorithms capture

nonlinear interaction and process complexity to

model the studied soil C target variables with

acceptable and consistent performance. ‘‘Bofe-

dales’’ were the most important reservoirs in terms

of the total and the refractory fraction of SOC

compared to the other land uses. Its highest

depletion of 13dC is a potential indicator of higher

turnover rates, high plant productivity, and C

persistence. Because ‘‘bofedales’’ are affected by

strong perturbations (extraction of vegetation and

part of the topsoil—‘‘champeo,’’, overgrazing) in

the study area, it is recommended to establish

restoration activities to guarantee ecosystem ser-

vices from those ecosystems. For example, the

management of natural grasslands through culti-

vated pastures showed indicators of higher pro-

ductivity (more depletion of d13C), remarking its

potential for grassland restoration after crop

encroachment (like maca crop) in this area.

Free, publicly available remote sensing data can

be beneficial for SOC prediction. Vegetation indices

close to the NIR band, such as NDMI and SER2,

were good environmental predictors for the total

soil C (SOC and d13CSOC). However, to improve the

prediction, vegetation and climatic indices must be

complemented with data taken in situ, such as pH,

and especially LULC, because it is the primary dri-

ver of SOC variation. Together, these variables can

explain SOC dynamics, facilitating their prediction

using ML algorithms. Considering the high reser-

voirs of C in the soils of highland Andean ecosys-

tems, future SOC and fractions mapping will be

essential for decision-makers and regional govern-

ments for compensation schemes in voluntary or

regulated C markets. The SOC map elaborated in

this study can be used for this aim, and some

improvements can be achieved if more soil sam-

plings are collected, especially in ‘‘bofedales,’’ im-

proved and cultivated pastures, and fallows LULC.
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Mirchooli F, Kiani-Harchegani M, Darvishan AK, Falahatkar S,

Sadeghi SH. 2020. Spatial distribution dependency of soil or-

ganic carbon content to important environmental variables.

Ecological Indicators 116:106473.

From Rangelands to Cropland, Land-use Change and Its Impact 915

https://doi.org/10.18800/revistaira.202002.010
https://repositorio.inaigem.gob.pe/handle/16072021/466
https://repositorio.inaigem.gob.pe/handle/16072021/466
https://doi.org/10.1016/j.jclepro.2020.121657
https://doi.org/10.1016/j.jclepro.2020.121657
https://doi.org/10.7717/peerj.15249
https://doi.org/10.7717/peerj.15249
https://doi.org/10.1016/j.soilbio.2022.108634
https://doi.org/10.1016/j.soilbio.2022.108634


Monge-Salazar MJ, Tovar C, Cuadros-Adriazola J, Baiker JR,

Montesinos-Tubée DB, Bonnesoeur V, Antiporta J, Román-

Dañobeytia F, Fuentealba B, Ochoa-Tocachi BF, Buytaert W.

2022. Ecohydrology and ecosystem services of a natural and

an artificial bofedal wetland in the central Andes. Science of

the Total Environment 838:155968.

More SJ, Ravi V, Raju S. 2022. Carbon isotope discrimination

studies in plants for abiotic stress. In: Shanker C, Anand A,

Maheswari M, Eds. Shanker AK, . Climate Change and Crop

Stress: Molecules to ecosystems. Academic Press International

Publishing. pp 493–537.

Neina D. 2019. The role of soil pH in plant nutrition and soil

remediation. Applied and environmental soil science

2019(1):5794869. https://doi.org/10.1155/2019/5794869

Padarian J, Minasny B, McBratney AB. 2019. Using deep

learning for digital soil mapping. Soil 5(1):79–89.

Padbhushan R, Kumar U, Sharma S, Rana DS, Kumar R, Kohli

A, Kumari P, Parmar B, Kaviraj M, Kumar Sinha A, Anna-

purna K, Gupta VV. 2022. Impact of land-use changes on soil

properties and carbon pools in India: a meta-analysis. Fron-

tiers in Environmental Science 9:722.

Pamo-Sedano J, Oscco-Coa CE. 2022. Análisis espacio temporal

del bofedal de la comunidad de Ancomarca (Tacna-Perú)
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mático del humedal altoandino de Chalhuanca (Perú) durante
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