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Comprehensive snapshots of natural killer cells functions,
signaling, molecular mechanisms and clinical utilization
Sumei Chen1✉, Haitao Zhu2 and Youssef Jounaidi3✉

Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in
immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived
from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and
granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim

and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy,
detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review,
we provide comprehensive and detailed snapshots of NK cells’ functions and states of activation and inhibitions in cancer,
autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and
ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy
accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune
effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their
cytolytic activities specifically for cancer immunotherapy.
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INTRODUCTION
Natural killer (NK) cells were first described as killer lymphocytes
that induce rapid leukemia cell death without requiring soluble
factors1 and separately, in the same year as lymphocytes distinct
from T-cells but capable of killing tumors caused by viruses.2 The
knowledge accumulated since then has revealed the complexity of
NK cell biology and interactions with cancer cells and virus-
infected cells. It also revealed their role in autoimmunity,3–5

angiogenesis,6 wound healing,7–9 pregnancy and fertility,10

aging,11 disease, and senescence.12,13 NK cells are large granular
lymphocytes sharing a common lymphoid progenitor with two
pillars of adaptive immunity: lymphocytes B and T-cells. However,
NK cells do not express CD3, B-cell receptor, or T-cell receptor. A
defining feature of NK cells is their high cytotoxicity, rapid
recognition, and elimination of threats, suggesting a strong
evolutionary pressure in organisms without adaptive immunity to
have fast-acting and efficient NK cells with an adequate array of
activating receptors to survive insults such as viral infections and
intrusion by non-self. NK cells are unique among innate immune
cells since they use tools similar to adaptive immunity to resolve
these insults. Eliminating these cells by NK cells is achieved, as in
the case of T-Cells, by using pore-forming perforin14 designed to
create pores with an inner diameter of ~16 nm15 in the target cell
membrane and delivery of proteolytic granzymes16 that activate
Caspase-3 and 10 to trigger apoptosis and Granulysin (GNLY). This
saponin-like toxin lyses bacteria such as Mycobacterium tubercu-
losis,17 preventing intracellular bacteria’s escape.18 During preg-
nancy, decidual NK (dNK) cells can deliver GNLY via nanotubes to
surgically kill bacteria inside the infected trophoblast without

harming it.19 Similar delivery of GLNY is also performed by
peripheral blood (PB) NK cells in infected macrophages and
dendritic cells (DCs). NK cell’s cellular granularity is due to
cytoplasmic vesicles filled with perforin and several granzymes.
These granules and the Golgi apparatus all become polarized
toward the point of contact with the targeted cell, called synapse,
where the cargo is concentrated and delivered.20,21 However,
despite this arsenal, NK cells may not eliminate large tumors or
systemic viral infections. Their role appears to have been defined
by evolution as first responders to deal with emerging threats in
collaboration with other components of innate immunity, such as
macrophages until adaptive immunity is fully deployed. NK cells
are at the center of innate immunity with a presence in strategic
organs that constitute barriers, such as the skin, gut, lungs, liver,
uterus, breasts, and blood, where NK cells represent 5–15% of the
lymphocyte population. In these organs, NK cells could play either
an inflammatory role or, counterintuitively, an immunosuppressive
one. In the first scenario, they increase inflammation after
activation by tumor and virus-infected cells by secreting inflam-
matory cytokines such as INFγ,22,23 which activates macrophages,24

T-cells,25 and B-cells.26 However, cancer cells treated with IFNγ
become resistant to NK cells, suggesting that NK secretion of IFNγ
is also designed to involve other immune cells.27 NK cells are also
the only lymphocytes that constitutively secrete TGFβ28 to reduce
inflammation and inhibit T-cells cytotoxicity and proliferation,29

allowing tissue repair.30 Additionally, there is an increased
frequency of autocrine TGFβ signaling by TGFβ-producing NK
cells in patients with breast cancer.31 NK cells can also secrete
immunosuppressive IL-10 in an early response to systemic, but not
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local infection.32,33 This secreted IL-10 indirectly limits T-cell
activation by blocking APCs secretion of IL-12 and producing
factors involved in antigen presentation34 and T-cell anti-viral
response,35 thus promoting T-cell exhaustion36 and reducing
immune-mediated damage to the host. IL-10, however, improves
the effector functions and metabolism of NK cells via the mTOR
pathway.37 Therefore, NK cells also have an immunomodulatory
role and can influence innate and adaptive immunity through
these anti- and pro-inflammatory roles.
The expression level of NK marker CD56 commonly defines the

oversimplistic distinction between NK cells mediating these two
functions. CD56dim NK cells are efficient killers and produce more
perforin and granzymes, while CD56bright NK cells, which produce
INFγ, TNFβ, IL-10, IL-13, and GM-CSF, also have immunomodula-
tory and suppressive functions.38–40 A new refinement of this
classification has recently delineated three major populations of
NK cells in PB.41,42 However, mass cytometry analysis considering
twenty-eight NK cell receptors revealed an astounding 6000 to
30,000 phenotypic populations within an individual, where
inhibitory receptors are determined by genetics and activating
receptors are by the environment.43 Most circulating NK cells,
~90%, are CD56dim, suggesting that circulating NK cells primary
function is to eliminate rapidly targeted cells. Most CD56dim cell
subset also expresses CD16 (FcγRIII, Fc gamma receptor III),40

which is necessary for ADCC, again bridging innate and adaptive
immunity.

A BRIEF HISTORY OF FIVE DECADES OF PROGRESS IN
NATURAL KILLER CELL RESEARCH
In 1971, even before NK cells formal identification, radioresistant
lymphoid cells in lethally irradiated mice were reported to reject
allogenic bone marrow,44 and the cytolytic activity attributed to
PB lymphocytes was reported in 1973.45 In 1975, the term NK
“Natural Killer” was coined1 (Fig. 1), and the discovery of IL-2 the
same year, later revolutionized NK cell studies.46 In 1986, the
“Missing-self” hypothesis was advanced to explain how NK cells
pull the trigger.47 Also, in 1986, impaired activity of NK cells in HIV
patients was reported.48 In 1988, NK cells were found to express
CD16 and to mediate ADCC.49 In 1989, two CD56 subsets (dim and
bright) were identified,50 and “interferon-inducing” IL-1251 and IL-
18, crucial for NK activity, were discovered. Also, in 1989, the CD3ζ
chain was discovered52 and shown to transduce CD16 signaling.53

In 1990, surface antigens with a role in cell activation and
regulation of cytolytic function (later called KIRs) in NK cells were
reported.54 In 1992, the first NK cell-activating receptor, 2B4, was
discovered.55 The “Missing-self” hypothesis implied the existence
of inhibitory receptors such as Ly49,56 first found in 1992 in mice,
then in 1995 in humans, the KIRs57–59 that bind to MHC I were
cloned/identified. A year earlier (1994), Klingemann published the
NK cell line NK-92,60 established in 1992 and later used as a model
in many NK studies. Cytokine IL-15, necessary for NK cell
development, was also discovered in 1994.61,62 In 1996 NK cell
activator DNAM-1 was discovered, first in T-cells.63 Natural
cytotoxicity receptors (NCRs) will be discovered in succession:
NKp4664 in 1997, NKp4465 in 1998, and in 1999, NKp3066 and
adapter DAP12.67 In 1998 the inhibitory NKG2A and activating
NKG2C receptors interactions with HLA-E were identified.68 In
1999, NKG2D receptor and adapter DAP10 activation by MICA69

and later in 2000 with ULBP70 and Retinoic acid early inducible
gene (Rae1)71 were reported. Also, in 2000, IL-21 was discovered
and found to expand NK cells.72 In 1999, the role of NK cells
emerged in lowering the rates of leukemia relapse in MHC class I
and KIR mismatch between the donor and recipient of hemato-
poietic stem cell transplants in a transplant setting.73 In 2002, the
interactions between NK and DC cells were discovered.74–76 In
2003, TGFβ1 was found to impact the interaction between DCs
and NK cells by suppressing NKp30 and NKG2D.77 In the same

year, PVR and Nectin 2 were identified as ligands for DNAM-1.78 In
2005, Miller et al. pioneered the first use of NK cells in a non-
transplant setting and showed the benefit of lymphocyte
depletion preconditioning on NK cell expansion and persistence
in vivo.79 In 2006, a component of the TME, Tryptophan
metabolite, L-Kynurenine was reported to inhibit surface expres-
sion of NKp46 and NKG2D.80 In 2008, NK-92’s first phase I clinical
trial was published.81 In 2009, NK cell secretion of IL-10 was
reported to regulate CD8+T cells to prevent damage35 and
another mucosal NK cell subset was found to produce IL-22.82 In
2010, NK cell interaction with macrophages was identified,83 and
later in 2012, NK cells were reported to kill Neutrophils.84 In 2012,
memory-like human NK cells that expand after transplantation are
described.85 In 2015, evidence of adaptive or memory NK cells
emerged after epigenetic changes (hypermethylation of Syk gene
promoter) were found in NK cells in response to CMV
infection.86,87 Also, in 2015, the first clinical trial using feeder-
expanded NK cells showed safety and efficacy.88 In 2016, cytokine-
induced memory-like NK cells were used in a phase-I clinical trial
to show safety and efficacy.89 In 2020, CAR-NK (CD19) cells were
used in a landmark clinical study to show safety and efficacy.90 In
2020, severely impaired NK cells were found in severe COVID-19
patients, and these NK cells were unable to kill overactive and
inflammatory macrophages.91 Also in 2020, NK cells were
discovered to specifically deliver Ganulysin, via nanotubes, to
bacteria-infected trophoblasts, DCs and macrophages, without
harm.19 In 2022, long-lasting NK cell clonal expansion from
HCMV+ patients was reported.92 In early 2024, three major
populations of NK cells are identified in PB.41,42 In mid-2024, CAR-
NK cells are offered as an experimental option for cancer
treatment at MD Anderson, and two NK cell lineage progenitors
are identified in two seminal papers.93,94 Also, by mid-2024, NK
cells were reported to kill, via NKp30, activated T-cells and CAR-
CD19 T-cells expressing B7H6.95

NK INTERACTION WITH THE MAJOR HISTOCOMPATIBILITY
COMPLEX CLASS I MOLECULES
A critical regulator of NK cell reactivity is the major histocompat-
ibility complex (MHC I). NK and T-cells interact and interrogate
MHC I complexes from different angles with different outcomes. In
several examples, the outcome of these interactions is that target
cells that are sensitive to killing by NK cells are resistant to killing
by T cells, and the opposite is true, leading to the seminal
observation of the “missing self-hypothesis” by Karre.47,96 T-cells,
via their TCRs, recognize foreign peptides presented by MHC I
complexes and get an activation signal (signal-1) from antigen-
presenting cells (APCs) and cancer cells or virus-infected cells.
T-cells ignore MHC I-presenting self-peptide or cells with low MHC
I expression, such as some virus-infected cells, and delegate this
function to NK cells. Additionally, T-cells do not tolerate
polymorphism in the HLA groups that compose MHC I complexes
and, as a consequence, mediate tissue rejection and destruction.
In contrast, NK cell interaction with MHC I induces a tolerogenic
signal via inhibitory signals from interacting killer cell
immunoglobulin-like receptors (KIRs), and NKG2A/CD94.97,98

