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Abstract
The aim of this study is to establish a deep learning (DL) model to predict the pathological type of gastric adenocarcinoma 
cancer based on whole-slide images(WSIs). We downloaded 356 histopathological images of gastric adenocarcinoma (STAD) 
patients from The Cancer Genome Atlas database and randomly divided them into the training set, validation set and test 
set (8:1:1). Additionally, 80 H&E-stained WSIs of STAD were collected for external validation. The CLAM tool was used 
to cut the WSIs and further construct the model by DL algorithm, achieving an accuracy of over 90% in identifying and 
predicting histopathological subtypes. External validation results demonstrated the model had a certain generalization abil-
ity. Moreover, DL features were extracted from the model to further investigate the differences in immune infiltration and 
patient prognosis between the two subtypes. The DL model can accurately predict the pathological classification of STAD 
patients, and provide certain reference value for clinical diagnosis. The nomogram combining DL-signature, gene-signature 
and clinical features can be used as a prognostic classifier for clinical decision-making and treatment.
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Introduction

Gastric adenocarcinoma (STAD) accounts for more than 
95% of all gastric malignancies and is the most common 
cause of cancer-related death [1, 2]. According to the Global 
Cancer Statistics Report 2020, there are about 1.07 million 
new cases of STAD, accounting for 5.6% of all new cancer 
cases and ranking fifth in terms of incidence rate, and about 

769,000 deaths, accounting for 7.7% of all cancer deaths and 
ranking fourth in terms of mortality rate [3]. Patients with 
early gastric cancer undergoing radical surgery and subse-
quent chemotherapy have a 5-year survival rate of 90% after 
surgery [4]. However, more than half of STAD patients are 
initially diagnosed at an advanced stage, and the 5-year over-
all survival (OS) rate of STAD is less than 30% [5]. Tumor 
microenvironment (TME) denotes the non-cancerous cells 
and components presented in the tumor, including molecules 
produced and released by them. As an important component 
of TME, tumor-infiltrating immune cells (TIIC) are associ-
ated with the promotion or inhibition of tumor growth [6, 
7]. Therefore, early detection and appropriate treatment are 
important ways to reduce the mortality of STAD patients, 
while understanding the degree of immune cell infiltration in 
different subtypes of gastric cancer is helpful for the admin-
istration of relevant immunotherapy.

The spatial characteristics of different tissues in histo-
pathological images play an important role in the diagnosis 
and prognosis of cancer [8–10]. Traditionally, pathologists 
have identified and distinguished different pathological 
types of STAD by visual examination of hematoxylin and 
eosin(H&E)-stained histopathologic sections. However, this 
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method is labor-intensive, tedious, and time-consuming, 
and the diagnostic accuracy is negatively affected by the 
acute shortage of pathologists and heavy diagnostic work-
loads [11]. To overcome these limitations, researchers have 
turned to deep learning (DL) based approaches that harness 
the power of artificial intelligence and neural networks to 
automate and enhance the analysis of histopathology images 
[12–14]. CLAM (Clustering-constrained Attention Multiple 
Instance Learning) is a deep-learning-based weakly super-
vised method that uses attention-based learning to automati-
cally identify subregions of high diagnostic value to accu-
rately classify the whole slide, while also enabling the use 
of instance-level clustering over the representative regions 
identified to constrain and refine the feature space [15]. In 
practical applications, CLAM has shown superior perfor-
mance, particularly in medical image analysis. For instance, 
in cancer detection and classification tasks on pathology 
images, CLAM accurately identifies cancerous regions by 
incorporating clustering constraints, significantly enhancing 
diagnostic accuracy and efficiency [16, 17].

