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Spatial transcriptomics reveals strong
association between SFRP4 and
extracellular matrix remodeling in
prostate cancer

Check for updates

Maria K. Andersen 1,2 , Sebastian Krossa 1,3, Elise Midtbust1,2, Christine A. Pedersen1,
Maximilian Wess1, Therese S. Høiem1, Trond Viset4, Øystein Størkersen4, Ingunn Nervik5,
Elise Sandsmark1,6, Helena Bertilsson3,7, Guro F. Giskeødegård 8, Morten B. Rye2,5,9,10 &
May-Britt Tessem 1,2

Prostate tumor heterogeneity is a major obstacle when studying the biological mechanisms of
molecularmarkers. Increasedgeneexpression levels of secreted frizzled-relatedprotein 4 (SFRP4) is a
biomarker in aggressive prostate cancer. To understand how SFRP4 relates to prostate cancer we
performed comprehensive spatial and multiomics analysis of the same prostate cancer tissue
samples. The experimental workflow included spatial transcriptomics, bulk transcriptomics,
proteomics, DNA methylomics and tissue staining. SFRP4 mRNA was predominantly located in
cancer stroma, producedby fibroblasts and smoothmuscle cells, and co-expressedwith extracellular
matrix components. We also confirmed that higher SFRP4 gene expression is associated with cancer
aggressiveness.Gene expression ofSFRP4was affectedby genepromotormethylation. Surprisingly,
the high mRNA levels did not reflect SFRP4 protein levels, which was much lower. This study
contributes previously unknown insights of SFRP4 mRNA in the prostate tumor environment that
potentially can improve diagnosis and treatment.

Prostate tissue is inherently heterogenous, and a given samplemay contain a
mix of cancer glands with different histological grade groups (GG), normal
glands, stroma and lymphoid aggregates. This heterogeneity is poorly
reflected in traditional molecular bulk methodology which results in aver-
aged measurements. This poses a considerable challenge in understanding
cancer biology since cells in the tumor microenvironment (TME) and their
interplaywith cancer cells are fundamental for prostate cancer progression1.
Although cell culture-based research has led to impactful discoveries of
cancer cell function, these experiments facemajor challenges in reproducing
the true biological complexities between cancer and TME cells in vivo2.

One way to capture the true biological complexity is tomeasure a wide
range of different molecules by combining multiple omics methodologies
(i.e., multiomics). Spatially resolved omics-methods is especially effective to
studyheterogeneous cancer tissue. Spatial transcriptomics (ST) is a powerful
methodwhich allows for spatialmapping ofmRNAmolecules and has been
applied to characterize both prostate cancer3 and other diseased tissues4–7.
The spatial location of gene expression is important to uncover the biolo-
gical functions of proposed oncogenes and biomarkers.

Secreted frizzled-related protein 4 (SFRP4) is a moderator of Wnt
signaling, a pathway which promotes cell fate specification, proliferation
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andmigration.Wnt signaling is crucial during embryonic development but
is additionally identified as upregulated in several tumors. The SFRP4
protein is a suggested tumor suppressor thought to inhibitWnt-signaling by
hindering the extracellularWnt-ligand to attach to the receptor8,9. However,
we and others have identified increased SFRP4 gene expression with
increasing prostate cancer aggressiveness10–14, which also have been found
for several other cancers15–18. In the context of personalizedmedicine, SFRP4
gene expression has the potential to improve diagnosis and prognosis
accuracy. The biological role of SFRP4 in heterogeneous tumors is still
unknownand it is unclearwhich cells in the tissue are producing it. Previous
immunohistochemistry (IHC) staining has indicated the SFRP4 protein to
be located in the epithelial gland cells11. However, SFRP4 is a secreted
protein and can therefore be synthesized by other cells in the tissue.

In this study, we investigated the biological role of SFRP4 in prostate
cancer tissue by multiomics analysis of the same tissue samples, including
ST, bulk transcriptomics, laser micro dissected (LMD)- and mass spectro-
metry (MS)-based proteomics, DNA methylomics, histopathology and
Masson’s trichrome staining. The prognostic value of SFRP4 gene expres-
sionwere assessed using clinical follow-up data (>10 years). Several publicly
available datasets, including transcriptomics, methylomics and single cell
transcriptomics, were used to further investigate and validate the role of
SFRP4 in prostate cancer.

Results
Multiomics profiling of SFRP4 in prostate cancer tissue
ST data was acquired with the Visium Spatial gene expression kit from
10× Genomic. With this technology circular spots of 55 µm distanced
200 µm from each other can capture hundreds of spatially defined gene
expression profiles on a single tissue section. ST data of 32 prostate
cancer tissue samples (N = 8 patients) allowed examination of the spatial
distribution of SFRP4, a biomarker we previously have associated with
cancer aggressiveness10,19. Five of the patients experienced relapse after
radical prostatectomy, while three have no recorded relapse. Histo-
pathology and GG were annotated by two uropathologists. We classified
each ST spot in one of the following histology categories; non-cancer
gland, low-grade (LG) cancer (defined as GG1 and GG2), high-grade
(HG) cancer (GG3-5), lymphocytes, stroma normal, stroma LG cancer
and stroma HG cancer. All stroma spots were classified based on which
samples they resided in, e.g., stroma in samples with any HG cancer were
classified as ‘stroma HG cancer’. See Supplementary Fig. 1 for spatial
distribution of histology classes. The ST dataset contained 22,224 spots
and 26,000 genes, which was reduced to 19,854 spots and 2435 genes
after data processing and filtering.

After ST, we performed LMD proteomics and Masson’s trichrome
staining on serial sections and bulk transcriptomics andDNAmethylomics
on the remaining tissue (Fig. 1a). All ST samples were analyzed with bulk
transcriptomics, LMD proteomics and Masson’s trichrome staining, while
there was an overlap of 16 samples with the DNA methylomics analysis
(Fig. 1b, SupplementaryData 1). A total of 176 samples from37 patients (27
with relapse) were included in this study. Clinical follow-up data including
pre-surgery prostate-specific antigen (PSA), T-stage and time to relapse
after surgery are presented in Table 1 and Supplementary Table 1.

Gene expression of SFRP4 is predominantly located in stroma
ST demonstrated that SFRP4 gene expressionwas predominantly located in
the stroma of samples with HG prostate cancer (GG ≥ 3) (Fig. 1c, d, Sup-
plementary Fig. 2). In contrast, previous IHC staining of the SFRP4 protein
in prostate cancer samples predominantly show staining in epithelial
cells10–12. However, as SFRP4 is a ligand functioning in the extracellular
space, the production origin and the final location of SFRP4 may not be
the same.

The SFRP4 expression levels across all the different histology groups
revealed that stroma of HG cancer samples had the highest levels of SFRP4,
followed by, lymphocytes, HG cancer and stroma of LG spots (Fig. 1d). We
noted that several areas with HG cancer had cancer cells that were highly

mixed with stroma cells. This would explain the high levels of SFRP4
expression in HG cancer spots (Fig. 1d).

