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A B S T R A C T

Background: Non-small cell lung cancer (NSCLC) accounts for 85 % of lung cancer cases. Among NSCLC subtypes, 
lung adenocarcinoma (LUAD) stands as the most prevalent. Regrettably, LUAD continues to exhibit a notably 
unfavorable overall prognosis. This study’s primary aim was to develop and validate prognostic tools capable of 
predicting the likelihood of cancer-specific survival (CSS) in patients with LUAD.
Methods: We retrospectively collected 21,099 patients diagnosed with LUAD between 2010 and 2015, and 8290 
patients diagnosed between 2004 and 2009 from SEER database. The cohort of 21,099 patients served as the 
prognostic group for the exploration of LUAD-related prognostic risk factors. The cohort of 8290 patients was 
designated for external validation. We created a training set and an internal validation set in the prognostic 
group for the development and internal validation of CSS nomograms. CSS predictors were identified through the 
least absolute shrinkage and selection operator (Lasso) regression analysis. Prognostic model was constructed via 
Cox hazard regression analysis, presented in the form of both static and dynamic network-based nomograms.
Results: Several independent prognostic factors were incorporated into the construction of nomogram. The 
nomogram accurately predicted CSS at 1, 3, and 5 years, with respective AUC values of 0.769, 0.761, and 0.748 
for the training group, and 0.741, 0.752, and 0.740 for the testing group. The study demonstrated a strong 
agreement between anticipated and actual CSS values, supported by decision curve analysis (DCA) and time- 
dependent calibrated curves. High-risk patients based on the nomogram exhibiting significantly lower survival 
rates compared to their low-risk counterparts according to Kaplan-Meier (K-M) curves. The nomogram dem
onstrates excellent predictive power in the external validation cohort.
Conclusions: A dependable and user-friendly nomogram has been developed, available in both static and online 
dynamic calculator formats, to facilitate healthcare professionals in accurately estimating the likelihood of CSS 
for patients diagnosed LUAD.

Introduction

Lung cancer is a widespread malignancy that exerts a significant toll 
on public health, particularly in 13 global regions, with a high mortality 
rate [1]. Broadly classified, lung cancer falls into two primary subtypes: 
small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). 

Notably, NSCLC constitutes the majority of lung cancer cases, with lung 
adenocarcinoma (LUAD) and lung squamous cell carcinoma (SCC) being 
the predominant histological subtypes, accounting for 60 % and 15 % of 
NSCLC cases, respectively [2]. While prognostic research has been 
predominantly focused on NSCLC [3,4], there exists a dearth of prog
nostic models specifically tailored to LUAD.
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Individual lung cancer prognoses often diverge due to variances in 
genotype and molecular genetic characteristics, which can significantly 
impact both prognosis and treatment strategies [5,6]. Presently, the 
prognosis for NSCLC patients primarily relies on the American Joint 
Committee on Cancer (AJCC) 8th tumor, node, metastasis (TNM) stag
ing system. However, this system, particularly its N classification that 
considers lymphatic region involvement, comes with inherent limita
tions [7]. Consequently, it becomes imperative to establish a dedicated 
predictive model for LUAD prognosis and optimize therapeutic ap
proaches. Nomograms have emerged as invaluable tools in clinical 
practice, offering the ability to calculate event probabilities by consid
ering the weighted predictive value of each contributing factor [8]. They 
hold distinct advantages over traditional TNM staging systems, poten
tially serving as alternative clinical decision-making aids or even 
evolving into new standards [9]. Predictive models have gained wide
spread acceptance as reliable instruments for prognosis assessment and 
clinical decision-making across various malignancies, encompassing 
breast cancer [10], gastric cancer [11], and prostate cancer [12].

In our investigation, extracting data from the Surveillance, Epide
miology, and End Results (SEER) database, we delved into prognostic 
factors capable of foreseeing cancer-specific mortality among LUAD 
patients. Subsequently, a practical prognostic model was constructed 
and validated. This model not only enhances clinical management but 
also facilitates individualized patient counseling, ultimately contrib
uting to the optimization of patient care.