Recently, a DL method has been developed based on 
histopathological images, which has shown great potential 
for the rapid detection of adenocarcinoma in gastric biopsy 
and resection specimens. It exhibits high sensitivity and 
specificity and is beneficial for future diagnostic pathology 
workflows. In addition, it enables accurate segmentation 
of STAD regions, enabling further analysis and support-
ing translational research [18, 19]. Studies have shown that 
DL algorithms applied to H&E stained slides can predict 
microsatellite instability in STAD as well as specific muta-
tions in other cancers [20, 21]. Osamu Iizuka et al. used 
convolutional neural networks (CNN) and recurrent neu-
ral networks (RNNs) to classify the biopsy histopathology 
WSIs of the stomach with an accuracy of more than 90% 
[22]. Huang et al. designed a CNN-based model, Gastro-
MIL, for accurate diagnosis of STAD directly from digital 
H&E-stained images. The model has an accuracy of 92%, 
which is comparable to the discrimination ability of profes-
sional pathologists [23]. These DL methods have brought 
great hope to improve the accuracy and efficiency of STAD 
diagnosis and classification. By automated analysis of H&E-
stained histopathological images, interobserver variability 
can be effectively reduced and more objective and reproduc-
ible results can be provided. In addition, it may be possible 
to reveal novel features of specific pathological subtypes, 
thereby contributing to the development of more targeted 
therapeutic strategies.

In this study, we created a DL model to classify adenocar-
cinomas and mucinous adenocarcinomas from histopatho-
logical images to support conventional histopathology diag-
nosis by expert pathologists. The TCGA-STAD cohort was 
used for training, followed by validation using an external 
independent dataset to further illustrate the generalization 

ability of the model. In addition, STAD patients were suc-
cessfully classified into two subtypes with different molecu-
lar characteristics based on DL features combined with tran-
scriptome datasets, which further explored the pathogenic 
mechanism at the genome scale.

Materials and methods

Patient cohorts

The 356 STAD patients with clinical characteristics and 
mRNA sequencing data were acquired from The Cancer 
Genome Atlas (TCGA) (https:// portal. gdc. cancer. gov/). 
356 WSIs of STAD were obtained from the TCGA-STAD 
cohort, including 322 cases of adenocarcinoma and 34 cases 
of mucinous adenocarcinoma (Scanned slides with extensive 
labeling in the area of the covered tissue, damaged slides, 
and slides that did not contain tumors were excluded, and 
only one sample was selected per patient.). In addition, 80 
H&E-stained WSIs of STAD were obtained from Shanghai 
Zhuoli Biotech Company (Shanghai, China) and used for 
external validation. The ethical approval of validation cohort 
was obtained from the Tongxu County People's Hospital, 
Henan, China. The TCGA database is publicly available for 
research and therefore does not require ethical approval.

DL feature extraction and selection

Considering the very large image size of WSIs (typi-
cally 100,000 * 80,000 pixels), WSIs were cropped into 
many patches. Tissue regions were then exhaustively split 
into patches of 256 × 256 pixels (without overlapping) at 
20 × using the OpenSlide library in Python. Feature vec-
tors were extracted using a modified ResNet50 model pre-
trained on ImageNet, by feeding it with a cropped pixel size 
of 256 × 256 patches. Finally, each patch was output as a 
1024-dimensional feature vector using adaptive averaging 
of spatial pools after selecting the third residual block in the 
ResNet50 model.

DL models

356 WSIs of STAD were randomly divided into a training 
set (80%), validation set (10%) and test set (10%) for DL 
via clam as a way to construct pathohistological typing of 
STAD, and further estimated it robustness in the external 
validation set. During the training process, weakly super-
vised learning is employed, where each WSI is assigned a 
slide-level label indicating whether it belongs to adenocar-
cinoma or mucinous adenocarcinoma. Throughout training 
and inference, the model utilizes an attention-based pooling 
function to aggregate patch-level features into slide-level 

https://portal.gdc.cancer.gov/
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Fig. 1  DL  algorithm predicts pathologic staging in STAD patients. 
A The ROC curve and AUC value of DL  model in TCGA-STAD 
cohort. B The confusion matrix of DL model. C Attention heat map 
of pathological tissue sections of adenocarcinoma. D Attention heat 

map of pathological tissue sections of mucinous adenocarcinoma. 
Areas of high attention are shown in red and areas of low attention 
are shown in blue
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representations for classification. The model examines 
and ranks each patch within the tissue regions of the WSI, 
assigning an attention score to each patch, which reflects 
its contribution or importance to the collective slide-level 
classification of a specific category. By leveraging atten-
tion-based learning, the model can identify and aggregate 
regions of high diagnostic significance, thereby providing a 
slide-level classification for each WSI. The training was per-
formed using a tenfold Monte Carlo cross-validation strat-
egy. The training was performed using a tenfold Monte Carlo 
cross-validation strategy. Performance was further assessed 
using the area under the curve (AUC) from a receiver operat-
ing characteristic curve (ROC).