SFRP4 gene expression is associated with prostate cancer
aggressiveness
Differential expression (DE) analysiswas performed to investigate howgene
expression of stroma spots differ depending on cancer grade and patient
relapse status (Supplementary Data 2). As presented in Fig. 1e, SFRP4 gene
expression had significantly increased fold changes in stroma cancer com-
pared to stroma non-cancer spots (log2FC = 2.098, p = 2.18 × 10−230) and in
stroma HG cancer compared to stroma LG cancer spots (log2FC = 2.048,
p = 5.44 × 10−175). SFRP4 was also increased in cancer stroma from relapse
patients compared to relapse-free patients (log2FC = 1.97, p = 1.33 × 10−119).
The increase in relapse patients was also true when only including HG
cancer stroma (log2FC = 3.25, p = 3.59 × 10−66). SFRP4 was additionally
increased in LG cancer stroma from relapse patients compared to relapse-
free patients (log2FC = 0.382) although this was not significant (p = 1.00).
To conclude, SFRP4 gene expression was associated with the more
aggressive group in all comparisons (Fig. 1e), which alignswith our previous
report for several different patient cohorts10.

SFRP4 gene expression is related to time to relapse
Bulk transcriptomics analysis was also performed on 176 tissue samples
(N = 37 patients), including the 32 samples used for ST. For SFRP4, there
was a correlation of 0.87 (p < 0.001) between bulk transcriptomics and ST
(average per section) measurements, demonstrating high concordance.
Given that SFRP4 expression was observed to be higher in stroma spots
(Fig. 1d), we explored whether SFRP4 levels in bulk transcriptomics data
varied with stroma content. Interestingly, both tissue samples high (≥65%)
and tissue samples with low (≤35%) stroma content exhibited higher SFRP4
levels compared to those with medium stroma content (36–64%) (Sup-
plementary Fig. 3a). This indicates that while tissue composition is a con-
founding factor, SFRP4 gene expression does not correlate linearly with the
percentage of stroma present. Notably, samples with low stroma content
(≤35%)were dominatedby cancer samples (n = 71) andwhile very fewnon-
cancer samples (n = 5) had low stroma content (Supplementary Fig. 3b).
These findings suggest that tumor tissue maintains high SFRP4 mRNA
production even as stroma areas decrease.

Linear mixed models (LMM) DE with patient origin as random effect
wasused to testdifferences inSFRP4mRNAlevels in thebulk transcriptomics
data. Patient age had a slight, but significant correlation (Spearman ρ= 0.33,
p = 0.046)with SFRP4 levels andwere therefore togetherwith stroma content
adjusted for in the LMM analysis. As shown in Fig. 2a and Supplementary
Table 2, this analysis revealed significantly higher SFRP4 mRNA levels in
cancer compared to non-cancer samples (logFC = 1.59, p = 7.44 × 10−14). No
significant difference was detected between HG and LG cancer samples
(logFC = 0.32, p = 0.26). Comparing samples from relapse-free patients with
relapse patients demonstrated significantly higher levels of SFRP4 in the
relapse patients (Fig. 2b, Supplementary Table 2) when including cancer
samples (logFC = 1.13, p = 0.019), but not when including all samples
(logFC = 0.87, p = 0.06). The Kaplan–Meier curve showed a significant
association between high SFRP4 gene expression and faster relapse (Fig. 2c).
These findings alignwith both our results fromST (Fig. 1b) and our previous
publication where elevated SFRP4 gene expression was associated with a
worse clinical outcome in seven different cohortswith in total 1404 patients10.

Sincepatient origin can influence gene expression20,we investigated the
SFRP4 levels between non-cancer and cancer samples within the same
patient. Although therewas patient-related gene expression variation, of the
34 patientswherewe had both cancer and non-cancer samples, themajority
(n = 31, 91%) had higher SFRP4 gene expression in the cancer sam-
ples (Fig. 2d).

Reduced methylation of SFRP4 promotor in cancer
Methylation of genes contribute to regulate gene expression and changed
methylation of the SFRP4 promotor has been observed for several forms of
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Fig. 1 | Spatial transcriptomics andmultiomics analysis of SFRP4. aWorkflow for
collection of prostate cancer samples and multiomics analysis, which included both
spatially resolved and bulk methodologies. b Overview of number of samples with
different omics data and the overlap of samples between the differentmethodologies.
c Spatial transcriptomics visualization of the two samples with the highest SFRP4
expression, showing H&E image, histology classifications and SFRP4 expression
levels. d Bar plot of average gene counts (error bars show standard deviation) along

with corresponding violin plots demonstrating the SFRP4 expression levels across
the different histology groups in the whole dataset (n = 19 854 spots). e Diagram
showing log2 fold change (log2FC) after differential analysis with edgeR comparing
stroma spots of aggressive groups (x-axis) to the less aggressive group (y-axis).
Values illustrated in (a, b) are given as log2(count+1). LMD laser microdissection,
HG high-grade, LG low-grade.
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cancers21. We therefore investigated the SFRP4methylation patterns in our
owndata (64 samples, 16patients).A total of 18methylation sitesmapped to
the SFRP4 gene (UCSC annotation), of which 12 were on the promotor
region and six were in the gene body. Comparing the methylation levels to
SFRP4 gene expression demonstrated a significant negative correlation
between the average promotor methylation and gene expression (Fig. 2e,
ρ =−0.33, p = 0.041, Supplementary Table 3). There was no significant
association between gene body methylation and gene expression of SFRP4.
We also validated this finding in the publicly available datasets TCGA-
PRAD (n = 532)22 and CGC-GENE (n = 210)23 which produced similar
results although the correlation level was weaker for the average promotor
region; ρ =−0.20 (p = 2.56 × 10−5) and ρ =−0.26 (p = 6.62 × 10−4),
respectively (Fig. 2e, Supplementary Table 3). The cg06161814 promotor
site had overall the strongest negative correlation (Fig. 2e).

Through LMM differential methylation analysis we found several
differences in methylation when comparing non-cancer to cancer samples
(Fig. 2f, g, Supplementary Table 4, Supplementary Fig. 4a). Seven out of 12
promotor sites were significantly hypomethylated in cancer compared to
non-cancer samples, of which the cg06161814 site showed the largest and
most significant change (p = 8.5 × 10−5, Fig. 2f). In contrast, there were no
significant changes in DNA methylation between samples from relapse
patients compared to relapse-free patients (Supplementary Table 4,

Supplementary Fig. 4b). When comparing LG to HG cancer samples one
site was significantly more methylated (cg20019546, p = 0.047) Supple-
mentary Table 4). The gene body methylation levels were generally higher
than the promotor region (Fig. 2g, Supplementary Fig. 4). This is not sur-
prising as increased promotor methylation is more predictive of gene
silencing and lower expression, while gene body methylation is associated
with higher expression24,25.