Methods

Research approach and data retrieval

A retrospective data analysis was conducted utilizing the SEER*Stat 
8.4.2 program (www.seer.cancer.gov). Malignant adenocarcinoma 
cases were identified using the International Classification of Diseases 
for Oncology, Third Revision (ICD-O-3). Primary tumor locations were 
specified by CS34.0, CS34.1, CS34.2, CS34.3, and CS34.8 codes, while 
histological codes encompassed 8140/3, 8141/3, 8144/3, 8250/3, 
8211/3, 8255/3, 8260/3, 8310/3, 8323/3, 8480/3, 8481/3, and 8490/ 
3.

Inclusion criteria encompassed histologically confirmed malignant 
adenocarcinoma originating in the lung or bronchus, a diagnosis period 
spanning from 2010 to 2015, and available data on both survival 
duration and cause of death. Exclusion criteria encompassed undiffer
entiated carcinoma, neuroendocrine tumors, adenosquamous carci
noma, mesenchymal tumors, or adenosarcoma (mixed epithelial and 
mesenchymal tumor), autopsy or death certificate diagnoses, cases with 
an unknown reason for mortality, and those with unknown follow-up or 
survival duration.

Given that the SEER database is publicly accessible and open, ethical 
review board approval was not mandated. Access to and use of the 
datasets were facilitated through signed authorizations and licenses 
provided by the SEER program. Our investigation involved 21,099 pa
tients diagnosed between 2010 and 2015, with a focus on identifying 
prognostic factors linked to cancer-specific survival (CSS). We divided 
these patients into training and internal validation groups with a 7:3 
ratio. Information extracted from the SEER database included patient 
age, race, sex, year of diagnosis, histologic subtype, tumor grade, pri
mary site, SEER summary stage (local, regional, or distant), American 
Joint Committee on Cancer (AJCC) stage, tumor, lymph node, and 
metastasis (TNM) stage, primary site surgery (Surg.Prim.Site), radiation 
therapy, chemotherapy, tumor size, number of regional lymph nodes 
(LNs) examined (Examined.lymph.nodes), number of positive LNs 
(Positive.lymph.nodes), number of multiple primary tumors (Multi.pri
mary.tumors), survival time, cause of death, and survival status.

Outcomes and predictors

This study primarily focused on LUAD-related mortality as the pri
mary outcome. Survival time was computed as the interval between the 
date of diagnosis and either the date of death or the last follow-up visit. 
Participants with unclear causes of death, unknown survival durations, 
or zero survival periods were excluded from the analysis. Several factors 
were considered, including T stage, N stage, M stage, AJCC stage, pri
mary tumor site, primary site surgery (yes or no), radiation therapy (yes 
or no), chemotherapy (yes or no), tumor size, number of regional lymph 
nodes examined, number of positive lymph nodes, presence of bone 
metastasis (Mets.Bone), liver metastasis (Mets.Liver), brain metastasis 
(Mets.Brain), and the presence of multiple primary tumors. As potential 
predictors, these parameters were subsequently evaluated. Ultimately, 
we identified and included 11 variables with non-zero coefficients and a 
tendency to deviate, applying a 1 standard error threshold in our 
analysis.

Conversion of continuous variables

Restricted cubic spline analysis was employed to identify nonlinear 
relationships between continuous variables and the study outcomes, 
subsequently transforming them into categorical variables. Age has been 
classified into two groups based on the optimal cutoff value: <67 and 
≥67 years old. Tumor size has been categorized into five groups 
following a previous study: ≤1, 1.1–3, 3.1–5, 5.1–7, and >7 cm. The 
number of examined lymph nodes (LNs) was stratified into three cate
gories: <7 and ≥7, based on the optimal cutoff value, while the number 
of positive LNs was grouped as 0, 1–3, and >3, as per earlier studies. 
Tumor grades have been categorized as Grades I through IV. SEER 
summary stages are classified as localized, regional, and distant. For 
AJCC stages, they have been rebranded as Stages I to IV. The T, N, and M 
stages of the AJCC were represented as T1, T2, T3, T4; N0, N1, N2, N3; 
and M0, M1, respectively. Regarding the number of primary tumors, two 
categories were established: a single primary tumor group and a group 
with two or more primary tumors.