Attention map generation

CLAM is capable of generating interpretable heat maps 
that enable an intuitive analysis of the relative contribu-
tion of each tissue region to model predictions in each WSI 
[15]. These heat maps provide pathologists with insights 
into histological and cytological features that are strongly 
associated with high predictive value. To account for the 
relative importance of different regions in the pathological 
picture for the model's final level predictions, we calculated 
and saved unstandardized attention scores for all patches 
extracted from the pathological picture using the attention 
branches corresponding to the model's predicted categories. 
The attention score was learned by CLAM for each patch 
and converted into percentiles. For each WSI, the percentiles 
were then normalized to [0, 1] with 1 being the most pre-
dictive and 0 being the most non-informative. The normal-
ized scores were converted to RGB colors using heat maps 
and displayed above their respective spatial locations in the 
pathology pictures to visually identify and interpret areas 
of high attention displayed in red and areas of low attention 
displayed in blue.

Unsupervised cluster of DL features

The least absolute shrinkage and selection operator 
(LASSO) analysis was used to select the most useful DL 
features among 1024 features, and the optimal values of 
the penalty parameter λ were determined by tenfold cross-
validations. The importance of each feature was evaluated 
by the weight coefficient of DL. The larger the parameter 
estimate (absolute value), the higher the importance of the 

element. To gain more insight into the molecular mecha-
nism of STAD, we performed an unsupervised clustering 
analysis to identify subgroups with similar patterns based 
on DL features, using the kmeans algorithm in the R pack-
age "Consensus Cluster Plus". Kaplan–Meier (K-M) curves 
were used to compare the prognosis of subgroups defined 
by DL features.

Transcriptome analysis of different 
histopathological subtypes

Identification of differentially expressed genes (DEGs)

The “limma” package in R software was utilized to screen 
DEGs of different histopathological subtypes. An adjusted 
p value of < 0.05 and log2 |Fold Change|> 0.5 were consid-
ered statistically significant. The “ggplot2” package in R 
was used to plot the volcano map in the two groups. The 
Significant DEGs were further screened by LASSO regres-
sion analysis.

Functional enrichment analysis

Based on the Gene Ontology (GO) database and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) Pathway 
database, the “clusterProfiler” R package was used to per-
form functional enrichment analysis of the DEGs according 
to the pathological subtypes. The p-value of less than 0.05 
was identified as a significant term.

Estimation of the immune cell infiltration

Immune-related gene set were obtained from Genecard data-
base (Supplementary Table S1) and intersected with DEGs. 
The single-sample gene set enrichment analysis (ssGSEA) 
was used to estimate the relative abundance of different 
immune cell types in each sample. Then the correlation 
between the scores of each immune cell was calculated, and 
the differences in immune scores and immune checkpoint 
genes between subtypes were tested by Wilcoxon test.

Identification of histopathologic DL‑signature 
and gene‑signature

The “limma” R package was used to screen the DEGs 
between adenocarcinoma and mucinous adenocarcinoma 
in the TCGA-STAD cohort, and the intersection of the 
immune-related DEGs after pathological prediction and 
classification was used to select the candidate gene signa-
ture. Multivariate Cox modeling was used to create gene 
signatures, and a risk score was determined by a linear com-
bination of the regression coefficient (α) from the multi-
variate Cox regression model and gene expression levels 

Fig. 2  A The ROC curve and AUC value of DL model in validation 
cohort. B The confusion matrix of DL model in validation cohort. C 
Attention heat map of pathological tissue sections of adenocarcinoma 
in validation cohort. D Attention heat map of pathological tissue sec-
tions of mucinous adenocarcinoma in validation cohort. Areas of high 
attention are shown in red and areas of low attention are shown in 
blue

◂
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based on the "ggrisk" package. According to the median risk 
score, all patients were divided into a high-risk group and 
a low-risk group, and the K-M survival curve was drawn to 
compare the survival rate of the two groups. Pathological 
features were derived from the DL features identified by the 
LASSO penalty model. Based on DL characteristics, genetic 
characteristics and clinical characteristics, a nomogram was 
constructed to predict OS.