Additionally, NK cells tolerate allogeneic variability and poly-
morphism in HLA99,100 to a certain degree. However, they always
interpret MHC I absence in scrutinized cells as non-self that must
be destroyed.47,101 Indeed, NK cells were shown to kill preferen-
tially cells lacking MHC I.102,103 NK cells will also destroy cells
presenting certain empty MHC I complexes lacking a self-
peptide.104 Others reported protection from lysis by empty MHC
I.105 However, empty MHC I is unlikely to be expressed at the cell
surface as loading the peptide onto MHC I complex is a
requirement for quality control before export to the cell
membrane,106 and this expression is only seen at temperatures
near 26 °C in the absence of TAP (transporter associated with
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antigen processing).107 NK cells may also kill cells due to
mutations in the peptides presented by certain HLA molecules,
which may affect the interaction between KIRs and target cells,
influencing NK cell activity.108–110

The inhibitory arm involves primarily KIRs with long cytoplasmic
domains KIR-2DL, KIR-3DL, or C-type lectin receptors CD94/
NKG2A/B interacting with MHC I complex. Inhibitory receptors
CD94/NKG2A/B in normal cells recognize HLA-E molecules
presenting the leader sequence peptides of the HLA-A, HLA-B,
and HLA-C groups. Furthermore, HLA-E becomes only expressed
at the cell surface when occupied by these peptides. This
recognition of normalcy in cells inhibits NK cells only when they
express normal levels of classical HLA class I molecules, effectively
preventing NK cell-mediated cytotoxicity against normal cells.
Therefore, MHC I recognition is the primary and default

inhibitory mechanism through which NK cells decide to engage
scrutinized cells. Thus, the lack of MHC I recognition by KIRs, which
exposes the missing self,96 is one of the main and default
regulators of NK cell killing (Fig. 2). NK cells achieve optimal
functionality through KIRS interactions with the four MHC I classes
during their development when NK cells are educated or
licensed.111 Tumorigenesis is characterized by reduced MHC I
expression.112,113 MHC I deficient cancer cells can escape T-cells,
but not NK cells, as these are MHC I unrestricted cells. However,
MHC I deficient cancer cells may still escape NK cell surveillance
due to other dysfunctions. This escape is mainly mediated through
the anergy of NK cells due to weak activation or exhaustion, which
can be reversed by cytokines such as IL-18 and IL-12.114

Overall, the interactions of NK cells and T-cells with MHC I are
quite similar but yield different outcomes. NK cell interrogation of
MHC I creates a tolerance signal that accepts HLA polymorphisms
unless HLA is completely missing, very polymorphic, or from
another species. This tolerance signal is relevant to fetus
implantation, transplantation, and rejection and is evident in the
urochordate Botryllus. Schlosseri, the closest invertebrate to

vertebrates, which has only NK cells with no T or B-cells.115–117

Each B. Schlosseri individual transplants daily with others to form
chimeras, and each need only one common allele of Botryllus
histocompatibility factor118–120 to transplant with another indivi-
dual successfully. The B. Schlosseri histocompatibility complex
allowing this transplantation has extensive polymorphism119 and
the mechanism that controls the tolerance signal and success of
transplantation is mediated by BsCD94-1gene, a CD94-related
transmembrane receptor of vertebrate NK cells, expressed on the
surface of a subpopulation of Botryllus blood cells and upregu-
lated during the allorecognition process.121 CD94 is expressed in
modern NK and CD8 T-cells to interact with non-classical MHC I
HLA-E, presenting the leader sequence peptides of HLA-A, HLA-B,
and HLA-C groups. CD94 associates as a heterodimer with NKG2C
and DAP12 to activate NK and T-cells or with NKG2A to inhibit
them. This suggests first that NK cells are more ancient than T-cells
and second that original NK cells via MHC I may have been
designed initially to identify the self but also to regulate asexual
reproduction and tolerance between two close individuals.

NK STRATEGIES TO IDENTIFY THE SELF
NK cells utilize two strategies to identify the self through MHC I. In
one strategy, they recognize polymorphic MHC I proteins using
polymorphic KIRs. In another strategy, they utilize the CD94-NKG2
receptor to query HLA-E, presenting conserved peptides derived
from all HLA-A, B, and C classes. Both signals synergize to further
prevent NK cells from killing normal cells. KIRs interactions with
the four MHC I classes have been solved by crystallography.122–124

Structural analysis shows the two immunoglobulin-like extracel-
lular domains of KIRs, D1 and D2 (in KIR2D receptors), to be
arranged, depending on KIR members, like two hands (V-shaped)
with angles between 66° and 81° and with each hand slightly
twisting (along the axis of D1 or D2) at the wrist (hinge). This
opening of the angle was found to affect the affinity of KIRs to

Fig. 1 Historical narrative of important milestones in NK cell research. Interrogation of the historical record of natural killer cell research from
PubMed using the keywords “Natural Killer cells”, “Natural Killer cells and Immunotherapy”, “Natural Killer cells and CAR-NK”, and “Natural Killer
cells and Covid”. We provide in the main text of the review a year-by-year narrative of the progress/discovery culminating in the offering of
CAR-NK as an “experimental therapy” against cancer at MD Anderson cancer center. In 2021, the number of publications related to “NK cells” is
3.57-fold less than “T-Cells” and the research record of “CAR-NK” is even more minuscule. Both fields show a subsequent slump in research
publications in the period 2020–2023 which may be due to the Covid-19 pandemic
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HLA-C ligands.125 Near the KIR’s wrist is placed the presented
peptide in a groove between the α1 and α2 helices of HLA. At this
KIR-peptide-HLA interface, on the KIR side, D2 interacts with a
well-conserved docking region of the HLA α2 helix spanning from
amino acids 145 to 151. On the other hand, the regions of
interaction between D1 of KIR and α1 helix are variable and seem
to determine the specificity for each KIR. KIRs exhibit a high
degree of polymorphism in humans, with a number of 2238 alleles
reported in 2024 (https://www.ebi.ac.uk/ipd/kir/). This genetic
diversity is “the single most important factor that shapes
functional NK cell repertoires”.126 As an example of KIRs diversity
in a defined population, a recent study reported using 1173
individuals of Japanese descent, 118 KIR alleles in 13 genes.127 The
high diversity of the 16 different KIR genes on chromosome
19q13.4 is promoted by their head-to-tail orientation, which
facilitates the deletion or duplication of KIR genes. KIRs are
categorized into two haplotypes: A, which mainly encodes
inhibitory KIRs, and B, which encodes stimulatory KIRs. The
number of KIR genes per individual varies on different haplotypes
and ranges from six to sixteen genes. As a rule, a particular KIR
gene in an individual will be expressed stochastically in some NK
cells, leading to subsets of NK cells within a person expressing
different combinations of KIR receptors, with a majority not
exceeding two. This stochastic expression increases the diversity
of NK cells, with some NK cell subsets having only inhibitory and

other subsets only stimulatory KIRs.128 KIR2DL4 is present in all
haplotypes and is exceptionally expressed in all individuals. HLA-
G, a non-classical HLA class I molecule, specifically expressed in
extravillous trophoblasts is the only known ligand of KIR2DL4, and
as we will see later, plays a major regulatory role in maternal-fetal
immune tolerance and is also highly expressed in tumors.
An important difference between activating and inhibitory KIRs

is that despite the high homology of their extracellular domains
their binding to MHC I is weaker compared to inhibitory KIRs. KIRs
that transmit inhibitory signaling have longer intracellular
domains containing an immunoreceptor tyrosine-based inhibitory
motifs (ITIMs), which associate with phosphatases like SHP-1. In
contrast, KIRs that transmit activating signaling have a short
intracellular domain containing an immunoreceptor tyrosine-
based activating motif (ITAM) that associates with activating
adapter DAP12 to signal through Syk/ZAP-70 tyrosine kinases. An
exception to this rule is KIR2DL4, which is a long-tailed but
activating KIR that associates with FcεRI-γ instead of DAP12.129

Although KIR2DL4 is defined as an activating KIR, its association
with ligand HLA-G does not lead to more NK cells cytotoxicity but
rather to cytokine secretion130 as do dNK cells. KIR2DL4 expression
at the cell surface is restricted to cytokine-producing CD56bright

and is not detected on CD56dim NK cells surface but interestingly
did so after cell culture in vitro.131 However, KIR2DL4 is also
located intracellularly in the endosomes of CD56dim primary NK

Fig. 2 MHC I and the balance of stimulations and inhibitions dictate rules of engagement with cancer and stressed cells. Cancer and stressed
cells expressing MHC I usually have multiple triggering ligands and can only escape NK cells if the balance of inhibitory signals is higher than
activation. Cancer cells deficient in MHC I are killed through the “missing self” rule and are unlikely to escape NK cells, especially if the
signaling balance favors activation. Unlicensed NK cells cannot kill through the “missing self” rule because they lack KIRS /CD94/NKG2A/B but
are most likely to kill cancer and stressed cells that induce reasonable stimulation of NK cells due to the missing MHC I inhibition. Exhausted
NK cells, usually having a dominance of inhibitory receptors, are less likely to kill cancer and stressed cells
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cells, where it can be activated by soluble HLA-G.132 This
endosomal signaling by KIR2DL4 activates NF-κB and AKT, leading
to IFNγ secretion.133 HLA-G can also be transferred to NK cells via
endocytosis134 and trogocytosis, leading to a state of tolerance
without compromising the antiviral response.135 This induced
state of tolerance could also drive tumor resistance to therapies
and affect the tumor microenvironment.136 KIR2DL4 fulfills its
inhibitory receptor role when bound by HLA-G (soluble,
membrane-bound bound, or trogocytosed). This triggers the
phosphorylation of KIR2DL4, ITIM domain, leading to the
recruitment of SHP-2 and the dephosphorylation of downstream
signaling activating molecules and decreasing NK cell cytotoxicity.
However, due to a positively charged Arginine on its transmem-
brane domain, KIR2DL4 can associate with FcεRI-γ.129 This
association leads to the phosphorylation of the ITAM on FcεRI-γ,
thus allowing NK cells to produce cytokines, including IFNγ, even
though the cytotoxic response is generally suppressed due to the
ITIM in KIR2DL4. The role of inhibitory KIRs is to interpret a “do not
kill me” signal from HLA presenting a self-peptide, while activating
KIRs are to interpret a “kill me” signal from HLA presenting specific
viral peptides137 or open HLA with no peptides.138,139 The
protective role of activating KIRs against certain viral infections
has been reported for KIR3DS1+ NK cells against HIV-1140 and
H1N1 influenza.141 However, activating KIRs could also prolong
inflammation and injury, as in chronic hepatitis,142 and as we will
see later, KIR composition could also affect autoimmunity.