Predictor selection

To identify potential risk factors for cancer-specific death (CSD), all 
variables were analyzed comprehensively for the entire cohort using 
least absolute shrinkage and selection operator (LASSO) regression. As 
the penalty term increased, the estimates of components with minimal 
impact gradually approached zero, effectively performing a filtering role 
in selecting the most relevant variables. To optimize the model for 
clinical applicability, a systematic assessment of predictive efficiency 
was conducted using subsets comprising 5–10 variables. It is noteworthy 
that the area under the receiver operating characteristic (ROC) curve 
(AUC) consistently surpassed the robust threshold of 0.740 when inte
grating 7–10 variables into the model, highlighting its remarkable pre
dictive performance. Subsequently, a rigorous analysis of 
multicollinearity among the 11 variables was conducted, recognizing its 
potential to impact both model stability and accuracy. As a result, the 
final model was constructed employing seven key predictors: the num
ber of positive lymph nodes (LNs), tumor size, age, gender, tumor grade, 
M stage, and primary surgical site.

Prognostic nomogram construction and validation

The prognostic nomogram was developed using a training group for 
construction and a test group for internal validation through Cox pro
portional hazards regression analysis. This nomogram predicts the 
probabilities of 1, 3, and 5-year CSS (Cancer-Specific Survival) along 
with ROC and calibration curves for each time point. An online calcu
lator based on the nomogram was created for generating CSS predictions 
along with 95 % confidence intervals (CIs). Calibration curves were 
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generated as part of the internal validation process, involving boot
strapped resampling (1000 iterations) from both the training and testing 
groups. The nomogram’s time-dependent ROC was compared to AJCC 
and SEER staging, indicating improved prognostic accuracy with a 
higher AUC. Kaplan-Meier (K-M) survival curves were generated using 
the nomogram’s risk scores. External validation included a separate 
dataset of 8290 patients diagnosed between 2004 and 2009.

Statistical analysis

All statistical analyses were performed using R (version 4.3.1). Cat
egorical variables were expressed as numbers and percentages. Potential 
factors associated with CSS were identified through LASSO regression 
and multivariate Cox regression analysis. The prognostic nomogram was 
developed using Cox hazard regression analysis and was presented in 
both static and dynamic network-based formats. To evaluate the 

Table 1 
Baseline characteristics of LUAD patients.

Characteristics Overall 
(n =
21,099)

Training 
group 
(n = 14,770)

Testing 
group 
(n = 6329)

p

Age, years (%)
<67 9623 (45.6) 6788 (46.0) 2835 (44.8) 0.123
≥67 11,476 

(54.4)
7982 (54.0) 3494 (55.2)

Sex (%)
Female 12,354 

(58.6)
8652 (58.6) 3702 (58.5) 0.920

Male 8745 (41.4) 6118 (41.4) 2627 (41.5)
Race (%)

Black 1933 (9.2) 1333 (9.0) 600 (9.5) 0.568
Other 1886 (8.9) 1319 (8.9) 567 (9.0)
White 17,280 

(81.9)
12,118 
(82.0)

5162 (81.6)

Primary Site (%)
Bronchus/Others 252 (1.2) 169 (1.1) 83 (1.3) 0.733
Lower lobe 6941 (32.9) 4847 (32.8) 2094 (33.1)
Middle lobe 1192 (5.6) 834 (5.6) 358 (5.7)
Upper lobe 12,714 

(60.3)
8920 (60.4) 3794 (59.9)

Grade (%)
I 4852 (23.0) 3411 (23.1) 1441 (22.8) 0.527
II 10,073 

(47.7)
7069 (47.9) 3004 (47.5)

III 6038 (28.6) 4190 (28.4) 1848 (29.2)
IV 136 (0.6) 100 (0.7) 36 (0.6)

T (%)
T1 10,221 

(48.4)
7144 (48.4) 3077 (48.6) 0.791

T2 7608 (36.1) 5326 (36.1) 2282 (36.1)
T3 2528 (12.0) 1788 (12.1) 740 (11.7)
T4 742 (3.5) 512 (3.5) 230 (3.6)

N (%)
N0 16,097 

(76.3)
11,290 
(76.4)