Statistical analysis

All analyses were performed with R (version 4.3.1) or 
Python (version 3.7.12). The versions of the Python librar-
ies and R packages used are in Supplementary Table S2. The 
Wilcoxon test was used to analyze the differences between 

the two groups. Correlations between variables were deter-
mined using Pearson's analysis. Survival analysis was con-
ducted using the “survival” R package, and the log-rank test 
was performed with the “survdiff” function. All statistical 
tests were considered significant with p < 0.05.

Results

Performance of the histopathological classifier

A pathology-based DL model was developed in the training 
set of the TCGA-STAD cohort (8:1:1 for training, validation 
and testing). The tenfold Monte Carlo cross-validation was 
used to evaluate the classification performance of CLAM in 

Fig. 3  Selection of DL features and unsupervised clustering. A 
LASSO coefficient profiles of all DL  features. B Cross-validation 
to select the optimal tuning parameter log (λ) in LASSO regres-
sion analysis. C Bar plot of DL feature weights. D Comprehensive 

heatmap of unsupervised clustering of DL features combined with 
clinical features. E K-M curve of survival probability between Clus-
ter 1 and Cluster 2 subtypes. F Boxplots of distribution differences 
between cluster 1 and cluster 2 for the 12 DL features
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clinical diagnostic tasks. The results showed that each model 
had good performance in recognizing adenocarcinoma and 
mucinous adenocarcinoma, with an average AUC of 0.90 
(maximum 0.97, minimum 0.78) (Fig. 1A). Further confu-
sion matrix results show that the correct rate of adenocar-
cinoma recognition is 95.65% and the success rate of muci-
nous adenocarcinoma recognition is 85.29%, both of which 
reflect high recognition rates (Fig. 1B). To visualize and 
interpret the relative importance of each region in the WSIs, 
we converted the attention scores of the model's predicted 
categories to percentiles, normalized them and mapped them 
to the original slides to generate an attention heatmap. Two 
representative heatmaps providing patch-level predictions 
for adenocarcinoma and mucinous carcinoma, respectively, 
are shown in Fig. 1C-D.

External validation model

DL systems are prone to overfitting the data they are trained 
on, so we introduced H&E-stained section data of 80 STAD 
cases (59 adenocarcinomas, 21 mucinous adenocarcinomas) 
for external validation. It was worth noting that the external 

validation dataset and the TCGA-STAD cohort are vastly 
different in terms of both patient ethnicity and slice prepa-
ration techniques. Considering these, we used an external 
cohort for validation and achieved an AUC of 0.78 in the 
dataset, suggesting that the DL model has good generali-
zation capabilities(Fig. 2A). The results of the confusion 
matrix showed that adenocarcinoma was identified with a 
success rate of 71.19% and mucinous adenocarcinoma was 
identified with a success rate of 85% (Fig. 2B). In addition, 
to further validate the reliability of the analysis results, we 
invited pathologists to review the attention heat maps iden-
tified by CLAM. The attentional heat maps of pathological 
tissue sections of adenocarcinomas and mucinous adeno-
carcinomas in the validation cohort are shown in Fig. 2C-D, 
with the red areas corresponding to tumour regions.