MATURATION AND EDUCATION OF NK CELLS (THE PRE-
2024 VIEW)
The earliest NK progenitor was described in the bone marrow of
mice143; consequently, bone marrow ablation results in NK cell
deficiency. NK cells mature and receive an “education” or “license”
early in the bone marrow (Fig. 3). This process is designed to
increase their reactivity threshold by experiencing inhibitory
signals from self-MHC I. Indeed, the capacity of a future mature
NK cell to respond to stimulation is quantitatively determined by
the strength of inhibitory signals received from MHC I molecules
during NK cell education.144 Uneducated NK cells respond to
inhibitory signals with strong production of phosphatase SHP-1,
leading to their rapid inactivation, while educated, licensed NK
cells have reduced SHP-1 production when encountering these
inhibitory ligands, allowing them to remain activated.145 There-
fore, educated NK cells are more cytolytic, and their maturation
starts from a CD34+ human hematopoietic stem cell or mouse
Sca+, CD117+ to the common lymphoid progenitor, which
expresses IL2Rβ, responds to IL-15,146 and maintains this
expression throughout the maturation stages, branching into an
intermediary natural killer precursor (NKP) committed to devel-
oping into NK lineage which develops first into an immature iNK
cell and then a mature NK cell with a CD56bright phenotype that
upon further maturation becomes CD56dim 147 in humans. In the
mouse, the NKP precursor develops into an immature iNK-a then
an iNK-b stage, which is closer to human CD56bright stage with

Fig. 3 Development and maturation of NK cells. A pre-2024 view. Starting from a CD34+ hematopoietic stem cell in the bone marrow to a
fully functional and mature CD56pos CD16pos NK cell. NK cell development and maturation (left to right axis) is marked by the acquisition of
cytokine receptors responding to IL-15 transcription factors EOMES, T-bet and AhR and the acquisition of inhibitory receptors KIRs and
antibody-mediated cytotoxicity receptor CD16. Due to increased adhesion proteins, NK cells could be released earlier than expected and
migrate to secondary lymphoid organs to continue their varied maturations and education. NK cells released earlier CD56bright KIRNeg and
CD56dim KIRNeg are unlicensed and their proportions in humans and mice are substantial, suggesting an evolutionary advantage to unlicensed
NK cell release from the bone marrow, which is frequent at younger age and subsides to favor fully mature NK cells in older adults
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further maturation by acquisition of Ly49. In humans, this
phylogeny is supported by the longer telomeres found in
CD56bright compared to CD56dim.148,149 Although they are
functionally similar in their interaction with MHC I. There are
significant differences between mouse and human NK cells at the
level of markers, residency, and longevity. For example, human NK
cells can be expanded in vitro for extended periods of time, while
mouse NK cells always die after a few weeks in culture. Similarly,
opposite to humans, mouse NK cells are seldom found in the
lymph nodes and mouse NK do not express CD56. Gradually,
during their development, human NK cells acquire their receptors,
starting with inhibitory CD161, then adhesion molecule CD56,
inhibitory CD94/NKG2A, and activation receptors NKp46 and
NKG2D. Acquisition of inhibitory and activating KIRs and later,
CD16 complete their maturation.150–152 Transcription factor
EOMES plays a role in early NK cell maturation and enhances
CD16 expression, while T-BET controls maturation markers and
induction of KIR expression.153 However, it is essential to note that
maturation and education could be carried out in lymph nodes,
thymus, uterus, liver, and mucosal lymphoid tissues, probably for
cells that drop early of the bone marrow education before the
maturation of CD56bright to CD56dim and the acquisition of CD16
and KIRs. Interestingly, the proportion of CD56bright CD16neg is
higher in fetal tissues,154 and this population also decreases with
age while CD56dim CD16pos increases.155 This suggests that
maturation and education of “dropout” NK cells at the CD56bright

stage and earlier is high at a young age in the bone marrow and is
reduced in the elderly. This might be due to the age-related
decline of the secondary lymphoid sites, such as the thymus156

and lymph nodes.157,158 Possibly, at a younger age, these
secondary sites might be more able to recruit less mature NK
cells and induce them to exit the bone marrow early.
Like the stromal cells of the bone marrow, which provide

necessary cytokines such as IL-15 and IL-7 for NK maturation,159

the stromal cells found in secondary lymphoid sites such as the
spleen can also provide these cytokines.160 However, secondary
lymphoid sites contain other monocyte populations like DCs,
which might provide additional cytokines such as IL-2 and IL-
15.161 Since mouse models have shown that bone marrow
ablation results in NK cell deficiency, it can be assumed that any
NK cell maturing in a secondary lymphoid organ is originally from
the bone marrow regardless of its maturation stage. Indeed, upon
exiting the bone marrow at the earliest NKP stage, these cells can
be found transiting in PB among the CD34+ hematopoietic stem
cell population. Not surprisingly, CD34+ NKP cells in lymph node
highly express surface proteins, CD62L, lymphocyte function-
associated antigen 1 (LFA-1), and α4β7 integrins, allowing cell
migration, high binding, and rolling adhesion.162 It is unclear if NK
cells that exit the bone marrow at early stages can be licensed
elsewhere or if they remain unlicensed without acquiring KIRs.
Both humans and mice present a large population of unlicensed
NK cells without KIRs or Ly49, respectively. In humans, 62% of
CD56 bright NK cells lack KIRs, while 26% of CD56 dim NK cells don’t
express them, suggesting a large population of circulating NK cells
is unlicensed163 and that more CD56bright exit the bone marrow
earlier. Similarly, 50% of NK cells in mice are Ly49 negative and
unlicensed.111

Interleukins IL-12, IL-15, and IL-18 play a significant role in NK
cell maturation and can reeducate unlicensed NK cells to enhance
their functionality and exert stronger responses.164 KIRs acquisi-
tion by unlicensed human KIRNeg that are CD56bright and CD56 dim

NK cells can be obtained after stimulation with IL-15 in the
presence of stromal cells.165 Similarly, de novo expression of KIRs
and NKG2A in unlicensed NK cells can be obtained using IL-2, IL-
15, or IL-12 only.164,166 These observations have an important
impact on immunotherapies using primary NK cells. Moreover, NK
cells infiltrating solid cancers have been reported to be
predominately CD56bright.167 Therefore, it is essential to

understand how these unlicensed NK populations operate
compared to licensed ones and if licensing is required for NK
cells to carry out their functions.
In a tumor environment characterized by reduced MHC I

expression,112,113 the fate of cancer cells facing licensed NK cells is
almost certainly death and will be influenced by the balance
between activators and inhibitors on their surface (Fig. 2). If NK cell
activation by MHC I deficient cancer cells is weak or the balance of
inhibitory signals is high, leading to anergy and exhaustion of NK
cells, then activation by cytokines such as IL-18 and IL-12 may
restore their activation.114 However, licensed NK cells in an MHC I
sufficient environment will be inhibited, especially without
activation or with increased inhibition from cancer cells. This
exact experiment was reported using MHC I deficient cell line
RMA-S and MHC I sufficient RMA cell lines grown subcutaneously
in the same mouse. It showed better control of MHC I deficient
RMA-S tumors.47 This suggests that the MHC I expression could
offer an escape mechanism from licensed NK cells in the absence
of a convincing activation that could override MHC I inhibition.
However, this escape is unlikely with unlicensed NK cells that
don’t express KIRs. Indeed, KIR-deficient unlicensed NK cells are
more efficient than licensed NK cells at killing MHC I sufficient
RMA cells.168 Similarly, the blockade of KIRs enhanced ex-vivo
patient-derived NK cell cytotoxicity against multiple myeloma.169

Therefore, unlicensed NK cells offer an evolutionary advantage
against the narrow NK specialization and broaden the spectrum of
action for NK cells instead of relying on one rule regarding MHC I
status. This is even more obvious in the case of viral infection
against which NK cells are essential, where particularly unlicensed
NK cells offer an edge. Viruses can alter MHC I antigen
presentation in an attempt to escape T-cells.170 MHC I alteration
leading to its downregulation does not escape licensed NK cells.
However, few viruses, such as MCMV, express mimics of MHC I that
bind to Ly49, the equivalent of KIRs in mice, and mediate
repression of NK cell function.171 Immunological synapses initiated
by NK cells when in contact with cancer cells are inhibited by
KIRs.172 Since unlicensed NK cells do not express inhibitory KIRs
but express activating KIRs, the binding by the viral MHC I mimics
to activating KIRs leads to the activation of NK cells, making them
instrumental in resisting MCMV infection. There is an evolutionary
advantage to having polyfunctional populations of licensed and
unlicensed NK cells that can be CD56dim or CD56bright with
numerous phenotypes estimated in the thousands, maturing and
receiving different “educations” in the bone marrow or second
lymphoid organs. This advantage is apparent when facing threats
that use evolution as a mechanism to adapt.

Maturation and education and the new view on the origin of NK
lineages
The Common lymphoid progenitor (CLP) can generate, in addition
to committed NK cells, Innate lymphoid cells173 (ILCs) (Fig. 4).
These are mostly tissue-resident innate immune cells without
cytolytic activity and are subdivided into three groups. The ILC1s
group when stimulated by IL-12, IL-15, and proinflammatory IL-1b
will produce IFNγ, without cytolytic function, termed type 1
immunity, and participate in viral and bacterial infection. ILC2
group function is type 2 immunity and responds to parasites such
as helminths and allergens when stimulated by IL-25, IL-33, and
TSLP. The ILC3 group mediates type 3 immunity in response to
microbes, such as bacteria, by producing, among others,
antimicrobial peptides when stimulated by IL-1b and IL-23. In
mice both ILC1s and NK cells produce IFNγ, are both NK1.1+,
NKp46+, CD3ε− and express transcription factor T-bet.174 Commit-
ment to an ILC progenitor (ILCP) lineage but not NK lineage
requires the expression of transcription factor PLZF.175 However,
ILCP co-expressing PLZF and Inhibitor of DNA binding 2 (ID2)
retain the potential to produce an NK cell lineage suggesting a
common ancestor of ILC1s and NK cells.176 Both ILC1s and NK cells
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express T-Bet. However, ILC1s do not express EOMES, while it is
essential for NK cell development in the bone marrow.177,178 Using
single-cell sequencing, two very recent studies aimed to under-
stand how NK cells that appear after birth, originate and
differentiate from ILC1s group, which are present in fetal life
and beyond. In one study, Liang et al. show the expression of both
PLZF and EOMES to confer both an NK and ILC1s potential and
that NK-committed precursor cells express Eomeshigh 93 but not
PLZF and that the expression of Eomes transcription factor
precludes the development of ILC2 and ILC3 groups. In the other
study, Ding et al.94 identified two NK-committed lineages. One
from an early NK progenitor (ENKP), developing into Ly49H+ NK
cells and an ILCP-derived NK lineage with low expression of
Ly49H. Both studies identify NK-committed lineages in the bone
marrow, which may represent different stages of NK progenitor
development. Eomes expression is, therefore, intrinsic to the NK
phenotype, and the higher Eomes expression is, the closer to the
mature phenotype NK cells are.
In human PB, Vivier et al.41 delineated three major subsets of NK

cells discernible through single-cell transcriptomic analysis. One
subset, called NK2, is CD56bright and CD16neg, along with ID2
expression, and lacks KIRs, suggesting an immature phenotype.
This subset showed markers of tissue residency. The most
abundant subset in the blood, called NK1, is CD56dim CD16pos,
which expresses KIRs, GZMA, GZMB, and PRF1, a phenotype that
suggests maturity. A third subset, termed NK3, is NKG2Chigh,
CD16dim, CD57pos, suggesting further maturation and an adaptive
phenotype. Of note, adaptive NKG2ChighCD57+ cells expand in
humans infected with HCMV.179,180 The study concludes that the
two populations, NK1 and NK3, are originating from ENKPs, and
that NK2 cells originate from ILCPs.

