Skip to main content
. 2024 Sep 9;27(7):899–917. doi: 10.1007/s10021-024-00928-7

Table 2.

Model Performance Metrics (R2—Coefficient of Determination and RMSE—Root mean Square Error) for Random Forest (RF), Artificial Neural Networks (ANNs), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGB) Algorithms on the Models’ Training and Testing of Soil Organic Carbon (SOC), Refractory SOC (RSOC), and 13C Isotopic Composition of SOC (δ13CSOC)

Soil C variable Model Training Testing
RMSE R2 RMSE R2
SOC RF 0.77 0.87 1.47 0.49
ANN 1.15 0.70 1.49 0.43
SVM 1.11 0.72 1.66 0.36
XGB 0.92 0.81 1.53 0.42
δ13CSOC RF 0.35 0.89 0.79 0.42
ANN 0.60 0.66 0.85 0.29
SVM 0.42 0.84 0.88 0.26
XGB 0.30 0.84 0.81 0.37
RSOC RF 0.10 0.87 0.19 0.46
ANN 0.12 0.80 0.18 0.50
SVM 0.14 0.75 0.20 0.46
XGB 0.05 0.95 0.20 0.41