SFRP4 protein is low abundant in prostate tissue
We analyzed 114 LMD areas from serial sections of the same samples used
for ST. Despite the detection of 5795 different proteins, the SFRP4 protein
was not detected in any of the analyzedLMDareas (SupplementaryData 3).
SFRP4 is a glycoprotein with several glycans attached. Glycan-modification
changes the mass of tryptic peptides in an unpredictable way causing pro-
blems for MS/MS identification, which assumes glycan-free amino acid
sequences. However, there are still several tryptic peptides without mod-
ifications that should result in identification if sufficient levels are present26.
Our results therefore suggest that SFRP4 protein levels were under the limit
of detection and are expressed at a substantially lower level than mRNA
SFRP4 in our prostate cancer samples.

To validate if SFRP4 protein levels typically are lower than gene
expression, we used the publicly available prostate cancer CPC-GENE
datasets23,27 which included proteomics (n = 76) and transcriptomics
(n = 213) data, of which 63 samples had both omics available. Both
datasets had SFRP4 detection. We summed all proteins (7054) and gene
expressions (21,055) across all 63 samples to get an estimate of the
relative levels of SFRP4 protein and SFRP4 gene expression. The SFRP4
protein levels were low compared to other proteins in the dataset with
levels in the low 21% percentile (Fig. 2h). In contrast, SFRP4 gene
expression were in the 94% percentile and thereby among the highest
expressed genes (Fig. 2i). Spearman correlation between SFRP4 protein
and gene expression levels (n = 47, excluding samples with no SFRP4
protein detection) had a non-significant and slightly inverse association
(r =−0.21, p = 0.15). Clearly, there are substantial differences between
gene expression and protein levels of SFRP4.

SFRP4 is associated with expression of ECM genes
To explore the biological role of SFRP4, we correlated its gene expression to
all other genes in the ST dataset. All top 6 (R > 0.4) positively correlated
genes were prominent ECM components; collagen type I alpha chain 1
(COL1A1), COL1A2, COL3A1, secreted protein acidic and cysteine rich
(SPARC), cartilage oligomeric matrix protein (COMP) and biglycan (BGN)
(SupplementaryData 4, Supplementary Figs 5–10). Thiswas also confirmed
by visually comparing the spatial distributions (Fig. 3a, b). Interestingly,
Mortensen et al. found that SFRP4 gene expression clustered together with
the same genes which was predictive of aggressive prostate cancer when
compared to indolent cases12.

Relating SFRP4 to Wnt pathway-related gene expression
As SFRP4 is a modulator of the Wnt-pathway, we also explored the gene
expression of otherWnt-pathway genes. Among the 33Wnt genes assessed
in our previous publication19, only 4 genes were sufficiently detected in the
ST data.Wnt5A and beta-catenin (CNNB1) were located in the epithelium
rather than the stroma and did not have a strong correlation with SFRP4
(ranked 324 and 1437, Supplementary Data 3, Supplementary
Figs. 11 and 12). The exception was SFRP2, which showed a similar dis-
tribution to SFRP4 (Fig. 3c, Supplementary Fig. 13) and was among the
genes with the highest association with SFRP4 (ranked 33). This is likely
explained by SFRP2 having a similar function as an extracellular modulator
of the Wnt-pathway28. Similarly to SFRP4, SFRP2 gene expression was
always higher in the more aggressive group compared (DE analysis of ST
data, Supplementary Data 1).

As theWntpathway had the highest gene expression in the epithelium,
we hypothesize that the Wnt pathway is more active in epithelial cells.
SFRP4 produced in stroma could influence Wnt-pathway activity in

Table 1 | Clinical parameters of patients

Relapse
Yes (n = 27) No (n = 10)

Clinical GG post-surgery

2 7 8

3 10 2

4 4 0

5 6 0

Age at radical prostatectomy

50–59 10 6

60–69 14 4

70–73 3 0

Preoperative PSA

4.0–9.9 11 4

10.0–19.9 9 5

≥20.0 7 1

Clinical T-stagea

T2c 9 9

T3a 6 0

T3b 12 0

Months from surgery to relapse

≤ 12 15

≤ 48 10

> 48 2

Omics analysis

Spatial transcriptomics 5 3

Bulk transcriptomics 27 10

Bulk methylomics 10 6

Masson’s trichrome stain 5 3

LMD proteomics 5 3

Includes clinically recorded grade group (GG), T-stage after surgery, age at surgery, serum PSA
before surgery and the number of months from surgery to relapse (for the patients with relapse). An
overview of the number of patients with measurements for the different omics analysis is also
presented.
aOne relapse-free patient had unknown T-stage.
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adjacent epithelial cells, and lead to altered gene expression of Wnt-target
genes. We investigated whether the epithelial expression of eight reported
Wnt gene targets were associated with SFRP4 stromal gene expression.
Cyclin D1 (CCND1) was the only gene significantly correlated with SFRP4

(ρ = 0.55, p = 0.011, Fig. 3d, Supplementary Data 3, Supplementary Fig. 13).
However, since we cannot confirm the presence of the SFRP4 protein, it is
challenging to conclude on whether the correlation of CCND1 is connected
to SFRP4 modulating the Wnt pathway.
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Single-cell datademonstrate thatfibroblastsandsmoothmuscle
cells express SFRP4
To explore the cellular origin of SFRP4, we analyzed the publicly available
single-cell transcriptomics dataset from the Strand lab29,30, generated
from prostates of healthy organ donors and patients treated for benign
prostatic hyperplasia. In this dataset the highest levels of SFRP4 gene
expression were found predominantly in fibroblasts, followed by smooth

muscle cells (SMC), while SFRP2 clearly had the highest gene expression
level in fibroblasts (Fig. 4). The top 100 ranked genes correlated with
SFRP4 in the single-cell data included a high proportion of genes which
products are either part of the ECM or regulate ECM remodeling
(Supplementary Data 3). Similarly, to the ST data (Fig. 3b, Supplemen-
tary Data 3), this included BGN, COMP, FN1, COL1A2, COL3A1 and
several other collagens.