4807 (76.0) 0.432

N1 2508 (11.9) 1721 (11.7) 787 (12.4)
N2 2433 (11.5) 1716 (11.6) 717 (11.3)
N3 61 (0.3) 43 (0.3) 18 (0.3)

M (%)
M0 20,443 

(96.9)
14,300 
(96.8)

6143 (97.1) 0.374

M1 656 (3.1) 470 (3.2) 186 (2.9)
Surg.Prim.Site (%)

Sub-lobar 3066 (14.5) 2121 (14.4) 945 (14.9) 0.464
Pneumonectomy 538 (2.5) 371 (2.5) 167 (2.6)
Lobectomy 17,495 

(82.9)
12,278 
(83.1)

5217 (82.4)

Radiation (%)
None/unknown 18,911 

(89.6)
13,201 
(89.4)

5710 (90.2) 0.070

Yes 2188 (10.4) 1569 (10.6) 619 (9.8)
Chemotherapy (%)

No/unknown 15,388 
(72.9)

10,768 
(72.9)

4620 (73.0) 0.903

Yes 5711 (27.1) 4002 (27.1) 1709 (27.0)
Examined.lymph.nodes 

(%)
<7 8281 (39.2) 5798 (39.3) 2483 (39.2) 0.987
≥7 12,818 

(60.8)
8972 (60.7) 3846 (60.8)

Positive.lymph.nodes 
(%)
0 16,291 

(77.2)
11,413 
(77.3)

4878 (77.1) 0.893

≤3 3539 (16.8) 2476 (16.8) 1063 (16.8)
>3 1269 (6.0) 881 (6.0) 388 (6.1)

Mets.Bone (%)
No 21,011 

(99.6)
14,710 
(99.6)

6301 (99.6) 0.797

Yes 88 (0.4) 60 (0.4) 28 (0.4)
Mets.Brain (%)

No 20,896 
(99.0)

14,627 
(99.0)

6269 (99.1) 0.952

Table 1 (continued )

Characteristics Overall 
(n =
21,099) 

Training 
group 
(n = 14,770) 

Testing 
group 
(n = 6329) 

p

Yes 203 (1.0) 143 (1.0) 60 (0.9)
Mets.Liver (%)

No 21,074 
(99.9)

14,750 
(99.9)

6324 (99.9) 0.383

Yes 25 (0.1) 20 (0.1) 5 (0.1)
Tumor size, cm (%)
≤1 1486 (7.0) 1034 (7.0) 452 (7.1) 0.863
1–3 12,955 

(61.4)
9099 (61.6) 3856 (60.9)

3–5 4482 (21.2) 3121 (21.1) 1361 (21.5)
5–7 1316 (6.2) 910 (6.2) 406 (6.4)
>7 860 (4.1) 606 (4.1) 254 (4.0)

Multi.primary.tumors 
(%)
1 12,658 

(60.0)
8906 (60.3) 3752 (59.3) 0.173

≥2 8441 (40.0) 5864 (39.7) 2577 (40.7)

Table 2 
Baselines of prognostic cohort and external cohort.

Characteristics Prognostic cohort 
(n = 21,099)

External cohort 
(n = 8290)

p

Age, years (%)
<67 9623 (45.6) 3765 (45.4) 0.775
≥67 11,476 (54.4) 4525 (54.6)

Sex (%)
Female 12,354 (58.6) 4561 (55.0) <0.001
Male 8745 (41.4) 3729 (45.0)

Tumor size, cm (%)
≤1 1486 (7.0) 469 (5.7) <0.001
1–3 12,955 (61.4) 4984 (60.1)
3–5 4482 (21.2) 2011 (24.3)
5–7 1316 (6.2) 570 (6.9)
>7 860 (4.1) 256 (3.1)

M (%)
M0 20,443 (96.9) 7924 (95.6) <0.001
M1 656 (3.1) 366 (4.4)

Grade (%)
I 4852 (23.0) 1056 (12.7) <0.001
II 10,073 (47.7) 4098 (49.4)
III 6038 (28.6) 3067 (37.0)
IV 136 (0.6) 69 (0.8)