It is unclear whether these three populations exhibit plasticity
and can convert into one another. However, there are reports of
conversion from a CD56dim to CD56bright phenotype under IL-
12.181 Interestingly, TGFβ can convert PB CD16pos into a CD16neg

decidual like NK cells,182 and NK cells exposed to TGFβ or its
relative Activin, acquire a gene signature and phenotype similar to
the less cytotoxic ILCs, becoming unable to control tumor growth
in mice.183–185 This suggests IL-12 and TGFβ1 may be possible
mechanisms for converting NK1 to an NK2-like state or NK2 to an
ILC state. Of the three subsets composing NK1 (NK1A, NK1B, and
NK1C), NK1B appears the most likely to convert to an NK2-like or
decidual phenotype as it has a strong response signature to IL-12,
TGFβ, and IL-10.
The NK1 subset with further maturation leads to the NK3

phenotype, with increased KIRs and high CD57 expression. CD57 is
associated with more experienced and terminally differentiated
NK cells, possibly on the verge of senescence186 with higher
frequency in older age.187 CD57 is also a marker of senescent
T-cells that have short telomeres and low replication poten-
tial.188,189 NK3 population might specialize in highly effective and
adaptive properties with memory-like features if they encounter
an event such as viral infection. In the absence of such an event,
they could become terminally senescent. This antiviral phenotype
is suggested by the gradual increase from NK1 to NK3 of
Granzyme H, which destroys critical adenoviral viral proteins that
inhibit granzyme B, which is also present in NK3.190 Granzyme H
also destroys the La-mediated HCV-IRES translational activity.191

Similarly, the exclusive expression of CCL5 in NK3 suggests
antiviral defenses against Influenza A virus.192 Moreover, IL-32,
which is elevated in NK3, plays a crucial role in responding to
infections caused by viruses like HIV-1 and influenza. Additionally,

Fig. 4 Development and maturation of NK cells. A 2024 view. NK cells originate from two lineages. An early natural killer progenitor (ENKP),
which produces the CD56dim population, and another progenitor deriving from an innate lymphoid progenitor (ILCP), which produces both
CD56bright and also ILCs. Both ENKP and ILCP would originate from a common lymphoid progenitor (CLP). The ENKP derived CD56dim

population matures, after an intermediary stage NKint, into an NK1 subset composed of three subsets: NK1A, NK1B, and NK1C with increased
maturation but differing phenotypes related to response to surface receptors (NK1B), cytokine response and increased cytolytic activity
(NK1C). A later more mature stage NK3 is characterized by increased CD57 expression, suggesting an adaptive phenotype with high NKG2C
and antiviral potential that may lead to clonal expansion of adaptive/memory cells or may lead to senescence if no viral event occurs. The
CD56bright less mature population (NK2) is characterized by enhanced chemotaxis and is unlicensed with no KIRs and no CD16. NK2 subset is
probably the source of dNK cells in pregnancy after migrating to the uterus. NK1B subset’s high response to TGFβ, IL-10, and IL-12 suggests it
may contribute to building dNK populations with the potential to reduce the NK1C subset
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it provides protection against cell death induced by the vesicular
stomatitis virus. Notably, IL-32 exhibits antagonistic effects against
the DNA virus HSV-2 in both epithelial Vero cells and human
umbilical cord endothelial cells, thereby influencing the produc-
tion of HSV-2,193 Finally, NK3 increased NKG2C expression
reinforces the antiviral defense194 and NKG2C as well as ADCC
mediated responses are enhanced by co-stimulatory molecule
CD2195 which is also induced in NK3 subset.
Vivier et al. examined whether any subset is preferentially found

in patients’ tumors and found the proportion of NK2 cells was
increased in most tumors tested. NK2 population was character-
ized by higher CXCR3 expression, in agreement with better
homing into tumors of CXCR3+ NK cells in a CXCL10-dependent
fashion, leading to improved survival.196 However, CXCR2 and
CXCR4 (distinguishing NKint and NK1A, respectively) were
reported to enhance the migration of human primary NK cells
to tumors expressing their ligands.197 NK1B cells high potential to
respond to activation through increased surface receptors,
suggest their potential in immunotherapeutic strategies. However,
the NK1C subset’s pronounced cytoskeletal activity and cell-killing
signature suggest it is the most cytotoxic. Overall, these studies
suggest that an NK phenotype that is optimal for cancer
immunotherapies may be within reach but still awaits further
confirmation. Therefore, the lineage ENKP to NK1 might be the
phase with the highest antitumor activity, while the further
mature state NK3 excels in antiviral defenses. The lineage ILCP to
NK2 appears to be mainly tasked with cytokine production and
immunoregulatory functions like dNK. We can also infer that
NK2 subset which is CD56bright CD16neg and KIRneg is probably the
seed of dNK cells that migrate to decidua in pregnancy, to mature
and gain KIRs without gaining CD16.

NK CELL ACTIVATION MECHANISMS THAT TRIGGER KILLING
NK cells exhibit rapid activation and launch cytotoxic attacks on
stressed, senescent, virus-infected, and cancer cells, bypassing the
need for prior antigen presentation by MHC I. Unlike T and B-cells,
which express specific activating receptors, NK cells express all
activating and inhibitory receptors, creating an intricate and
complicated equilibrium between multiple activating (Fig. 5) and
inhibitory signals (Fig. 6) arising from their interaction with ligands
on target cells with, however, a dominance of inhibitory
receptors.198 It is important to note that except CD16, no other
single activating receptors, including NKp46, NKG2D, 2B4, DNAM-
1 (CD226), or CD2, are sufficient to activate NK cells on their
own.199,200 Additionally, unlike most inhibitory receptors, many
activating receptors, including KIRs, have no proper cytoplasmic
signaling domain and rely on associations with adapter molecules
that have ITAMs, allowing the creation and transmission of
activating signals.

Natural cytotoxicity receptors
Among the most potent activating receptors in NK cells, CD16 is
the only receptor in NK cells that can trigger alone, in
association with the homodimer of adapters CD3ζ or FCRγ, an
effective activation signal mediating antibody-dependent cel-
lular cytotoxicity (ADCC). A process where NK cells destroy
target cells coated with antibodies.201 Other potent activating
receptors for NK cells lacking an activating cytoplasmic tail
include the natural cytotoxicity triggering receptors (NCRs)
(NKp46, NKp30, and NKp44)202 (Fig. 5). However, some NKp44
isoforms contain a cytoplasmic ITIM-like motif.203 NCR ligands
are not expressed in normal cells but are induced in
pathological conditions.204 NKp3066 is critical for NK interactions
with DCs and binds to ligand B7H6 expressed exclusively on
tumor cells,205 but is also transiently expressed by activated
T-cells.95 NKp46 receptor206 was recently found to recognize
externalized calreticulin (ecto-CRT) expressed during ER stress,

virus infection, and senescence.207 NKp46 prevents metasta-
sis208,209 and mediates cytotoxicity against cells that are
otherwise resistant to NK cells through the secretory pathway
and TRAIL.210

Both NKp30 and NKp46 use activating adapters CD3ζ or FCRγ.
NKp44211 interacts with ligand NKp44L,212 and uses homodimers
of activating adapter DAP12.203 NKp44 exists in three isoforms
(NKp44-1, 2, and 3), with the cytoplasmic domain of NKp44-1
containing an ITIM-like domain (EILYHTVA). The expression of
ITIM-bearing NKp44-1 inhibitory isoform has been reported to be
detrimental to the survival of acute myeloid leukemia patients.213

However, its expression during pregnancy in dNK cells214 allows
decidua vascularization, maternal-fetal tolerance, and antiviral
resistance. In this context, trophoblasts expression of NKp44L
proliferating cell nuclear antigen (PCNA)215 and ligation to NKp44
through HLA or exosomes inhibits dNK cells through the ITIM-like
domain, inhibits IFNγ secretion, and reduces their toxicity.
Similarly, three forms were described for NKp30 (A-C) with
different cytoplasmic sequences due to alternative splicing. Forms
A and B induce IFNγ, TNFα, and IL-12B, while form C induces IL-
10.216 Additionally, soluble B7H6 (sB7H6)217 and BAG-6 (sBAG-6)218

downregulate or inhibit NKp30 signaling. sBAG-6 is detectable in
high levels in Chronic lymphocytic leukemia patients at advanced
disease stages. Surprisingly, NK cells were activated when BAG-6
was presented on the surface of exosomes.219 This suggests an
imbalance between soluble and exosomal BAG-6 could promote
CCL evasion. Moreover, NKp30 and NKp44 engagement with
cancer cells can induce NK cell death via the upregulation of Fas
Ligand in certain tumors.220 Surprisingly, overexpression of NKp44
in NK-92 was shown to inhibit activation after binding of NKp44 to
PCNA, which is widely overexpressed in tumor cells.221,222

NCR activation and the ensuing killing largely depend on Src
and Syk kinase activities.223,224 The engagement of NCRs with their
cognate ligands will induce associations with adapter CD3ζ, FCRγ
or DAP12 whose ITAMs are phosphorylated by many redundant
members of Src kinase family: Lck, Fyn, Lyn, Fgr, Src and Yes. The
Phosphorylated ITAMs will then attract and activate the tyrosine
kinases Syk and ZAP70 (Fig. 5). These kinases will then
phosphorylate other adapters, such as LAT (linker for activation
of T cells or P36). LAT is tyrosine phosphorylated upon stimulation
of NK cells through FcγRIII receptors following contact with target
cells to recruit more downstream adapters and signaling
complexes, such as phospholipase C (PLCγ), phosphatidyl-
inositol-3-OH kinase (PI3K), and guanine nucleotide exchange
factor VAV1/2/3. Under PLCγ, Ca2+ influx increases, and PI3K will
recruit p85, leading to phosphorylation of AKT, and VAV1, which
promotes GTPase Rac1-dependent actin cytoskeleton rearrange-
ment, thereby activating the MAPK signaling pathway, leading to
the Pac1–Mek–Erk cascade signaling pathway. Since AKT is a
major downstream target of PI3K,225 a parallel activation pathway
is triggered by the PI3K/AKT/mTOR pathway. All these events
culminate in granule polarization, calcium influx, cytokine
production, synapse formation, and clustering of receptors.
CD59 is another activating receptor physically associated with
NKp46 and NKp30. Its activation leads to tyrosine phosphorylation
of CD3ζ chains associated with these NCRs.226