Fig. 2 | Multiomics results of SFRP4. Bulk transcriptomics; a Log2-transformed
SFRP4 gene expression was elevated from non-cancer (n = 61) to low-grade (LG)
cancer (n = 61) and further in high-grade (HG) cancer samples (n = 54). b SFRP4
gene expression levels were also higher in cancer samples from relapse patients
compared to relapse-free patients. c Kaplan–Meier plot revealed SFRP4 to be sig-
nificantly associated with time to relapse for the 37 patients. The SFRP4 cutoff value
was determined by using the Cutoff Finder tool67. d SFRP4 gene expression levels
across all patients (n = 37). The ‘R’ and ‘F’ in front of the patient ID represent relapse
(N = 27) and relapse-free patients (N = 10), respectively, while the patients where ST
data are available are marked with bold text. DNA methylomics; e DNA promotor
sites were significantly correlated with SFRP4 gene expression across our cohort

(ProstOmics, n = 64 samples) and the publicly available datasets TCGA-PRAD (The
Cancer Genome Atlas Prostate Adenocarcinoma, n = 532) and CPC-GENE (The
Canadian Prostate Cancer Genome Project n = 210). The SFRP4 gene promotor was
significantly hypomethylated in cancer (n = 35) compared to non-cancer samples
(n = 29) as shown across (f) all 18 methylation sites and (g) mean of promotor and
gene body sites. Proteomics; Histogram of (h) summed protein and (i) gene
expression levels in the publicly available CPC-GENE cohort show a higher SFRP4
mRNA level than SFRP4 protein relative to their respective datasets. The summed
total and quantile levels of SFRP4 protein and gene expression levels are marked.
Significance (p < 0.05) is symbolized with *.
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Fig. 3 | Spatial gene expression distribution of SFRP4 and related genes. The
spatial distribution of a SFRP4 was similar and correlated with b genes transcribing
extracellular matrix components, COL1A1, COL1A2, COL3A1, SPARC, COMP and
BGN. cWith the exception of SFRP2, SFRP4 had no clear correlation with Wnt
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CCND1 showed higher levels in epithelium. SFRP4 expression in stroma had a
positive correlation with CCND1 levels in epithelium of the same samples. All
distribution images are from the same sample. Distribution of all samples for the
presented genes can be viewed in Supplementary Figs. 5–14.
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Fig. 4 | Relating SFRP4 gene expression to cell type. Bar- and violin plots showing
the gene expression for a SFRP4, b SFRP2 and c COL1A1 across the different cell
lineages in the prostate single cell dataset (n = 83 451 cells)30. d Spearman correlation
between SFRP4 gene expression in our ST data and estimated cell type fractions
(n = 19 854 spots). Bars are colored according to cell type lineage. e Spatial

distribution of SFRP4 gene expression shown together with estimated fractions of
glandular fibroblasts, smooth muscle cell (SMC) pericytes and luminal epithelial
cells. f SFRP4 gene expression levels in the prostate tissue (pink) and in the cell
culture (gray) dataset from Prensner et al.33.
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To assign cell type identity the Strand lab used key genes typically
associated with specific cells29,30. By using the Stereoscope tool31, we esti-
mated the cell type fractions for each ST spot. This allowed us to investigate
which cell types SFRP4 gene expression is the most associated with. As
shown in Fig. 4d and Supplementary Data 3, SFRP4 had the strongest
correlation with glandular fibroblasts (ρ = 0.34) and SMC pericytes
(ρ = 0.33). Glandular fibroblasts are adjacent to prostate epithelial glands30.
If the stromal TME contributes to regulating theWnt-pathway in epithelial
cells, it would explain why the adjacent fibroblasts shows the highest SFRP4
gene expression. Pericytes aremost known for being a part of capillaries, but
have a high expression of typical SMCproteins, including α-smoothmuscle
actin, vimentin, desmin, myosin, and nestin32. It is possible that, due to
similar gene expression profiles, the fraction of pericytes is overestimated
compared to prostate specific SMC. Nevertheless, pericytes are of the SMC
lineage and our results does therefore indicate that SMC are producing
SFRP4mRNA.

The strongest negative correlation with SFRP4 gene expression was
found for luminal epithelial cells (ρ =−0.22, Fig. 4d). While the estimated
fractions of fibroblasts and SMC pericytes showed a similar distribution to
SFRP4 gene expression, fractions of luminal epithelial cells had an inverse
spatial distribution (Fig. 4e, Supplementary Figs 15–17). This indicate that
prostate epithelium is not the tissue compartment that produces SFRP4.

To validate that SFRP4 is expressed by fibroblasts and SMC, we
investigated the cell culture datasets from Prensner et al.33. The expression
level of SFRP4was either barely detectable or not detected in the cell cultures
(Fig. 4f). Thiswas in contrast to the corresponding tissuedata fromPrensner
which showed decent expression levels of SFRP4 for normal, cancer and
metastatic prostate tissue. This indicate that SFRP4 expression is dependent
on the interaction between different cells in a tissue environment. Cell
cultures may have considerable limitations when investigating the in vivo
role of SFRP4 in prostate cancer progression.

High SFRP4 gene expression is associated with collagenous
fibrosis
Based on the association between SFRP4 and ECM genes, we hypothesized
thatSFRP4 couldbe connected toECMremodeling orfibrosis.We therefore
performed Masson’s trichrome staining on serial tissue sections (Supple-
mentary Fig. 18) and estimated the collagen content by quantifying the
fraction of blue stain in stroma (Fig. 5a). Estimated collagen fiber content
ranged from 22% to 84% for the 31 samples examined (one excluded due to
poor quality, SupplementaryTable 6, Fig. 5b).When comparing the average
SFRP4 levels in stromaof each sample to the collagenousfiber content, there
was a moderate and almost significant correlation (Spearman ρ = 0.34,
p = 0.06). The samples with high SFRP4 gene expression (log2 > 1 mean
SFRP4 gene count per stroma spot) did tend to have high corresponding
fiber content (Fig. 5c).However, conversely, a high collagenousfiber content
was not necessarily indicative of high SFRP4 levels. A collagen rich ECM
may therefore not be solely dependent on the presence of SFRP4. For the
collagen genes COL1A1 and COLA2 there were stronger and more sig-
nificant correlations to fibers content (ρ ≥ 0.47, p ≤ 0.008, Fig. 5d, e). As the
Masson’s stain attaches to collagen, it is reasonable that the major collagen
genes had a higher association than SFRP4.

Discussion
SFRP4 has been extensively studied in the context of theWnt-pathway and
cancer development34. The mechanistic role of SFRP4 has been pre-
dominantly studied in cell culture9,35,36. However, the interactions between
heterogenous groups of cells in tissue is far more complex than what can be
reproduced in cell cultures. For this reason, we investigated the role of
SFRP4 by using spatial andmultiomics analysis of prostate cancer tissue. ST
showed that SFRP4 gene expression was predominantly located in the
stroma of prostate cancer samples. We found through multiomics analysis
that SFRP4 mRNA levels seem to be partly regulated by gene promotor
methylation, while SFRP4 gene expression did not reflect SFRP4 protein
abundance. Cell-type estimation with Stereoscope revealed that SFRP4 is

mostly expressed by stromal fibroblasts and SMC. Further, SFRP4 gene
expressionwas highly associated withmarkers for ECM remodeling. SFRP4
is therefore likely a key player in the TME.