Surg.Prim.Site (%)
Lobectomy 17,495 (82.9) 6971 (84.1) <0.001
Pneumonectomy 538 (2.5) 284 (3.4)
Sub-lobar 3066 (14.5) 1035 (12.5)

Positive lymph node (%)
0 16,291 (77.2) 6023 (72.7) <0.001
1–3 3539 (16.8) 1719 (20.7)
>3 1269 (6.0) 548 (6.6)
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nomogram’s performance, we conducted calibration, decision curve 
analysis (DCA), and time-dependent ROC curve analysis. Subsequently, 
the nomogram was used to assign risk scores to individual patients in 
both the training and test groups. Patients were then stratified into high 
and low-risk groups based on the median risk score. Survival rates be
tween these groups were compared using Kaplan-Meier survival curves 
and log-rank tests. Statistical analysis was carried out using various 
software packages, including glmnet, caret, mctest, dcurves, pROC, 
regplot, rms, survival, timeROC, survminer, and DynNom. A p-value of 
<0.05 was considered statistically significant.

The p-values reported in Tables 1 and 2 were computed using the 

Chi-square test implemented through the CreateTableOne function in 
the R package Tableone. Prognostic models based on independent pre
dictors were developed utilizing the survivor package in R. The nomo
gram was constructed using the regplot package, while the dynamic 
nomogram was generated with the DynNom package. ROC curves were 
plotted using the pROC software, and the AUC was used to evaluate the 
discriminative ability of the nomogram. Furthermore, time-dependent 
ROC curves were generated, and AUC values at various time points 
were compared to the nomogram using the timeROC package. Calibra
tion curves were created using the survival and rms packages, and DCA 
curves were plotted using the dcurves package. Finally, using the 

Fig. 1. Selection of predictors using LASSO regression analysis. (A) Plot of mean-squared error versus log lambda. The left vertical dotted line represents the optimal 
value with the fewest criteria, while the right vertical dotted line corresponds to the single standard error criterion. (B) LASSO coefficient profiles of the 15 variables. 
LASSO stands for least absolute shrinkage and selection operator.

Table 3 
The results of univariate and multivariate Cox analysis.

Characteristics Univariate analysis Multivariate analysis

HR p 95%CI HR p 95%CI

Age, years
<67
≥67 1.357 0.000 1.291–1.426 1.518 0.000 1.443–1.597

Sex
Female
Male 1.497 0.000 1.425–1.572 1.389 0.000 1.322–1.459

Grade
I
II 1.903 0.000 1.763–2.054 1.547 0.000 1.432–1.672
III 2.921 0.000 2.702–3.159 1.959 0.000 1.805–2.125
IV 2.896 0.000 2.200–3.814 1.782 0.000 1.352–2.350

Positive lymph node
0
1–3 2.724 0.000 2.575–2.882 2.211 0.000 2.084–2.345
>3 4.470 0.000 4.151–4.814 3.464 0.000 3.205–3.744

Tumor size, cm
0
1–3 1.580 0.000 1.389–1.798 1.421 0.000 1.247–1.618
3–5 2.645 0.000 2.315–3.021 1.934 0.000 1.687–2.217
5–7 3.897 0.000 3.368–4.508 2.483 0.000 2.135–2.887
>7 5.322 0.000 4.577–6.188 3.695 0.000 3.160–4.321

M
M0
M1 3.081 0.000 2.786–3.406 2.226 0.000 2.011–2.465

Surg.Prim.Site
Lobectomy
Pneumonectomy 2.439 0.000 2.169–2.743 1.160 0.017 1.027–1.310
Sub-lobar 1.107 0.004 1.034–1.186 1.514 0.000 1.410–1.626
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median risk score predicted by the nomogram, all patients were strati
fied into high-risk and low-risk groups. The prognostic value of the 
nomogram was then confirmed by validating survival curves through 
the logrank test, utilizing the survival package and survminer package to 
visualize Kaplan-Meier curves.

Results

Demographic and clinical characteristics

This study enrolled a cohort of 21,099 patients diagnosed with Lung 
Adenocarcinoma (LUAD) within the SEER database spanning the years 
2010 to 2015. The development of the nomogram utilized data exclu
sively from the training subset comprising 14,770 patients. Subse
quently, internal validation procedures were executed using the testing 
subset. Table 1 presents a comprehensive overview of the baseline 
characteristics for the entire patient cohort.