NKG2D receptor
Another pivotal receptor involved in NK cell tumor and
senescence surveillance, a member of the NKG2 family of
receptors, is NKG2D. In humans, due to the lack of an activation
domain in its cytoplasmic tail, NKG2D associates with adapter
DAP10227 after binding to ligand UL16-binding proteins (ULBP)
1–6228 and to ligands MICA and MICB,69 whose expression is
regulated by the heat shock stress pathway229 or by DNA damage
induced by chemotherapy and radiotherapy.230 NKG2D ligands
are absent in normal tissues but widely expressed in many
cancers, including colorectal and ovarian cancers.231,232
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Experimental evidence shows that the inducible expression of
surface NKG2D ligands in tumors effectively controlled their
initiation or growth233 and that mice deficient in NKG2D could not
control tumors.234 However, just as it is common for other
receptors such as NCRs, NKG2D ligands are also shed in soluble
forms: sMICA and sULBP2, which have inhibitory properties.235

This inhibition is exerted even in the presence of membrane
NKG2D ligands. Soluble NKG2D ligands shedding by tumors is
metalloproteinases-dependent236 and could lead to high levels of
NKG2D ligands in the sera and the tumor microenvironment to
the point that NKG2D ligands inhibition with antibodies could
enhance CTLA-4 and PD-1 immune checkpoint blockades.237,238

Soluble sMICA and sULBP2 levels in the serum of patients with oral
squamous cell carcinoma, melanoma, and NSCL correlated with
disease progression.239–241

NKG2D activation is triggered upon ligand engagement leading
to assembly with adapter DAP10 and phosphorylation of its motif
Tyr-ILe-Asn-Met at Tyrosine followed by recruitment of PI3K,

growth factor receptor-bound protein 2 (Grb2), VAV1, SLP-76,
GTPase Rac1-dependent actin cytoskeleton rearrangement,
thereby leading like in the case of NCRs to MAPK signaling
pathway activation and Pak1–Mek–Erk cascade signaling pathway.
This culminates in granule polarization, calcium influx, cytokine
production, synapse formation, and clustering of receptors.
Similarly to NCR activation, a parallel activation pathway triggered
by PI3K is the AKT/mTOR pathway activation.

The SLAM family of receptors
Other critical receptors initiating NK cell responses upon binding
to specific ligands on target cells are receptors of the signaling
lymphocytic activation molecule family (SLAM) that possess one or
more immunoreceptor tyrosine-based switch motif (ITSM) in their
cytoplasmic tails. These are 2B4 (CD244), which is activated by
ligand CD48,242,243 self-ligand NK-T-B-Antigen (NTB-A),244 and self-
ligand CRACC.245 Upon ITSM phosphorylation, following ligand
binding, either an activating or an inhibitory signal can be

Fig. 5 Dynamics of activation signaling in NK cells in contact with cancer and stressed cells. Activation signaling from Slam family 2B4, NTB-A,
and CRACC. Upon ITSM phosphorylation, following ligand binding, an activation signal can be generated depending on the recruitment of
EAT-2 and SLAM-associated protein (SAP), thereby blocking the binding site of lipid phosphatases SHP-1 and SHP-2. SAP recruits the Src-
family kinase Fyn, leading to downstream PLCγ1, PLCγ2, and PI3K signaling. 2B4 can also recruit after phosphorylation, another adapter
protein 3BP2, which activates VAV1 and ERK pathway upon phosphorylation. DNAM-1 engaged with ligand PVR or nectin-2 is tyrosine
phosphorylated by Src kinases. This phosphorylation enables the binding of adapter Grb2 to DNAM-1, leading to VAV1, PI3K, SLP-76, and
PLCγ1 activation, thereby increasing calcium fluxes and activating ERK and AKT pathways leading to FOXO1 degradation. DNAM-1 activating
signal has a synergetic effect with LFA-1, to which it can be associated physically to induce tyrosine kinase Fyn to phosphorylate DNAM-1.
NKG2D associates with adapter DAP10 after binding to ligand UL16-binding proteins (ULBP)1–6 and to ligands MICA and MICB, whose
expression is regulated by the heat shock stress pathway or by DNA damage induced by chemotherapy and radiotherapy. NKG2D activation is
triggered upon ligand engagement, leading to assembly with adapter DAP10 and phosphorylation of its motif followed by recruitment of
PI3K, growth factor receptor-bound protein 2 (Grb2), VAV1, SLP-76, GTPase Rac1-dependent actin cytoskeleton rearrangement, thereby
leading to MAPK signaling pathway activation and Pak1–Mek–Erk cascade signaling pathway. This culminates in granule polarization, calcium
influx, cytokine production, synapse formation, and clustering of receptors. A parallel activation pathway triggered by PI3K is the AKT/mTOR
pathway activation. NCR activation and killing depend on Src and Syk kinase activities. Engagement of NCRs with their cognate ligands
induces associations with adapter CD3ζ, FCRγ or DAP12 whose ITAMs are phosphorylated by members of the Src kinase family: Lck, Fyn, Lyn,
Fgr, Src, and Yes. The phosphorylated ITAMs will then attract and activate the tyrosine kinases Syk and ZAP70. These kinases will then
phosphorylate other adapters, such as LAT, to recruit more downstream adapters and signaling complexes, such as PLCγ and PI3K, VAV1/2/3.
Under PLCγ, Ca2+ influx increases, and PI3K will recruit p85, leading to phosphorylation of AKT and VAV1, which promotes GTPase Rac1-
dependent actin cytoskeleton rearrangement, thereby activating the MAPK signaling pathway, leading to the Pac1–Mek–Erk cascade signaling
pathway. The PI3K/AKT/mTOR pathway triggers a parallel activation pathway. CD16 is the only receptor in NK cells that can trigger alone and
with the homodimer of adapters CD3ζ or FCRγ, an effective activation signal mediating antibody-dependent cellular cytotoxicity (ADCC). Only
CD16 activation can lead to phosphorylation of both tyrosines (Y128) and tyrosine (Y113) on SLP-76. This double phosphorylation allows the
binding of two VAV1 and more robust downstream signaling. Complexed Crk is required for CD16 signaling and the movement of
microclusters of CD16 ligands on the lipid bilayer
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generated depending on the recruitment of EAT-2244 and SLAM-
associated protein (SAP), thereby blocking the binding site of lipid
phosphatases SHP-1246 and SHP-2,247 which generally inhibit NK
effector functions and cytokine release. SAP is also able to recruit
the Src-family kinase Fyn.248 CRACC, however, can associate only
with EAT-2 but not SAP, leading to an effective downstream
PLCγ1, PLCγ2, and PI3K signaling.249 2B4 can also recruit after
phosphorylation, another adapter protein 3BP2, which upon
phosphorylation, activates VAV1 and the ERK pathway.250

DNAM-1 receptor
DNAM-1(CD226)63 is a crucial co-stimulatory receptor for NK cells
with a prominent role in anti-tumor and anti-viral surveillance.
DNAM-1 cytoplasmic tail contains an ITT-like motif (YVNY), which
upon DNAM-1 engagement with ligand PVR or nectin-2 is tyrosine
phosphorylated by Src kinases. This phosphorylation enables the
binding of adapter Grb2 to DNAM-1, leading to the activation of
VAV-1, PI3K, SLP-76, and PLCγ1, thereby increasing calcium fluxes
and activating ERK and AKT pathways.251 DNAM-1 activating signal
has a synergetic effect with LFA-1, to which it can be associated
physically, to induce tyrosine kinase Fyn to phosphorylate
CD226.252 Association with LFA-1 is important for DNAM-1
clustering in the immune synapse,253 after LFA-1 interaction with
PTA-1, which, in turn, associates with actin-binding protein 4.1G, to
associates with membrane-associated guanylate kinase homolog
protein leading to clustering and transport of DNAM-1 to lipid
rafts.254 DNAM-1 does not have an exclusive ligand and must

compete for PVR (CD155) and nectin-2 (CD112)78 against other
inhibitory receptors, including TIGIT, TACTILE (CD96), and PVRIG
(CD112R). The dynamics of this fierce competition will be discussed
later in some detail. However, by virtue of DNAM-1 having a higher
affinity to PVR than to nectin-2, it is safe to assume that NK
cytotoxicity will largely depend on PVR expression level, and
indeed PVR is widely expressed in human cancers.255–257 Other
important activating receptors include NKp80, which binds to
activation-induced C-type lectin (AICL), CD28 which binds to CD80
and CD86, CD2 which binds to CD48 (also a partner of 2B4) and
CD58; the KIRs with short cytoplasmic domains, KIR-2DS and KIR-
3DS, and C-type lectin receptors CD94/NKG2C, and NKG2E/H/2F.

THE SYNERGY BETWEEN ACTIVATING SIGNALS
2B4 activation can synergize with NKG2D or DNAM-1 at the level
of PLC-γ and ERK phosphorylation (Fig. 5). This synergy was shown
to be required to overcome the inhibitory signaling by CD94-
NKG2A binding to HLA-E that controls VAV1 phosphorylation and
its downstream signaling, PLCγ2.258 It was later discovered that
SLP-76 needed to be phosphorylated once by NKG2D or DNAM-1
in one tyrosine (Y128) and a separate phosphorylation by 2B4 at
tyrosine (Y113). Only CD16 activation can lead to phosphorylation
of both tyrosines on SLP-76. This double phosphorylation allows
the binding of two VAV1 molecules259 with more robust down-
stream signaling. An interesting aspect of NKG2D and DNAM-1
signaling is that the activation of NKG2D can block DNAM-1