Both the spatial and bulk transcriptomics analysis showed that
increased SFRP4 mRNA levels were connected to prostate cancer aggres-
siveness. Wissman et al.37 were the first to report in 2003 increased SFRP4
gene expression in prostate cancer tissue. Since then, this connection of
SFRP4 and aggressive prostate cancer has been confirmed by several other
studies9,12,19. We previously found that increased SFRP4 is predictive of
prostate cancer aggressiveness in seven independent datasets, compromis-
ing 1404 individuals10. Using SFRP4 gene expression as a clinical biomarker
may still not be forthright as accuracy is confoundedbyheterogeneous tissue
composition. Since SFRP4 has a higher expression in the tumor stroma,
high-grade cancer samples where cancer cells have displaced the stroma
tissue might not consistently have high SFRP4 gene expression in average
bulk analysis.While many cancerous samples had a high SFRP4 expression
despite reduced stromaareas inourbulk transcriptomicsdataset, thehighest
expression was still observed in HG-cancer samples with high stroma
content (≥65%, Supplementary Fig. 3b). This demonstrates that SFRP4 gene
expression can be confounded by stroma content which complicates the
clinical utility of SFRP4 gene expression. A more likely robust clinical tool
would be to use SFRP4 as part of a gene signature by combining it with the
expression of genes altered in the epithelial cancer cells. This strategy would
minimize the risk of false negative test results due to low stroma content.
SFRP4 is already used as a part of several gene signatures that are predictive
of a worse prostate cancer prognosis14,38, including the commercially
available Oncotype Dx test13,39. The Oncotype Dx test calculates a gene
signature score through taking tissue composition into account by com-
bining markers for both prostate cancer cells and tumor stroma, which
includes SFRP4. This demonstrates that even though the evidence con-
necting SFRP4 mRNA levels to cancer aggressiveness is substantial, tissue
composition needs to be accounted for when using SFRP4 as a clinical
biomarker.

DNA methylation, especially in the gene promotor region, are well
known to influence transcription.We found that methylation of the SFRP4
gene promotor was both significantly negatively correlated with gene
expression and reduced in cancer compared to normal samples. Although
there are several studies presenting genome wide methylation analysis of
prostate cancer tissue22,40–43, few studies report on methylation of SFRP4.
One study performed targeted methylation assays, but could not find any
difference inmethylation of the SFRP4 promotor when comparing normal,
BPH and prostate cancer samples44. To the best of our knowledge, no other
publication has reported reduced SFRP4 promotor methylation in prostate
cancer compared to normal samples. Although we identified significant
DNA methylation changes, it does not explain all SFRP4 gene expression
variation, which could be influenced by other processes such as histone
modifications and transcription factor activity.

Notably, protein levels of SFRP4did notmatchSFRP4 gene expression.
We could not detect any SFRP4 proteins in our LMD proteomics data.
Additionally, the protein levels were substantially lower than the SFRP4
mRNAlevels in theCPC-GENEcohort (Fig. 2h, i). TheoriginalCPC-GENE
proteomics publication found that gene expression could only account for
10% of the variation in protein levels27. They also observed that the low
abundant proteins, such as SFRP4, had the weakest correlation with gene
expression. There are potentially regulatory mechanisms causing the dis-
crepancy between protein and gene expression levels in prostate tissue.
Either themRNAare not efficiently translated or SFRP4proteins are readily
degraded. The SFRP4 protein may be subjected to phagocytosis by mac-
rophages, as reported for wound healing45. The lowMS-detection of SFRP4
may also explainwhywe in a previous study had low IHC staining intensity,
while SFRP4 gene expression had robust levels10. This is also reflected in the
staining intensities on prostate cancer tissue in the Protein Atlas database46.
It should be noted that some studies11,12 have found associations between
higher SFRP4 staining intensity with worse clinical outcomes. Others have
in contrast reported reduced staining levels with increased prostate cancer
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aggressiveness9,47. Horvath et al. found that despite higher SFRP4mRNA in
prostate cancer tissue, high IHC stain of SFRP4 protein was associated an
improved prognosis9. Our results, along with the findings by others, suggest
that the SFRP4 gene expression is a suitable biomarker candidate, while
SFRP4 protein levels show little promise as a clinical biomarker.

The ST analysis demonstrated that SFRP4 is predominately expressed
by cells in the prostate stroma, which is in agreement with previous
studies30,48. Interestingly, SFRP4 alsohad elevated levels in sampleswithhigh
compared to low reactive stroma content in our previous study
(log2FC = 0.92, Supplementary data of Andersen et al.49). A transcriptomics

study using LMD found, similarly to us, that SFRP4 had one of the highest
increases when comparing stroma in HG cancer to stroma in LG prostate
cancer samples48. The single cell transcriptomics dataset30 and cell-type
estimation of our ST data showed that most of the SFRP4mRNA are found
in fibroblasts followed by SMC. According to theHuman Proteome Atlas50,
SFRP4 gene expression is the most enriched in fibroblasts across several
human tissues46. Further, we found that SFRP4 had the highest co-
expressionwith genes involved ECMremodeling, such asCOL1A1, SPARC,
COMP and BGN. SFRP4 gene expression also had a weak association with
stroma fibrosis as determined from Masson’s trichrome stains (Fig. 5).
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Fibroblasts are known as the front-runners of ECM remodeling and fibrosis
in tissues51. However, in stroma tissue SMCs are also reported to produce
ECM components52. It is unclear how SFRP4 gene expression by fibroblasts
and SMC are associated with ECM remodeling.

The consensushas been that SFRP4 is a tumor suppressor by inhibiting
the oncogenic Wnt-pathway53. However, we found no correlation between
SFRP4 and other Wnt-pathway genes. This is not surprising considering
that SFRP4 function in the extracellular space and could be synthesized by
other tissue areas than where the Wnt-pathway is activated. The Wnt-
pathway is reported to be more activated in the epithelial tissue, to be a
regulator of cell regeneration and is also therefore reported as an oncogenic
pathway in epithelial tumors54. It is still unclear how SFRP4 gene expression
is related to theWnt-signaling in tissue. A cancer biomarker can either be a
driver or a passenger of cancer development55. It is possible that elevated
SFRP4mRNA is merely a consequence (i.e., passenger) rather than a driver
of prostate cancer. Only molecular drivers of cancer would be suitable drug
targets. Understanding the true role of SFRP4mRNAandwhether it would
be a suitable drug target requires more research before reaching any
conclusion.

While our study provides significant insights, certain limitations
should be considered when evaluating the findings of this study. First,
our patient cohort had a small sample size (N = 37) and low ethnical
diversity. Cancer-associated gene expression can be influenced by eth-
nicity and can therefore be considered a confounding factor in tran-
scriptomics studies56. Although ethnicity was not an available parameter
for our data, the vast majority of these Norwegian patients are likely
white. We can therefore not conclude on whether our observed asso-
ciations between SFRP4 levels and stroma in cancer samples are gen-
eralizable across all ethnicities. Further, despite the valuable power of
spatial multiomics methods to provide insights of heterogeneous cancer
tissue, spatial methodologies are limited by lower detection rates com-
pared to bulk analysis. For instance, only 4 of 33 Wnt genes could be
spatially investigated, making it challenging to get the full picture of
SFRP4 in relation to the Wnt pathway. The detection sparsity also was
apparent in our LMD proteomics data where the protein of interest,
SFRP4, could not be detected at all. The protein abundance of SFRP4 is a
major part of the puzzle and the absence of detection pose a clear lim-
itation of this study in achieving a full understanding of the biological
mechanism of SFRP4. Furthermore, despite the clear advantage of
multiomics analysis of human tissue samples, this approach can only
provide molecular snapshots. This is a limitation of our study for
achieving a comprehensive functional understanding of cellular
mechanisms related to SFRP4. Although, cell cultures are popular
experiments to study molecular function, they fail to reflect the complex
interactions between different cell types in heterogeneous tumor tissues.
This is particularly true when it comes to SFRP4 where there is a mis-
match between cell culture and human tumor tissues. This discrepancy is
demonstrated by Garcia-Tobilla et al. who detected significantly higher
SFRP4 gene expression in normal prostatic cell lines compared to cancer
cells, but found a completely reversed trend when analyzing tissue
samples44. Decoding the true functions of SFRP4 in prostate cancer
progression has proven to be challenging as demonstrated by both this
and other studies.