Predictor selection

To investigate relevant prognostic factors, we consolidated all pa
tients into a unified cohort. Employing LASSO regression analysis, we 
adopted a coefficient penalization approach to mitigate variable over
fitting and streamline the model, as illustrated in Fig. 1. We similarly 
analyzed the multicollinearity between the variables and the results are 
shown in (Fig. S1). We identified seven key variables through a com
bination of LASSO and multivariate Cox analyses: age, gender, tumor 
grade, count of involved lymph nodes, tumor size, M stage, and primary 

surgical site. For comparison, both univariate and multivariate Cox 
regression analyses were conducted, and the results are detailed in 
Table 3. The seven potential variables, each serving as an individual risk 
factor for CSS, were included in the multivariate Cox regression analysis.

Prognostic nomogram construction process

In the training group, a comprehensive set of variables, including the 
number of positive lymph nodes, tumor size, age, sex, tumor grade, M- 
stage, and primary surgical site, were used to construct the prognostic 
nomogram depicted in Fig. 2. Nomogram validation was carried out 
using a separate testing group. The findings from the multivariate Cox 
analyses were presented in Fig. 3 as a forest plot illustrating the inde
pendent impacts of these predictors on CSS in LUAD patients. This 
representation included hazard ratios (HRs) and their corresponding 95 
% confidence intervals (CIs). Surgery at the primary site emerged as a 
favorable prognostic factor (Pneumonectomy:HR = 1.160, 95 % CI: 
1.027–1.310, p < 0.001; Sub-lobar:HR = 1.514, 95 % CI: 1.410–1.626, 
p < 0.001). Conversely, the remaining six prognostic factors were 
consistently associated with a less favorable prognosis. Grade II (HR =
1.547, 95 % CI: 1.432–1.672, p < 0.001), Grade III (HR = 1.959, 95 % 
CI: 1.805–2.125, p < 0.001), or Grade IV (HR = 1.782, 95 % CI: 
1.352–2.350, p < 0.001) tumors displayed relatively unfavorable 
prognoses when compared to well-differentiated tumors. Patients aged 
67 years or older and male patients were also significantly linked to 
poorer outcomes (HR = 1.518, 95 % CI: 1.443–1.597, p < 0.001; HR =
1.389, 95 % CI: 1.322–1.459, p < 0.001, respectively). Distant metas
tasis (HR = 2.226, 95 % CI: 2.011–2.465, p < 0.001) was identified as a 

Fig. 2. Nomogram for prognostic assessment in GAD patients.
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Fig. 3. Multivariate Cox analysis forest plot.

Fig. 4. Nomogram calibration curves. Panels (A), (B), and (C) represent the calibration curves at 1 year, 3 years, and 5 years, respectively, for the training group. 
Panels (D), (E), and (F) represent the calibration curves at 1 year, 3 years, and 5 years, respectively, for the validation group.
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significant contributor to a poorer prognosis. Additionally, both the 
lymph node positivity count and tumor size were recognized as risk 
factors influencing lung cancer prognosis.

Internal validation of the nomogram

Internal validation was conducted to assess the nomogram’s per
formance, and calibration curves, DCA, and ROC curves were generated 
over time. The nomogram exhibited robust calibration capabilities, 
evident from both the training group (Fig. 4A–C) and testing group 
(Fig. 4D–F) calibration curves. Furthermore, the nomogram demon
strated valuable clinical applicability, as evidenced by DCA plots for 
both the training (Fig. 5A–C) and testing groups (Fig. 5D–F). Time- 
dependent ROC curves were concurrently plotted for both groups. For 
the training group, the nomogram achieved 1-, 3-, and 5-year AUCs of 
0.769, 0.761, and 0.748, respectively (Fig. 6A). In the testing group, the 
AUCs for the nomogram were 0.741, 0.752, and 0.740 for 1-, 3-, and 5- 
year intervals, respectively (Fig. 6B). Time-dependent ROC curves were 
also constructed for the AJCC stage (Fig. 6C, D) and SEER stage (Fig. 6E, 
F) in both the training and testing groups. Notably, the nomogram’s AUC 
outperformed both the AJCC and SEER stages, substantiating its supe
rior discriminatory capability. These findings collectively affirm the 
reliability of our model.