Fig. 6 Dynamics of inhibitory signaling to block NK cell activation. Inhibitory receptors, including MHC class I-specific inhibitory receptors,
target VAV1 for dephosphorylation by Src homology 2 domain-containing protein tyrosine phosphatase 1 SHP1. Another potent inhibitory
relay is Crk dissociation mediated by c-Abl phosphorylation of Crk, which in its active form (non-phosphorylated) is associated with the
complexes c-Cbl/Crk/C3G and p130CAS/Crk/C3G. C-Abl phosphorylation of Crk causes its dissociation from these complexes. Inhibitory
signaling by CD94-NKG2A binding to HLA-E uses the E3 ubiquitin ligase c-Cbl to enhance the degradation of phosphorylated VAV1 and its
downstream signaling PLCg2. Receptor tyrosine kinases TAM receptors (Tyro3, Axl, and Mertk) are expressed by multiple immune cells,
including NK cells. TAM receptors phosphorylate ubiquitin ligase Cbl-b and dampen NK-cell activation signaling by promoting the
degradation of LAT1, thus blocking VAV1-dependent signaling and, blocking, among others, glutamine transport and the fueling of the
tricarboxylic cycle. DNAM-1 inhibition occurs when PD-1 recruits SHP2 to inhibit DNAM-1 phosphorylation via its intracellular domain
signaling. TIGIT induces inhibitory signaling, while on the cancer cell side, PVR interaction with ligands TIGIT or DNAM-1 leads to tyrosine
phosphorylation of the PVR’s ITIM domain by Src kinases and recruitment of SHP-2 followed by dephosphorylation of focal adhesion kinase
and paxillin thereby reducing adhesion, increasing motility, survival, and proliferation of cancer cells. PD-1, CTLA-4, and TIGIT all recruit SHP-1
and SHP-2 leading to VAV1, PIP3 and SLP76 dephosphorylation. TIM-3 inhibition leads to Bat-3 release, which inhibits Lck and Zap70 activation
and promotes with P300 the transcription of antiproliferative genes. LAG3 inhibition blocks STAT5 activation and reduces mitochondrial mass.
Lair-1 inhibition by tumor collagen leads to SHP-1 and SHP-2 docking, VAV1 dephosphorylation and inactivation of NK cells
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activation through the induction of TIGIT expression and the
inhibition of DNAM-1 signaling.260 This phenomenon was
explained by the reduction in Pyk2 and Erk1/2 phosphorylation
upon DNAM-1 engagement. However, AKT and VAV1 activation
remained unaffected.260 This observation is substantiated by
another group that reported a lack of synergistic effects when co-
expressing both DNAM-1 and NKG2D in NK-92.261 However, the
fact that VAV1 and AKT activations were not affected or, more
accurately, not increased suggests that the early event of DNAM-1
activation did not proceed. Another recently described mechan-
ism of DNAM-1 inhibition occurs when PD-1, via its intracellular
domain signaling, recruits SHP-2 to inhibit DNAM-1 phosphoryla-
tion262 (Fig. 6). Since TIGIT is induced by NKG2D activation260 and
since PD-1 and TIGIT were found to be co-expressed in CD8 T-cells
of NSLCC patients,262 it is possible that both TIGIT and PD-1
induced by NKG2D activation, conspire together to inhibit DNAM-
1 signaling in NK cells. The inability of DNAM-1 to synergize with
NKG2D signaling and NK cell cytotoxicity suggests an overlap or a
rheostat mechanism accepting an “either-or” pathway, which
could be designed to avoid exhaustion when two pathways could
hyperactivate NK cells. Indeed, co-activator 2B4, which synergizes
with NKG2D, can also synergize with DNAM-1, but not simulta-
neously.258,259 These findings have profound implications for
cancer immunotherapy aiming to exploit NKG2D and DNAM-1 and
suggest that it is better to combine each one of them with other
modalities, such as immune checkpoints, especially in the case of
loss of expression of one of them.262–264

Many synergetic activating signaling in NK cells, such as NKG2D,
DNAM-1, 2B4, NTB-A, and CRACC, converge on the phosphoryla-
tion of VAV1. And inhibitory receptors, including MHC I-specific
inhibitory receptors, target VAV1 for dephosphorylation by SHP-
1.265 Another potent inhibitory relay is Crk dissociation mediated
by c-Abl phosphorylation of Crk, which in its active form (non-
phosphorylated) is associated with the complexes c-Cbl/Crk/C3G
and p130CAS/Crk/C3G. c-Abl phosphorylation of Crk causes its
dissociation from these complexes (Fig. 6). Complexed Crk is
required for CD16 signaling and the movement of microclusters of
CD16 ligands on the lipid bilayer.266 Additionally, the inhibitory
signaling by CD94-NKG2A binding to HLA-E uses the E3 ubiquitin
ligase c-Cbl to enhance the degradation of phosphorylated VAV1
and its downstream signaling PLCγ2.258 Therefore, Cbl-b inhibition
affecting Vav1 can only be overcome by synergistic signaling of
multiple activating receptors.258 Receptor tyrosine kinases TAM
receptors (Tyro3, Axl, and Mertk) are expressed by multiple
immune cells, including NK cells. TAM receptors phosphorylate
ubiquitin ligase Cbl-b and dampen NK-cell activation signaling by
promoting the degradation of (Large Amino-acid Transporter 1)
LAT1, thus blocking VAV1-dependent signaling267 and blocking,
among others, glutamine transport and the fueling of the
tricarboxylic cycle. It is accepted that VAV1 might be the point
of convergence for various activating and inhibitory pathways,
offering a rational and strategic switch to turn off NK activation
and prevent the downstream activation cascade.268 Therefore,
preventing VAV1 deactivation could provide a potent means to
activate NK cells, with, however, the potential risk of higher
toxicity to normal tissues.

THE INTERPLAY OF INHIBITORY AND ACTIVATING SIGNALS:
THE TIGIT/PVR/DNAM-1 AXIS
Most successful cancer immunotherapies are achieved using
activating cytokines and activating receptors or their activation
domains. This suggests that additional activation signals can be
integrated into preexisting ones to strengthen them and reduce
existing inhibitions. At the cell surface, activating and inhibitory
receptors interact with their cognate ligands. Often, these ligands
are unique to an activator or an inhibitory receptor. However,
multiple instances exist where both the activating and inhibitory

receptors compete for the same ligand, often to the benefit of the
inhibitory receptor signaling. For example, the competition for
HLA-E, the most ancient of the six functional HLA class I genes, by
the inhibitory receptor CD94/NKG2A (Kd= 0.8 μM) and activating
receptor CD94/NKG2C (Kd= 5.2 μM).269 Similarly, the competition
for CD80 between immune checkpoint CTLA-4 (Kd= 0.46 μM) and
CD28 (Kd= 4 μM)270 or for CD86 (CD86–CD28 ~ 20 μM and
CD86–CTLA-4 ~ 2 μM). Another more complex and striking exam-
ple is illustrated by immune checkpoint TIGIT and activating
receptor DNAM-1, which compete for PVR (CD155) and nectin2
(CD112). In this race, DNAM-1 loses as TIGIT has a higher affinity
for PVR (Kd= 1–3 nM) than DNAM-1 (Kd= 119 nM).271 TIGIT
extends its inhibitory dominance by interacting with other
inhibitory ligands, Nectin2, Nectin3,272 and Nectin4.273 In addition
to TIGIT, CD112R(PVRIG) also competes with DNAM-1 for
Nectin2,274 while CD96275 and KIR2DL5276 compete for PVR
against DNAM-1.
DNAM-1 does not have an exclusive ligand for its activation,

thus giving competing inhibitory receptors a clear advantage. This
example illustrates the roadblocks for efficient NK cell activation at
the level of competing extracellular domains for ligands. However,
an additional layer of complexity is added by the fact that TIGIT
will disrupt DNAM-1 homodimer assembly at the cell membrane,
preventing its activation.277 This thug of war continues at the level
of intracellular domains signaling with PVR/TGIT signaling block-
ing AKT phosphorylation, thus stabilizing transcription factor
FOXO1, which inhibits NK and T-cell activation and enhances
immunosuppressive functions of T-regulatory cells.278 The exact
opposite is produced by PVR/DNAM-1 signaling, which phosphor-
ylates AKT and destabilizes FOXO1 by phosphorylation, promoting
its nuclear exclusion and degradation, thus enhancing NK and T
cell activation.279

It is safe to assume that if these signals are present in the same
cell, the inhibitory PVR/TIGIT axis will probably dominate the PVR/
DNAM-1 axis. Another recently described mechanism of DNAM-1
inhibition occurs when PD-1, via its intracellular domain signaling,
recruits SHP-2 to inhibit DNAM-1 phosphorylation.262 This finding
is critical since PD-1 and TIGIT were found to be co-expressed in
CD8 T-cells of NSLCC patients, suggesting the need for dual
inhibition of PD-1 and TIGIT immune checkpoints.262 In addition,
several tumors develop strategies to downregulate activators,
including DNAM-1 expression in NK cells.280–282 Overall, inhibition
and activation signals are regulated first through fierce competi-
tion for ligands with different intrinsic affinities at the cell surface.
However, the axis PVR/TIGIT signaling between NK cells and
cancer cells is bidirectional. On the NK cell side, TIGIT induces
inhibitory signaling. In contrast, on the cancer cell side, PVR
interaction with ligands TIGIT or DNAM leads to tyrosine
phosphorylation of the PVR’s ITIM domain by Src kinases and
recruitment of SHP-2 followed by dephosphorylation of focal
adhesion kinase and paxillin thereby reducing adhesion, increas-
ing motility, survival, and proliferation of cancer cells.283–285

Therefore, it is conceivable that if exhausted NK cells cannot kill
cancer cells, they could make them stronger through stimulation
of PVR or other immune checkpoints, especially with the ability of
some NK cell subsets to support angiogenesis.286

KINETICS OF KILLING
The rapid killing of cancer and virus-infected cells suggests that all
effectors are available in NK cells and ready for immediate
delivery. This killing largely depends on Src and Syk kinase
activities.223,224 However, whether NK cells can kill multiple cancer
cells at once or over time will depend on the presence of
activating signals and sustaining cytokines. In a six-h assay, NK-
92MI cell line, which produces a membrane-bound IL-2, can kill
ten cancer cells serially.287 The authors noted that the first kill was
slower than subsequent ones and that if cells are denser, the
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following killings are executed more rapidly, suggesting possible
simultaneous killings. Short distances between target cells might
encourage disengagement with the killed cell and engagement
with a new target. We reported in NK-92 expressing IL-2 tethered
to its receptor IL2Rβ a replenishment of granzyme and perforin
stores after 3 h of exposure to PC-3 cells, suggesting serial
killing.288 Cytotoxic T-cells have been reported to polarize lytic
granules toward different cells and interact with multiple targets
simultaneously.289,290 Another study found that human primary
NK can kill four cancer cells serially but cannot engage
simultaneously with two or more cancer cells.291 This suggests
that primary NK cells activated by IL-2 cannot multitask and must
disengage from a killed cell to kill a second one. This might be due
to a missing component that allows multiple polarizations. The
same study also reported increased killing by ADCC using
Rituximab. However, this may be due to the efficient synapse
formation initiated by antibody Fc binding. Without a novel cell
target nearby, NK cells can remain attached to the dead cancer
cells, which could deepen its activation via prolonged contact of
activating receptors with their ligand in a manner already
observed in the case of T-cells.290

MIGRATION PATTERNS
Release of activated NK cells from the bone marrow following
inflammation or infection allows NK cells to migrate to affected
tissues to kill abnormal cells and create inflammatory conditions in
preparation for an adaptive immune response.292 The first step in
the extravasation of NK cells into tissues requires tethering to
endothelial cells, and this is accomplished by LFA-1, expressed on
CD56bright and CD56dim subsets, and L-selectin (CD62L), which is
only expressed in CD56bright subset.293 Therefore, L-selectin is a
significant determinant in CD56bright delocalization from PB
towards tissues. CD56bright cells migration in tissues is decelerated
by downregulation of L-selectin by IL-2, IL-15, or TGFβ1 and
accelerated by increased L-selectin expression under IL-12, IL-10,
or IFNα.293 Chemokine ligands play a role in this relay by exerting
attraction functions by binding to G protein‐coupled chemokine
receptors. They play a significant role in immune cell recruitment
into tissues, including tumors, by attracting cells expressing their
cognate chemokine receptor. Depending on their resting or
activated states, NK cells express heterogeneously the four groups
of chemokine receptors for ligands CXC, CC, CX3C, and C. NK cells
express receptors CXCR1, CXCR2, and CX3CR1.294–298 In the bone
marrow, specific chemokines, such as CCL3, which binds to
receptors CCR1, CCR4, and CCR5, regulate NK cell localization and
induce migration to PB. In contrast, CXCL12 induces the
accumulation of NK cells expressing high CXCR4.299 Breast cancer
cells and tumor-associated stromal cells express high levels of
CXCL12 to stimulate their proliferation and invasiveness in
autocrine and paracrine modes.300 Tumors also secrete chemo-
kines ligands to attract pro-tumorigenic cells such as myeloid-
derived suppressor cells (MDSCs),301 T-regulatory cells,302 Tumor-
associated macrophages,303 and tumor-associated neutrophils.304