To conclude, we investigated the biological context of the SFRP4
biomarker by using comprehensive spatial and multiomics analysis of
heterogenous prostate cancer tissue, an approach not previously applied
to analyze SFRP4. Our findings show that SFRP4 gene expression is
predominantly located in the stroma of high-grade cancer samples and is
tightly linked to ECM remodeling. The lack of association between
SFRP4mRNA and protein levels raises important unanswered questions
regarding biological mechanisms and indicates that only SFRP4 gene
expression holds strong potential as a biomarker. Further, we found that
SFRP4 levels is partly determined bymethylation of the promotor region,
though other mechanisms are likely also at play. Our survival analysis
adds further weight to the evidence linking SFRP4 to a poorer clinical

prognosis and our spatial investigation emphasizes the critical need to
account for tissue composition.

Methods
Patient inclusion and sample collection
All human prostate tissue material used in this study were collected after
informed written consent was given by prostate cancer patients undergoing
radical prostatectomy. This research was approved by the regional ethical
committee of Central Norway (identifier 2017/576), and all methods were
performed according to national and EU ethical regulations. All ethical
regulations relevant to human research participants were followed.

Samples fromeightpatients diagnosedwithprostate cancer and treated
by radical prostatectomy at St. Olav’s hospital, Trondheim in the period
2008–2016 were included in this study. We selected three relapse-free
patients (no confirmed relapse after 12–13 years) and five patients who
experienced relapse with confirmed metastasis within three years after
surgery. None of the patients received treatment prior to surgery. Imme-
diately after surgical removal, a 2mm thick slice was cut from themiddle of
the prostate (transverse plane), snap frozen and stored at −80 °C as
described by Bertilsson et al.57. Tissue slice collection after surgery and all
storage were facilitated by expert personnel at Biobank1®, St Olavs Uni-
versityHospital, Trondheim,Norway.A rangeof 8–13 tissue cores (3mmin
diameter)were later collected fresh frozen fromeach tissue slice, using an in-
house built drill system. Four samples were selected from each patient based
on histopathology evaluation of hematoxylin erythrosin saffron stained
tissue sections. For each whole-mount slice, we aimed for two samples with
cancer tissue, one sample with non-cancer morphology close to cancer
tissue and one sample with non-cancer morphology far away from the
cancer area.

Cryosectioning
All sections used in this study were 10 µm thick and cut on a cryostat
(Cryostar NX70, Thermo Fisher Scientific) at−20 °C. The sections used for
ST were placed within the 6.5 × 6.5 mm capture areas on Visium slides
provided in the the Visium Spatial Gene Expression Slide Kit (art.nr PN-
1000185, 10× Genomics) and stored at −80 °C until further processing. A
total of 21 serial sections were collected from each sample and placed on
different types of slides (super frost, conductive slides, membrane slides for
LMD). These sections were collected for other and future methodologies,
many of which are not included in this study.

Preparing spatial sequencing libraries
Sequencing libraries were created from the tissue sections by using the
Visium Spatial Gene Expression Slide & Reagent kit (art.nr PN-1000184,
10×Genomics) following themanufacturersmanual. Inbrief, tissue sections
were fixed using methanol, followed by H&E staining and immediately
scanning of slides at ×20 magnification. A coverslip was temporary used
over the sections for the microscopic scanning and then gently removed
after. To capture mRNA, the tissue sections were incubated with permea-
bilization enzyme for 12min, which previously had been optimized using
the Visium Spatial Tissue Optimization Slide & Reagent Kit (art.nr PN-
1000193, 10×Genomics). A second strandmixwas added to create a second
strand, andhereafter cDNAwas amplifiedby real timeqPCR.The amplified
cDNA library was quantified with qPCR using the QuantStudio™ 5 Real-
Time PCR System (art.no A34322, Thermo Fisher) and the cDNA libraries
were stored at −20 °C until further use. Paired-end sequencing was per-
formed on an Illumina NextSeq 500 instrument (SY-415-1001, Illumina®,
San Diego, USA) using the NextSeq 500/550 High Output kit v2.5 (150
cycles) (art.no 20024907).

Bulk RNA and DNA isolation
After cryosectioning for ST and other downstream spatial analysis, the
remaining tissue material was used for RNA and DNA isolation. The All-
prep® DNA/RNA/miRNA Universal Kit (art.nr 80224, QIAGEN, Hilden,
Germany) was applied according to manufacturer’s protocol using mean

https://doi.org/10.1038/s42003-024-07161-x Article

Communications Biology |          (2024) 7:1462 10

www.nature.com/commsbio


input material of 7.69mg (range 4.76–13.05mg). Concentration of isolated
RNA and DNA was quantified using a Qubit 3.0 Fluorometer (art.no
Q33216,ThermoFisher)with theQubitRNABRAssayKit (art.noQ10211)
and Qubit dsDNA BR Assay Kit (art.no Q32853), respectively. Isolated
material was stored at −80 °C until further use.

Bulk RNA-seq and DNA methylation analysis
For creating the cDNA library, the SENSEmRNA-Seq Library Prep Kit V2
(art.no 001, Lexogen, Vienna, Austria) was used according to the provided
user manual using 600 ng RNA as input. The final cDNA library was
quantified using Caliper GX (art.no CLS151164, Perkin Elmer) with the
DNAHigh Sensitivity assay, and stored at−20 °C until further use. Single-
read sequencing was performed on an Illumina NextSeq 500 instrument
(Illumina®) using the NextSeq 500/550 High Output kit v2.5 (75 cycles)
(art.nr 20024906).

For DNAmethylation analysis, the EZDNAMethylation™Kit (art.no
D5001, Zymo Research, Orange, USA) was used for bisulfite conversion
using 1 µgDNAas input, followedbyusing the IlluminaHumanMetylation
EPIC BeadChip kit (art.no WQ-317-1001, Illumina) as the DNA methy-
lation assay. A total of 64 prostate tissue samples were analyzed, of which
16 samples also had been used for ST.