For further evaluation of the predictive model’s effectiveness and 

validity, patients were categorized into high-risk and low-risk groups 
using the median prognostic score obtained from the nomogram. 
Notably, the K-M survival curves displayed significant divergence (p <
0.001), highlighting the model’s ability to distinguish individuals at an 
elevated probability of cancer-related death (Fig. 7). These K-M survival 
curves underscored the considerably poorer CSS experienced by high- 
risk individuals in contrast to their low-risk counterparts. Addition
ally, to enhance the practical utility of our prognostic tool, we have 
developed an interactive online dynamic nomogram. Fig. 8 visually il
lustrates how this dynamic nomogram operates, enhancing its clinical 
usefulness.

Nomogram validation through external assessment

Table 2 presents the initial data for the essential variables in both 
cohorts. External validation, as illustrated by ROC curves (Fig. 9A–C) 
and DCA plots (Fig. 9D–F), reaffirmed the robust calibration capabilities 
and clinical applicability of the nomogram. The AUC values for the 1-, 3- 
, and 5-year time-dependent ROC curves for the nomogram were 0.718, 
0.702, and 0.707, respectively (Fig. 10A). Moreover, K-M survival 
curves displayed significant differences in CSS between the high and 
low-risk groups (Fig. 10B).

Fig. 5. DCA analysis of the nomogram. Panels (A), (B), and (C) represent DCA results at 1 year, 3 years, and 5 years, respectively, for the training group. Panels (D), 
(E), and (F) represent DCA results at 1 year, 3 years, and 5 years, respectively, for the validation group. DCA, Decision analysis curve.
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Discussion

In this study, age, gender, tumor grade, number of positive lymph 

nodes, tumor size, M stage, and primary surgical site were identified as 
independent prognostic factors for LUAD using SEER data. Subse
quently, a nomogram was developed to predict survival outcomes at 1, 

Fig. 6. Nomogram, SEER stage, and AJCC stage’s time-dependent ROC curves. Panels (A) and (B) show the 1-, 3-, and 5-year time-dependent ROC curves for the 
nomogram in the training and validation groups, respectively. Panels (C) and (D) represent the 1-, 3-, and 5-year time-dependent ROC curves for the SEER stage in 
the training and validation groups, respectively. Panels (E) and (F) depict the 1-, 3-, and 5-year time-dependent ROC curves for the AJCC stage in the training and 
validation groups, respectively.

Fig. 7. Nomogram’s K-M curves. Panels (A) and (B) present the K-M curve for nomogram in the training group and validation group, respectively.
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Fig. 8. Dynamic nomogram interface.

Fig. 9. External validation: calibration curves and DCA. Panels (A), (B), and (C) show the calibration curves for the nomogram at 1 year, 3 years, and 5 years in the 
external validation group, respectively. Panels (D), (E), and (F) depict the DCA results for the nomogram at 1 year, 3 years, and 5 years in the external validation 
group, respectively.
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3, and 5 years, demonstrating significant discriminative capabilities. 
Validation of the model, including calibration curves, DCA, and time- 
dependent ROC curves, confirmed its outstanding discriminative per
formance and concordance with actual observations. The prognostic 
nomogram was applicable to both the training and testing groups, 
enabling personalized predictions of LUAD-specific survival probabili
ties at 1-, 3-, and 5-years. To enhance user-friendliness, a static nomo
gram network was created based on a calculator that takes input values 
for the seven variables and computes survival rates with 95 % confi
dence intervals (https://glfl993823.shinyapps.io/LUAD_CSS/). The 
predictive model assists clinicians in evaluating individual risks and 
tailoring treatment and follow-up strategies for LUAD patients. High- 
risk individuals, given their heightened susceptibility to CSD, require 
comprehensive care and vigilant monitoring. Notably, the prognostic 
nomogram serves as a valuable complement to the AJCC and SEER 
staging systems, providing additional pertinent information.