Unsupervised cluster of DL features

Using 1024 DL-features, we identified 12 features by the 
LASSO-penalted feature selection, and the relative impor-
tance of the features is shown in the figure (Fig. 3A-C). 
The 12 DL features were further conducted to investigate 

Fig. 4  Transcriptome differential analysis between cluster 1 and clus-
ter 2 subtypes. A Volcano plot of DEGs between cluster 1 and cluster 
2 subtypes. The cut-off criteria were |log2FC|> 0.5 and P < 0.05. The 
red dots represent the up-regulated genes, and the blue dots denote 
the down-regulated genes. The grey dots indicate the genes with 

|log2Fc|< 0.5 and/or P > 0.05. B The MA plot of different subtypes. C 
LASSO coefficient profiles of DEGs. D The distribution of the low-
est mean squared error with the corresponding penalization lambda 
value in LASSO-penalized model. E GO functional analysis showing 
enrichment of DEGs. F KEGG pathway enrichment analysis of DEGs
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the key clusters in the TCGA-STAD cohort. Using unsu-
pervised clustering (k = 2), two stable subtypes were able 
to be identified: cluster 1 (236 STAD patients) and cluster 
2 (120 STAD patients). Clusters1 contained 223 cases of 
adenocarcinoma and 13 cases of mucinous adenocarcinoma, 
while cluster2 contained 99 cases of adenocarcinoma and 
21 cases of mucinous adenocarcinoma. We then created a 
comprehensive heatmap to show associations between sub-
types and clinical features. The results showed that patients 
with mucinous adenocarcinoma were mainly concentrated in 
cluster 2 (Fig. 3D). Meanwhile, the K-M curve showed that 
the survival probability of STAD patients in cluster 2 was 
lower than that in cluster 1 (P < 0.043) (Fig. 3E), suggesting 
that the prognosis of mucinous adenocarcinoma is worse. In 
addition, the boxplot results showed that the distribution of 
all 12 DL-features was significantly different between cluster 
1 and cluster 2 (Fig. 3F).

Functional enrichment analysis of DEGs in different 
histopathological subtypes

We screened 1287 DEGs between the cluster 1 and the 
cluster 2 in TCGA-STAD using the R package “limma” 
(P < 0.05, |log2FC|> 0.5) (Fig. 4A). 145 genes were further 
screened based on LASSO regression and tenfold cross-val-
idation (Fig. 4B-C). GO analysis and KEGG analysis were 
conducted to obtain the biological functions of 145 DEGs 
to understand which signaling pathways might serve as an 
important role in STAD. The results showed that DEGs were 
mainly enriched in signaling pathways such as protein diges-
tion and absorption and enteric nevous system development 
(Fig. 4D-E).

Landscape of immune characteristics 
in histopathological subtypes

The immune-related gene dataset was obtained on Genecard 
and intersected with 145 genes(Supplementary Table S3), 
resulting in 10 up-regulated immune-related genes (GCG, 
HLA-DRB5, UCN3, EDN2, PI3, SST, MAPT, BMP3, 
CMA1, LCN6) and 9 down-regulated immune-related genes 
(WFIKKN1, QRFP, TAFA1, TRHR, IL13, MIA, INSL4, 
PLA2G2A, IL9) (Fig. 5A-B, Supplementary Table S4). 
The Gene Set Enrichment Analysis (GSEA) cellular immu-
nity database was used to evaluate the level of immune cell 

infiltration in each sample according to the gene expres-
sion value in the data set, and the Wilcoxon test was used 
to test the difference in immune cell infiltration between 
cluster 1 and cluster 2. The results showed significant dif-
ferences in the infiltration abundance of activated CD4 T 
cells, CD56dim natural killer cells, activated CD8 T cells, 
memory B cells, and Type 2 T helper cells in the two clus-
ters of patients(P < 0.05) (Fig. 5C). Further analysis revealed 
that the expression of immune-related differential genes in 
STAD patients showed a strong positive correlation with the 
expression of macrophage cells and Mast cells (Fig. 5D-E).