Monocyte chemoattractant CCL2 (MCP-1), which interacts with
CCR2, plays a prominent role in tumor angiogenesis, tumor cell
survival, and the recruitment of immunosuppressive cells that will
challenge immune cells, including NK cells in the tumor
microenvironment.305 These pro-tumorigenic cells will be
recruited through the CCR2, CXCR1 and CXCR2 axes. These cells
create a tumor microenvironment that suppresses immune cell
invasion of the tumor cells’ chemokine ligand secretion, which will
directly enhance the growth and survival of cancer cells in the
tumor microenvironment and promote metastasis.306 However,
chemokines play a dual role and could promote anti-tumorigenic
effects by attracting NK and T-cells expressing chemokine
receptors CXCR3 and CXCR4. For example, overexpression of
CXCR4 in NK cells improved tumor eradication of U87-MG

glioblastoma secreting CXCL12.307 Migration of human primary
NK cells to CXCR1, CXCR2, and CXCR4 ligands was reported.197

However, CXCR4 is also overexpressed in more than 23 human
cancers and contributes to tumor growth, angiogenesis, and
metastasis. This overexpression would naturally capture CXCL12 at
the surface of cancer cells, an effect that would distort the
gradient that attracts typically immune cells to tumors.308

Studies showed that CXCR3+ NK cells infiltrate tumors in a
CXCL10-dependent fashion, leading to improved survival,196 while
NK cells from CXCR3−/− mice show impaired tumor infiltration.309

Similarly, inhibiting pro-tumorigenic chemokine signaling
enhances the potential of anti-tumorigenic chemokines, as
exemplified by the knockdown of transcription factor Snail,
reducing the expression of CXCR2 ligands (CXCL1 and CXCL2),
and MDSCs attraction to the tumor via CXCR2, leading to
increased T-cell and NK cell numbers in tumors.310

CD56bright and CD56dim primary NK cells express CXCR1, CXCR3,
and CXCR4.311 However, it is clear that PB NK cells probably have
different subsets with different chemokine phenotypes and
migration abilities and that there are differences between
individuals in these populations.311 For example, the CD56bright

CD16+ NK cells were the predominant population responding to
IL-8 (CXCR1,2) and fractalkine (CX3CR1),197 while others reported
CXCR1 and CXCR2 to be highly expressed by cytotoxic CD56dim NK
cells.296,312

In addition to chemokine receptors, NK cells express other
chemotactic receptors, such as ChemR23313 and CCRL2,314 which,
by attraction to chemerin, recruit NK cells to colocalize with DCs in
inflammatory sites. ChemR23 is also expressed on macrophages,
adipocytes, and endothelial cells,315–317 suggesting they all
colocalize with NK cells.
Human NK cells activated by IL-2 express SIPR1,4 and 5, a

G-coupled receptor proteins chemoattracted to bioactive lipid
Sphingosine 1-phosphate (S1P).318,319 Receptor SIPR5 is expressed
by NK and DCs, suggesting their colocalization.320 In inflamed
tissues, S1P levels increase to promote the retention of immune
cells.321 NK cells were also shown to directly recruit conventional
type-1 dendritic cells (cDC1), which are critical for antitumor
immunity through the secretion of CCL5 and XCL1.322 Senescent
cells in aging tissues secrete senescence-associated secretory
phenotype (SASP) proteins, which are inflammatory cytokines with
chemokines GM-CSF, CCL2, 3, 4, and 5, CXCL1, 9, 10, and 11, which
attract immune cells including NK cells, macrophages, neutrophils,
and DCs. These immune cells will remove senescent cells but may
also kill neighboring cancer cells in the same inflammatory
environment. Chemokines binding to chemokine receptors is
followed by internalization and degradation, which reduces
homing. This could be alleviated by upregulating chemokine
receptors.323–325

NK CELLS ROLE IN AUTOIMMUNITY
Two major subsets of NK cells can be distinguished. CD56bright

CD16negative, which secrete cytokines, and CD56Dim CD16positive,
which are highly cytotoxic. However, NK cells that secrete IL-10
and possess immunosuppressive functions could form a third
group with immunoregulatory functions. Autoimmune diseases
arise from autoreactive T-cells and autoantibody-producing B-cells
(plasma cells) against self-antigens. Autoreactive T-cells that
escape thymic deletion326,327 are present in most healthy humans,
and 55–75% of the repertoire generated by random immunoglo-
bulin G gene rearrangement during early B cell development in
the bone marrow is autoreactive and removed by two check-
points.328 In the case of T-cells, central to autoimmune diseases is
the role played by DCs,329 which migrate to lymphoid organs to
present pathogen-derived antigens to antigen-specific T-cells. NK
cells, particularly CD56bright NK cells, can, by production of GM-CSF
and CD154, induce CD14+ monocyte differentiation into DCs in RA
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and psoriatic arthritis but not osteoarthritis OA patients.330

Therefore, RA NK cells provide a local milieu for monocytes to
differentiate into DCs and sustain the disease. This could also be
exacerbated by IFNγ secretion, which promotes Th1 polarization
of CD4+ T. Similarly, the interaction of NK cells with DCs induces
IFNγ, especially from the CD56bright subset, which expresses
surface molecules CD62L, CCR7, and CXCR3.331 This suggests this
subset may colocalize with DCs in secondary organs and other
inflamed tissues. However, several studies showed that although
NK cells can increase in RA, they are less cytotoxic and have
decreased IFNγ production.332,333 Since these NK cells also
produce pro-inflammatory cytokine GM-CSF, it has been proposed
that NK contribution to inflammation in RA might be due to the
attraction of neutrophils, thereby upregulating pro-inflammatory
CXCL2, CCL3, and LTb4, that sustain immune cell recruitment into
inflamed joints.334 The involvement of NK cells in other
autoimmune diseases remains contentious. For example, in
multiple sclerosis, it is thought that NK cells fail to remove
myelin-reactive T-cells and fail to suppress autologous
CD4+ T cells compared to healthy controls.335,336 In Systemic
Lupus Erythematosus (SLE), notable reductions in peripheral NK
cell number and cytotoxicity were observed.337,338 However, the
role of NK in developing SLE has been established through a
bidirectional interaction between NK and peripheral DCs. NK cells
augment IFNα production by activated DCs,339 in turn, IFNα
increases NK cell production of IFNγ,340 thereby establishing
highly inflammatory conditions. Incidentally, SLE patients have
higher levels of IL-15, which is also conducive to increased
inflammation.341 In Type 1 diabetes mellitus (T1DM), which is due
to the destruction of pancreatic β cells by CD8 T-cells, a systematic
reduction in the number and cytotoxicity of peripheral NK cells
was observed.342,343 It is noteworthy that NK cells are also
impaired in type 2 diabetes, suggesting their reduced activity in
both diabetes types is mainly related to glucose levels and that
the prevalence of infectious diseases and malignancy in type-2
diabetes patients may be associated with NK cell impairment.344

However, NK cells that infiltrate inflamed islet cells345 might have
a sinister role in the development of T1DM by killing virus-infected
pancreatic β cells,346 which reduce their HLA-1 expression to
escape T-cells but become targets of NK cells. The subsequent β
cell killing by NK cells could lead to the exposure of autoantigens
recognized by CD8 T cells.
We have mentioned earlier that KIRs are categorized into two

haplotypes: A, which mainly encodes inhibitory KIRs, and B, which
encodes stimulatory KIRs. A study examining the role of the KIR
haplotype on NK cells reported that KIR A1 haplotypes were
positively associated with T1D in the subset of patients without
the high T1D risk HLA genotype.347 In these patients, inhibitory KIR
A2 haplotypes were over-transmitted, and the stimulatory KIR B
haplotypes were under-transmitted, suggesting haplotypes A are
predisposing and stimulatory haplotypes B confer protection.
From our perspective, we interpret this result as due to the
restricted ability of NK cells with inhibitory KIR A2 haplotype to kill
or suppress overactive CD8 T-cells thus promoting T1D.

NK CELLS PRO-ANGIOGENIC ROLE IN TUMORS AND
PREGNANCY
Angiogenesis is supported by transcription factor HIF-1α, which is
induced under hypoxia to promote the expression of pro-
angiogenic factors to stimulate blood vessel growth through the
HIF-1α/VEGF axis.348 Hypoxia dramatically affects NK cells, as
demonstrated in vitro and in cancer patients. One week after
being exposed to hypoxia (1%O2), peripheral NK cells were
enriched in CD56brightCD16Neg phenotype and became capable of
secreting VEGFA in the media that could increase HUVEC cell’s
angiogenic capacity.286 A clear demonstration of the NK cell’s
conversion to a pro-angiogenic phenotype was shown in renal cell

cancer patients who had peripheral NK cells with a CD56pos

CD16pos phenotype, but NK cells infiltrating renal cancer with a
CD56pos CD16Neg phenotype, like dNK, with enrichment in genes
of the hypoxia-inducible factor HIF-1α pathway.349 To understand
the role of these NK cells in the tumors, it is important to learn
from another conversion of NK cells to a pro-angiogenic
phenotype observed in another normal physiological phenom-
enon, pregnancy. NK cells CD56brightCD16Neg, also called dNK,
secrete an array of pro-angiogenic factors that regulate tropho-
blasts invasion and actively produce IL-8 and interferon-inducible
protein-10 chemokines, CXCL10. dNK cells are anergic non-
cytotoxic despite expressing NK activating receptors, including
NKp44, NKp46, NKp30, and NKG2D.350–352 However, dNK cells
express high levels of GNLY and are capable of killing virus
infected stromal cells of the mother after activation,353 but do not
kill the bacteria infected trophoblasts. Instead, they deliver GNLY
to specifically kill the bacteria without harming the trophoblast19

or damaging the maternal-fetus interface.
dNK emerge from immature uterine NK cells originally from PB