The prognostic nomogram developed in our study demonstrated 
superior performance compared to other predictive models. In a study 
by Ma et al., they created a prognostic nomogram for LUAD, which 
yielded time-dependent AUC values of 0.707, 0.674, and 0.686 at 12, 
24, and 36 months in the training cohorts and 0.690, 0.680, and 0.688 in 
the validation cohorts [13]. Similarly, Song et al. established a prog
nostic nomogram for NSCLC, reporting AUC values of 0.720, 0.706, and 
0.708 at 1, 3, and 5 years in the training cohort, and 0.738, 0.696, and 
0.680 in the validation cohorts [14]. The field of medical technology has 
witnessed significant advancements, leading to the widespread use of 
molecular diagnostic techniques in the study of malignant tumors. Mo
lecular mechanisms and sequencing technologies have also played 
pivotal roles in tumor research [15–17]. Factors such as tumor- 
infiltrating lymphocytes [18], Long non-coding RNAs (LncRNAs) [19], 
DNA methylation [20], immune-related genes [21], interactions be
tween cuproptosis and ferroptosis [22], and variations in autophagy- 
related genes [23,24] are all closely linked to lung cancer prognosis. 
The practical implementation of molecular testing in clinical settings 
remains challenging, despite the foundation provided by molecular- 
level studies for the personalized diagnosis and treatment of lung can
cer patients.

LUAD, as the most prevalent subtype of NSCLC, presents a significant 
challenge. Approximately 57 % of patients receive their diagnosis when 
the disease has already advanced to the metastatic stage, resulting in a 

dismal 5-year relative survival rate of only 5 % [25]. While patients 
undergoing immunotherapy and targeted biologic treatments have 
shown improved overall survival compared to those receiving tradi
tional cytotoxic chemotherapy for non-small cell lung cancers (NSCLC) 
[26–28], the collective prognosis for LUAD remains notably unfavor
able. Therefore, it is imperative to investigate LUAD patient prognosis 
by providing tools that offer personalized survival information. The 
nomogram we have developed serves as one such tool, significantly 
streamlining the treatment process.

Numerous investigations have delved into prognostic factors within 
LUAD. Nguyen et al. unveiled the prognostic potential of the lepidic cell 
gene signature, offering insights into prognosis and susceptibility to 
immunotherapy among LUAD patients [29]. Recent research has further 
delineated micropapillary and solid lymph node metastases as autono
mous indicators of unfavorable prognosis in LUAD patients [30]. Our 
study successfully identified seven independent prognostic de
terminants, encompassing age, gender, tumor grade, number of positive 
LNs, tumor dimensions, M stage, and primary surgical locus, for the 
comprehensive evaluation of LUAD prognosis. By amalgamating these 
variables, we conceived a novel prognostic nomogram tailored to LUAD 
patients. Rigorous internal and external validations unequivocally sub
stantiated the superior precision of our model in providing an individ
ualized prognosis assessment vis-à-vis the conventional AJCC staging 
system. Nevertheless, our study is not without its limitations. Firstly, due 
to its retrospective nature, the specter of selection bias looms. Secondly, 
the precise quantification of data pertaining to laboratory tests and 
imaging data, eluded us, potentially bearing implications of conse
quence. Lastly, further validation employing external datasets, with 
particular emphasis on data from healthcare institutions in Asia, is 
imperative to enhance the model’s generalizability.

Conclusions

This study identified independent prognostic factors for Lung 
Adenocarcinoma (LUAD), including age, sex, tumor grade, number of 
positive lymph nodes, tumor size, M stage, and primary site of surgery. A 
novel nomogram was developed to predict 1-, 3-, and 5-years CSS, 
demonstrating strong clinical applicability and discriminatory power. 
The nomogram, coupled with the online prediction tool, provides sup
port to clinicians in appraising mortality risk and formulating tailored 

Fig. 10. External validation: the time-dependent ROC curves and K-M curves. Panel (A) displays the time-dependent ROC curves for the nomogram at 1 year, 3 years, 
and 5 years in the external validation group. Panel (B) illustrates the K-M curve for the nomogram in the external validation group.
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treatment and follow-up approaches. Prospective multicenter in
vestigations are necessary for further validation.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.sopen.2024.10.003.
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