Construction of histopathologic DL‑signature 
and gene‑signature

To construct the histopathological gene signature of STAD, 
we first classified patients in the TCGA-STAD cohort into 
two subtypes: mucinous adenocarcinoma and adenocar-
cinoma, and obtained 232 up-regulated genes and 1329 
down-regulated genes by differential analysis(P < 0.05, 
|Log2FC|> 1). These genes were intersected with 19 
immune-related genes obtained by pathological features 
analysis, and one up-regulated gene BMP3 and one down-
regulated gene MIA were obtained (Fig. 6A-B). Multivariate 
cox analysis was used to construct gene signatures, and the 
distribution of risk scores for patients in the TCGA-STAD 
cohort, survival status, and relative scores of genes were 
displayed by heat maps (Fig. 6C). K-M survival curve was 
drawn to evaluate the survival rate of patients in the high 
and low-risk groups, and the results showed that the sur-
vival rate of the high-risk group was significantly lower than 
that of the low-risk group(P < 0.001) (Fig. 6D). Meanwhile, 
we constructed a DL-signature based on the relative score 
of 12 DL features in TCGA-STAD cohort (Fig. 6E). The 
K-M survival curve showed that the high-risk group had a 
worse prognosis(P < 0.001) (Fig. 6F). Both gene and patho-
logical risk scores had a significant effect on survival. In 
addition, the forest plot also showed that the pathological 
and gene feature models we constructed were superior to 
the clinical features compared with the traditional clinical 
features (Fig. 6G). Multivariate Cox regression showed that 
pathological features could be used as independent prog-
nostic predictors of STAD. To provide a comprehensive and 
accurate approach for prognostic prediction, a nomogram 
was created using the histopathological DL-signature, gene-
signature, and clinical variables of patients from the TCGA-
STAD cohort (Fig. 6H-J). The nomogram model can predict 
3-year and 5-year OS, which improves the practical applica-
tion value of histopathological-related features.

Fig. 5  Immune infiltration analysis between cluster 1 and cluster 2 
subtypes. A Venn diagram of the intersection of up-regulated genes 
and immune-related genes. B Venn diagram of the intersection of 
down-regulated genes and immune-related genes. C Boxplot of the 
distribution difference of immune cells between cluster 1 and cluster 
2 subtypes. D Correlation between up-regulated gene expression and 
immune cell infiltration. E Correlation between down-regulated gene 
expression and immune cell infiltration

◂
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Fig. 6  Construction of histopathologic DL-signature and gene-sig-
nature. A Venn diagram of intersection of up-regulated DEGs and 
up-regulated immune genes in TCGA-STAD cohort. B Venn dia-
gram of intersection of down-regulated DEGs and down-regulated 
immune genes in TCGA-STAD cohort. C The risk heatmap of STAD 
patients in TCGA-STAD cohort. D K-M curves of survival probabili-
ties of high and low risk groups based on gene-signature. E The risk 
heatmap of DL-signature in TCGA-STAD cohort. F K-M curves of 

survival probabilities of high and low risk groups based on DL-sig-
nature. G Forest plots of multivariate Cox regression of histopatho-
logical features, genetic features, and clinical variables. H Nomogram 
included DL-signature,gene-signature and clinical features which pre-
dict the 3-, and 5-year overall. I Time-dependent ROC of nomogram. 
J Calibration curves of the nomogram for the estimation of 3- and 
5-year of OS rates
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Discussion

Digital pathology can provide valuable information for clini-
cal decision-making and help pathologists to classify his-
topathological images [24, 25]. Importantly, DL applied to 
histopathological images also showed good performance in 
predicting tumor prognosis [26, 27].In this study, we trained 
a DL model to classify STAD histopathology sections, and 
the results show that the DL model exhibits high perfor-
mance in identifying histopathological subtypes (mucinous 
carcinoma, adenocarcinoma). The AUC value of the model 
reached 0.90, and it had a high accuracy in the identification 
of adenocarcinoma and mucinous adenocarcinoma, suggest-
ing that the use of the DL algorithm to assist pathologists in 
determining pathological classification is an effective means. 
To further confirm the reliability of this line of thought, we 
evaluated the model in an external validation set. The results 
showed that the AUC value of the validation cohort was 
0.78, indicating that the model had a certain generalization 
ability, which provided a theoretical basis for the application 
of the DL model in STAD pathological classification and 
recognition. Notably, although the results of the validation 
cohort hold considerable value, there remains a discernible 
disparity compared to the outcomes of the training cohort. 
We guess that this divergence may stem from two potential 
causes. Firstly, the training cohort was in svs format, while 
the validation cohort was in ndpi format. This discrepancy 
could have led to performance variations in the model when 
processing different image formats, as different formats 
might employ distinct compression algorithms, color spaces, 
or image qualities, thereby affecting the accuracy of feature 
extraction. Secondly, the differing image sizes in the training 
and validation cohort could also be a factor contributing to 
the performance disparity.