Proteomics
LMD tissue section areas were analyzed with liquid-chromatography tan-
dem mass spectrometry (LC-MSMS) for microproteomics analysis
(see Supplementary Method). This was performed on serial sections of the
same 32 samples analyzed with ST. The section used for LMD proteomics
had a distance to the ST section ranging from 20 to 80 µm.

Histopathology
The digital H&E scans were independently evaluated and annotated by
two experienced uropathologists (T.V. and Ø.S.) using QuPath version (v
0.2.3). Different tissue types that were annotated by the pathologists were
lymphocytes and cancer areas graded according to the Grade
Group (GG) system58, in addition to glands of uncertain cancer status.
Different areas of the tissue section were separated based on pure
Gleason pattern; i.e., a sample with well-defined separate areas of Gleason
3 and 4 were annotated as separate regions of GG 1 and 4, respectively,
rather than one GG 2 or 3 (Gleason 3+ 4 or 4+ 3) region. Additionally,
tissue borders, lumen, stroma and epithelial areas were annotated in
QuPath.

For further supervised data analysis, a consensus pathology evaluation
was reached in agreement with both pathologists. For each ST spot, the
fraction of different tissue types and regions presentwere calculated. Briefly,
binary images for all annotation classes (stroma, tissue fold, epithelium etc.)
were exported fromQuPath using an in-house developed groovy script and
mergedwith the STdata usingour ownpythonpackage59. Theoverlap of the
binary images and spots was used to produce percentage values for each
annotation class for each spot. These percentage values were used to assign
each spot to one histopathology class. Spots that were either >50% outside
the tissue border, had >50% tissue fold, >80% luminal space or >50%
uncertain area were excluded. Spots with >55% stroma were assigned as
stroma, if not the spot was assigned as the dominating annotation class i.e.,
either as lymphocytes, non-cancer epitheliumor cancer withGG range 1–5.
Cancer spots were assigned as low-grade (GG 1 and 2) and high-grade (GG
3–5). For the purpose of this study, stroma spots were further classified as
‘normal stroma’, ‘low-grade cancer stroma’ and ‘high-grade cancer stroma’
depending on whether the rest of the sample contain only non-cancer
glands, had some low-grade (LG) prostate cancer (GG 1 and 2, overall
sample score) or high-grade (HG) prostate cancer (GG 3–5, overall sample
score), respectively. Spatial overview of histology class assignments for all
samples are presented in Supplementary Fig. 1.

For further characterization of the stroma tissue, a separate set of
serial sections from the same samples as used for ST, were stained with
Masson’s trichrome staining, which stains collagen fibers blue and

muscle fibers pink. The section used for Masson’s trichrome staining had
a distance to the ST section ranging from 60 to 160 µm. After staining the
sections were digitally scanned and imported into QuPath (v0.3.2), where
the stroma area of each sample was annotated. Optimal stain deconvo-
lution vectors were found to be (0.891, 0.454, 0.001) for the blue stain and
(0.245, 0.931, 0.271) for the pink stain and was applied for all sections.
Within the stroma, each pixel was then classified as ‘pink’ (i.e., muscle)
through thresholding. Resolution was set to 0.55 µm/pixel, Gaussian
prefilter was used and a threshold in the range of 0.15–0.30 was applied
based on staining intensity (Supplementary Table 6). The area of the new
pixel classification annotation was divided by the total area of the stroma
to get the fraction of ‘pink’ stain, and the inverse fraction were defined as
‘blue’ and fibrous. One Masson’s trichrome stained section (P07_6) was
excluded due to poor quality.

Data preprocessing
The Illumina sequencer generated raw data as base call (BCL) files for each
sample analyzedwith ST. The BCL files were converted to FASTQ files with
the 10×genomics space ranger softwarepackage (version1.0.0) according to
manufacturer’s recommendations. The human reference transcriptome
GRCh38 (version 3.0.0) was used to map sequences to genes. This first
processing resulted in a large table of raw gene counts for each spot. Genes
with less than 10 reads in less than 10 spots were filtered out.

To account for differing cell numbers present in each spot, the ST
dataset was normalized based on cell count. The number of cells present for
each spot was estimated using the nuclei detection feature in QuPath. Data
with detected nuclei were exported fromQuPath and imported into python
where an in-house script and package was used to give cell count values for
each spot59. Cell count normalization was performed by first dividing all the
gene counts for each spot by the cell count of that spot. Next, all gene counts
were multiplied by the median cell count number (21) and rounded to the
nearest integer. All spots with less than 40 detected genes and/or 100 nor-
malized total gene counts were excluded.

FASTQ files from bulk transcriptomics analysis were filtered and
trimmed using fastp v0.20.0. For sequence alignment the STAR tool was
used60 against a reference set (Ensembl, GRCh38 release 92). Subsequently,
featureCounts61 was used to extract gene counts from sequence reads
according to the same reference set. Raw methylation data was normalized
using the method described by Touleimat and Tost62 available in theminfi
package for R. Methylation sites associated with SFRP4 were identified by
the annotation of the probes available in the R package
IlluminaHumanMethylation-EPICanno.ilm10b4.hg19. Gene feature groups
TSS1500, TSS200, 5’UTR and 1stExon were defined as the ‘promotor
region’ while 3’UTR and gene body were defined as the ‘gene body region’.

Publicly available datasets
A number of publicly available datasets were downloaded and analyzed to
study the role of SFRP4 gene expression and other related genes. A single-
cell transcriptomicsdataset generated fromhealthy andhyperplastic human
prostates30 containing data from 83,451 cells were downloaded from cellx-
gene.cziscience.com. Genes with less than at least 5 counts in at least 40 cells
were filtered away, leaving 3840 genes. The microarray dataset from Pre-
nsner et al.33 which contained bulk transcriptomics data from human tissue
(normal, cancer and malignant prostate) were downloaded from dbGaP
(accessionnumber phs000443.v1.p1)while cell culture transcriptomics data
was retrieved from GEO (accession number GSE31728). Two publicly
available datasets, TCGA-PRAD22 and CPC-GENE23, contained both
mRNA expression and DNAmethylation data and were downloaded from
the Genomic Data Commons Data Portal (Accession number phs000178,
https://portal.gdc.cancer.gov/projects/TCGA-PRAD) and the The Cana-
dian Prostate Cancer Genome Project International Cancer Genome
Consortium Data Portal (https://dcc.icgc.org/projects/PRAD-CA)63.
TCGA-PRAD (n = 532 samples) is an RNA-seq dataset and CPC-GENE
(n = 210) used microarray technology, and methylation analysis for both
datasets were array-based. The CPC-GENE also has generated proteomics
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data which was retrieved from the supplementary data of the original
publication27.