We divided the TCGA-STAD cohort into two subtypes 
based on DL characteristics: cluster 1 and cluster 2, and 
the prognosis of the two subtypes was significantly dif-
ferent, indicating that classification validity is beneficial 
for predicting the clinical importance of genotype in 
treatment responsiveness. We also found that mucinous 
adenocarcinoma was mainly concentrated in cluster 2 and 
had a poor prognosis, which is consistent with previous 
reports [28].In addition, we found that DEGs were mainly 
enriched in signaling pathways such as protein digestion 
and absorption and enteric nervous system development. 
Proteolytic enzyme activity and participate in protein 
absorption transporter expression change can affect the 
integrity of the gastric epithelium and immune response, 
thereby promoting tumor growth and progression. It is 
noteworthy that a high degree of infiltration of the immune 

microenvironment is present in cluster 2. CD4 + /CD8 + T 
cells have been reported to partially reflect the infiltra-
tion of lymphocytes in gastric cancer tissues, predict the 
response to immunotherapy to a certain extent, and ulti-
mately affect the tumor progression and survival of gas-
tric cancer [29–31]. CD8 + T cells were associated with 
improved OS in patients with gastric cancer [32], while 
high infiltration of CD4 + T cells was correlated with 
worse OS [33].

Increasingly, researchers are recognizing the cellular 
properties of the tumor microenvironment (TME), particu-
larly those of immune cells. The tumor immune microenvi-
ronment (TIME) plays a crucial role in tumor progression, 
invasion, metastasis, immune evasion, and treatment resist-
ance [34, 35]. The stomach has strong acidic conditions and 
a unique endocrine system, which makes the TIME of STAD 
different. Tumors use diverse mechanisms to evade immune 
surveillance [36]. These mechanisms include enhancing 
negative immunomodulatory processes and altering antigen 
presentation. Populations of immune cells, including tumor-
associated macrophages, lymphocytes, tumor-associated 
neutrophils, T cells, and natural killer cells, play key roles 
in STAD. Therefore, it is essential to enhance the under-
standing of the TIME, to identify new targets and improve 
the clinical efficacy of STAD treatment. The immune-related 
genes and DEGs were intersected to construct gene signa-
ture. The gene signature contains two genes (BMP3, MIA), 
of which BMP3 has been reported to inhibit the proliferation 
of STAD by regulating the cell cycle [37], while the mecha-
nism of action of MIA in STAD is not clear. Meanwhile, DL 
signatures were constructed based on DL features. Both the 
risk score of gene signature and DL signature were able to 
significantly influence survival, and further results of mul-
tifactorial cox regression showed that DL-signature could 
serve as an independent prognostic factor. Finally, the sys-
tematic nomogram combining DL-signature and gene sig-
nature provides some reference value for clinical diagnosis.

Although our study made good progress, some limitations 
should be noted. First, the DL model was trained and vali-
dated. However, the size of the validation cohort was small, 
and larger samples and specific patient cohorts are needed 
to evaluate the generalizability of the model in clinical diag-
nosis. Secondly, the model cannot completely replace the 
diagnosis of pathological classification by pathologists, who 
usually need to take into account the influence of clinical 
factors. In addition, although our model combines transcrip-
tomics analysis to enhance the interpretability of DL-based 
histopathological classification, the content of the analysis 
can be further deepened, and the prognosis prediction of 
STAD patients can be further improved by combining radi-
omics data of patients in the future.
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Conclusions

In summary, we created a DL model based on histopatho-
logical predictive typing and demonstrated that the model 
recognizes pathological typing with high accuracy. This can 
be helpful to assist pathologists in making clinical diagno-
sis. In addition, a nomogram was built by combining DL-
signature, gene-signature and clinical features, which can be 
used as a prognostic classifier for clinical decision-making, 
individual prognosis and treatment.
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