Statistics and reproducibility
Differential expression analysis of the ST-data was performed using
R-package edgeR64. For each pairwise comparison, a quasi-likelihood
negative binomial generalized log-linear model was created. Each spot was
considered as a ‘sample’ and spots categorized into the same group were
considered biological replicates. Anoverviewof the differential analysis tests
performed, the groups compared, and sample sizes is presented in Table 2.
As including a very large sample size (in this case up to 19,854 spots) tend to
create very low p-values, even for geneswith very small changes. Geneswere
therefore tested for whether they had significantly higher absolute log2 fold
change (log2FC) than 0.5 (glmTreat-function). A Benjamini-Hochberg
adjusted p-value higher than 0.01 was considered significant. Associations
between the expression of different genes were analyzed using Spearman
correlation in R.

For each ST spot we used the Stereoscope tool31 to estimate cell type
fractions through deconvolution. By using a scanpy implementation of the
Seurat method for highly variable gene identification and the publicly
available singe-cell transcriptomics dataset from Joseph et al.30 as a reference
dataset, we ended up with a list of 4324 highly variable genes. Stereoscope
was runwith this gene list and the following parameters: sc epochs = 75,000,
sc batch size = 100, st epochs = 75,000, st batch size = 100, learning
rate = 0.01.

To test if SFRP4 was differentially expressed and if the SFRP4 DNA
methylation sites were differentially methylated in the bulk data, we created
LMMwith patient origin as random effect and adjusting for stroma content
and patient age. Other potentially co-variating parameters such as PSA,
grade group andT-stage aremeasures of cancer aggressiveness andwere not
controlled for as removing their effect alsowill remove a lot of the true effect
of SFRP4 gene expression on cancer aggressiveness. Stroma content and age
were transformed from continuous into categorical variables; stroma con-
tent was divided into “≤35%”, “36–64%” and “≥65%”, while agewas divided
into “Age 51–58”, “Age 59–64” and “Age 65–73”. The limma R-package65

was used for the arraymethylationdata (n = 64),while for theRNA-seqdata

(n = 176) the edgeR package64 was used. Prior to LMM, RNA-seq data were
normalized to library size using the inbuilt function in egdeR. Through
empirical Bayes moderated t-statistics four different comparisons were
carried out for both the transcriptomics and methylation dataset; non-
cancer vs cancer samples, relapse-free patient vs relapse patient samples,
low-grade (GG 1 and GG 2) vs high-grade samples (GG 3–5) and relapse-
free patient cancer vs relapse patient cancer samples (Table 2). For the
SFRP4 methylation data p-values were adjusted for multiple testing using
the Benjamini-Hochberg method, and we used a significance threshold
of p < 0.05.

The association between SFRP4 bulk gene expression and relapse-free
survival was tested using the survival package in R66. As there are multiple
samples per patient (N = 37), the sample with the highest SFRP4 gene
expression was chosen to represent each patient. Prior to Kaplan–Meier
analysis, the optimal SFRP4 cutoff value was identified as 86.5 by using the
Cutoff Finder tool67. A Kaplan–Meier curve was computed with time to
relapse (N = 27 patients) after radical prostatectomy. Relapse was defined as
either detectable PSA levels, spread of cancer cells to lymph nodes or
metastasis.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data generated and analyzed in this study includes sensitive infor-
mation, and its management must comply with the General Data Pro-
tection Regulation (GDPR), Norwegian law, and the specific patient
consent and ethical approval. Consequently, the data is legally subjected to
restricted access. Raw and processed transcriptomics and DNA methyla-
tion data have been deposited at Federated European Genome-Phenome
Archive (FEGA) Norway and are findable on the EGA portal (ega-archi-
ve.org) under the study ID EGAS50000000413. The spatial tran-
scriptomics, bulk transcriptomics and DNA methylation data are
deposited as separate datasets with the accession numbers
EGAD50000000603, EGAD50000000604 and EGAD50000000605,

Table 2 | Overview of pairwise differential analysis of spatial transcriptomics (ST), bulk transcriptomics (BT) and bulk
methylation (BM) data

Statistics Data Sample type Variables Group 1 Group 2

Quasi-likelihood negative binomial generalized log-
linear model

ST Spot 2436 Normal stroma (n = 3186) Cancer stroma (n = 4802)

Quasi-likelihood negative binomial generalized log-
linear model

ST Spot 2436 LG Cancer stroma (n = 2620) HG Cancer stroma (n = 2182)

Quasi-likelihood negative binomial generalized log-
linear model

ST Spot 2436 Relapse-free cancer
stroma (n = 1469)

Relapse cancer stroma (n = 3333)

Quasi-likelihood negative binomial generalized log-
linear model

ST Spot 2436 Relapse-free LG cancer
stroma (n = 1219)

Relapse LG cancer
stroma (n = 1401)

Quasi-likelihood negative binomial generalized log-
linear model

ST Spot 2436 Relapse-free HG cancer
stroma (n = 250)

Relapse HG cancer
stroma (n = 1932)

Linear mixed models BT Bulk tissue 1 Non-cancer (n = 61) Cancer (n = 115)

Linear mixed models BT Bulk tissue 1 Relapse-free (n = 49) Relapse (n = 127)

Linear mixed models BT Bulk tissue 1 LG cancer (n = 61) HG cancer (n = 54)

Linear mixed models BT Bulk tissue 1 Relapse-free cancer (n = 29) Relapse cancer (n = 86)

Linear mixed models BM Bulk tissue 20 Non-cancer (n = 29) Cancer (n = 35)

Linear mixed models BM Bulk tissue 20 Relapse-free (n = 20) Relapse (n = 44)

Linear mixed models BM Bulk tissue 20 LG cancer (n = 17) HG cancer (n = 10)

Linear mixed models BM Bulk tissue 20 Relapse-free cancer (n = 14) Relapse cancer (n = 32)

For each statistical test the input samplewas either aST spot (spatial data) orwhole tissue sample (bulk data). Sampleswithin the samegroupbeing tested against another groupwere consideredbiological
replicates.
LG low-grade, HG, high-grade.
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respectively. Data access can be requested through the EGA portal, where
any data request will be processed through a data access committee at
NTNU. The proteomics data is not externally archived as there are cur-
rently no suitable public data repository that accept sensitive proteomics
data and that meets the data sharing criteria postulated by the study’s
ethical approval, patient consent, GDPR and Norwegian law. The pro-
teomics data can be requested via email to maria.k.andersen@ntnu.no and
may-britt.tessem@ntnu.no. For both archived and non-archived data,
access will only be granted after the following steps have been achieved; 1.
the data requester and the intended use of the data must comply with
GDPR regulation, Norwegian law, and the specific patient consent, 2. data
sharing with the specific data requester must be approved by the regional
ethical committee (REC) in Norway, 3. the Data Protection Impact
Assessment may require revision and 4. there must be a signed data
transfer agreement between the institution of the data requester and
NTNU. Depending on the intended use of the data, the data requester can
also be required to establish a collaboration agreement with NTNUprior to
data sharing. The source data underlying main and Supplementary Figs.
are provided in Supplementary Data 5.

Code availability
Original code was developed for pre-processing of the spatial tran-
scriptomics data and are available from https://doi.org/10.5281/zenodo.
1391223059. Other data analysis procedures, including software tools and
software packages are described in “Methods”.
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