and which upon stimulation with IL-15, acquire KIRs and
mature.354 The implantation of the embryo is an inflammatory
process of the uterus primed by ovarian hormones to secrete IL-8,
IL-15, IL-6, CXCL10, and CXCL11.355 These cytokines and chemo-
kines attract decidual immune cells of which 70% are uterine NK
cells. Survival of the embryo with its semiallogenic genetic stock in
the uterus will depend on the tolerance of maternal immune cells.
dNK cells at the maternal–fetal interface express inhibitory
receptors such as KIR2DL1, KIR2DL2, L3, and Leukocyte
immunoglobulin-like receptor subfamily B member 1 (LILRB1),
which recognizes HLA-G to inhibit NK-cell cytotoxicity132 and
inhibitory receptors CD94/NKG2A which interact with and HLA-
E.356 Indeed, NKG2A genetic ablation in female mice caused
suboptimal maternal vascular remodeling in pregnancy, reduced
fetal weight, and abnormal brain development resembling the
human syndrome pre-eclampsia.357 At the onset of pregnancy, the
high expression of KIR2D in dNK and the upregulation of HLA-C in
the stromal cells of the endometrium, which transform into
decidua, are crucial. At the maternal-fetal interface, NK cells
represent the majority of immune resident cells as they expand in
uterus spiral arteries. Therefore, dNK cells have a productive role in
pregnancy by regulating key developmental processes, including
angiogenesis at the human fetal-maternal interface.358 dNK cells
also appear to control oxygen levels by regulating uterine spiral
artery development. Indeed, the absence of NK at the fetal-
maternal interface increases hypoxia.359 Therefore, NK cells
maintain an oxygen and nutrient-rich environment, influence
trophoblasts, and promote the development of the invasive
trophoblast lineage necessary for optimal blood supply between
mother and fetus through the mother KIRs and fetal HLA
interactions.360,361 Going back to tumor physiology, strikingly,
the deletion of HIF-1α in NK cells reduced their recruitment into
tumors, while it did not affect that of CD4 or CD8 T-cells. The lack
of NK cell recruitment led to a reduction in tumor size through
non-productive angiogenesis. This later is characterized by
increased hypoxia and a high density of immature hemorrhagic
blood vessels,362 suggesting that NK cells are required to mature
blood vessels during the remodeling of tumor vasculature as in
pregnancy. Krzywinska et al. showed that HIF-1α KO-NK cells
prefer to reside in well-oxygenated areas, thus ignoring hypoxic
regions that need their presence. Most importantly, HIF-1α was
found to be required for the cytotoxicity of NK cells.362 The
authors concluded that NK cells will balance excessive angiogenic
tumor efforts by providing the angiostatic soluble VEGFR1
(sVEGFR1) to control VEGF bioavailability in an HIF-1α-dependent
manner. While the role of HIF-1α in tumor angiogenesis is
established in the above study and is in line with the events
during pregnancy, the conclusions regarding NK cytolytic func-
tions might depend on the tumor model used in the study.
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Another study showed that HIF-1α deletion unleashed NK cells
cytolytic activity, but only against MHC I deficient tumors, and that
this required IL-18.363 Single-cell analysis showed that HIF-1α
inhibits IL-18 signaling, thus reducing NFkb signaling and IFNγ,
reducing NK cell infiltration in tumors. Indeed, deletion of HIF-1α
allows IL-18 secreted by myeloid cells to activate NK cells against
MHC I deficient tumors. Of note, hypoxia also induces IL-18 to
promote angiogenesis364 and it might be needed for the initial
phase of gestation, but its upregulation in the decidua of patients
was associated with recurrent miscarriages.365 IL-18 role in tumor
hypoxia and pregnancy is complicated by its pleiotropic effect and
its ability to induce more than 1000 genes in NK cells, as well as,
the partial overlap with IL-2, IL-12, and IL-15 functions.366

Additionally, we have seen earlier that IL-18 and IL-12 can reverse
the anergy of NK cells in MHC I deficient tumors,114 suggesting
this cytokine is critical for NK-mediated immunotherapy. Another
intriguing effect of IL-18 is its ability to convert CD56dim to a
helper CD56bright CD16Neg phenotype,367 which is potentially
more pro-angiogenic. In summary, the presence of dNK cells at
the maternal-fetal interface is driven by CD56bright migration in
response to cytokines and chemokines and probably hypoxia,
sensed through HIF-1α. Interaction with trophoblasts triggers a
pro-angiogenic dNK phenotype that helps in building spiral
arteries, creates better and balanced oxygenation and brings more
nutrients to the interface. Trophoblasts through HLA-E and HLA-G,
represses dNK cytolytic activity and further promotes their pro-
angiogenic role. Reduced dNK at the interface has been reported
in pre-eclampsia,368 suggesting that the dNK to trophoblasts ratio
is crucial for balanced angiogenesis. In this regard an intriguing
question regarding the role of HIF-1α in initiating or maintaining
this dynamic must be studied through the conditional knockout of
HIF-1α, before and after pregnancy is established. Knockout of
HIF-1α would prevent dNK cells migration to the interface. These
investigations could confirm if HIF-1α KO dNK’s inability to
correctly sense hypoxia is an important factor in pre-eclampsia
or even parturition. The same animal model could also evaluate
the impact of hypoxia sensing by NK cells in tumor initiation,
metastasis, and angiogenesis. HLA-G found in trophoblasts of the
placenta, plays a crucial role in maternal-fetal tolerance, acting as
an immune checkpoint.369 Expression of HLA-F and HLA-G on
migrating trophoblast support their invasion and interactions with
uterine natural killer cells.370 HLA-G is also highly expressed in a
variety of tumors and is involved in their immune escape, which is
mediated by the interaction with immune cells, including NK
cells.371 In tumors, HLA-G interacts with LILRB1/2 and KIR2DL4 to
suppress cytotoxic T-cells and NK cells and promotes the
expansion of immunosuppressive cells, Treg cells and MDSCs,
creating an immunosuppressive microenvironment that aids
tumor cells in evading the immune system. Moreover, KIR2DL4
expression is enhanced by IFNγ,372 suggesting a role in immune
response regulation. Therefore, for a common purpose, KIR2DL4,
by interacting with HLA-G, participates in pacifying the maternal-
fetus interface and allows tumors to escape immunity.

NK CELLS IN SENESCENCE AND DEVELOPING CANCERS
Most established cancers have already escaped surveillance by
immune cells, including NK cells. There is an emergent consensus
around the decidualization of NK cells in the tumor microenviron-
ment as in the maternal/fetal interface and even of some
circulating NK cells in cancer patients, leading to anergy and
even subservient status in tumors. The CD56bright, CD16dim/neg NK
cells could become pro-angiogenic, possibly hijacked and
reprogrammed to benefit the tumor progression.373,374 Peripheral
NK cells, which are mostly CD56Dim CD16positive, are likely to
intercept transiting metastatic cells. However, the less active
CD56BrightCD16dim/neg NK cells that localize in tissues are
intrinsically less likely to achieve that. In a human of 73 kg, the

total number of NK cells in the bone marrow where they are
continuously produced is 4 × 109. The blood and skin each harbor
2 × 109, while a large majority (30%) of 5 × 109 NK cells are found
in the liver, and only 1 × 109 can be found in the lymphatic system
or the lungs.375 The most likely initial mechanism a developing
cancer cell uses in the very initial stage would be the most potent
inhibitory tool against NK cells, the MHC I complex. Interestingly,
senescence, which shares many precursor states with tumorigen-
esis, such as accumulation of DNA damage or defective signaling
and which is now proposed as an enabling hallmark of cancers,376

also leads to overexpression of MHC I.377,378 This could further
inhibit the already subdued CD56Bright, CD16dim/neg NK cells.
Therefore, it stands to reason that because of the large population
of senescent cells accumulating in aging tissues,379,380 there will
be more inhibitory forces against NK cell populations. This is
compounded in the elderly by the cross-the-board decline of
immune cell functions that normally support NK cells by providing
cytokines. Notably, macrophages’ reduction in numbers and
bactericidal capacity,381 the decreased antigen presentation
function in DC cells,382 the dwindling numbers of B-cells and
their capacity to properly produce a diverse immunoglobulin
repertoire,383 as well as the reduced stemness of hematopoietic
stem cells, producing less lymphocytes such as T-cells.384,385 All
these events may lead to reduced clearance of senescent cells and
their accumulation in aging tissues and age-associated dis-
eases.386 Senescent cells overexpress MHC I and their HLA-E
expression consistently increases in aging human skin and
melanocytic nevi compared to young skin. Blocking HLA-E
interaction with ligand NKG2A on NK and CD8 T-cells allowed
the killing of senescent cells by NK cells.387 A clear link between
senescent and cancer cells was demonstrated by the reduction of
spontaneous tumorigenesis and cancer-related death after the
depletion of senescent cells in aging mice.388 An immediate
question arises regarding why senescent cells accumulate in the
elderly but not in the young. This could originate from the
increased number of cells entering senescence in the elderly
compared to the young. However, a study in mice showed that
the expression of MHC I ligands and KIRs on NK cells also increases
in the elderly,389 suggesting that NK cells also become less
responsive to senescent cells. Another study in elderly humans
showed a reduction of NKp30 and NKp46 expression in NK cells,
suggesting reduced interactions with DCs and functions,390 with
increased KIR expression in the CD56bright population.155 However,
the same study found evidence of some NK cells subset
compensating for these deficiencies. For example, CD56dim

population increased and CD94 expression declined in the elderly
in both NK subsets. Nonetheless, more evidence of reduced NK
activity in the elderly is suggested by their reduced response to IL-
2 and impaired cytokine signaling.391 It is plausible that
senescence’s increased rate at older age is only due to the lack
of immune cell reactivity, including from NK cells, leading to
reduced clearance of senescent cells. This could lead, in turn to a
critical mass of proinflammatory senescent cells with a SASP,
which produce inflammatory cytokines like IL-1α/β, IL-6, IL-8,
TNFα, chemokines, DNA, microRNAs, proteases such as matrix
metalloproteinases, wound healing factors PDGF-AA, endothelial
vascular factor VEGF and senescence promoting factor IGFBP4/
7,392–395 extracellular vesicles and exosomes containing cytokines
such IL-15396 or Heat shock proteins.397 Additionally, SASP from
senescent cells can induce the senescence of neighboring cells,398

leading to a vicious cycle of senescent cell accumulation.
However, this conversion could also transform neighboring cancer
cells into senescent non-replicating cells.399 This effect is thought
to be protective, reducing cancer and providing an evolutionary
explanation of the benefit of senescent cells. However, as
mentioned earlier, depleting senescent cells in animal models
reduced cancer frequency.388 Senescent cells overexpress decoy
receptor 2, allowing them to escape the FasL death pathway. The
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mechanism through which NK cells remove senescent cells
involves granular exocytosis, mostly through overexpressed
ligands MICA/B, ULBP1-3, PVR, and nectin-2 binding to activating
receptors NKG2D and DNAM-1.400–402 Additionally, senescent cells
in aging tissues secrete SASP with chemokines GM-CSF, CCL2, 3, 4,
and 5, CXCL1, 9, 10, and 11, which attract immune cells, including
NK cells.

CROSSTALK WITH OTHER IMMUNE CELLS
NK cells increase inflammation after activation by tumor and virus-
infected cells by secreting inflammatory cytokines such as
IFNγ,22,23 which activates macrophages and neutrophils,24 T-
cells,25 and B-cells.26 However, cancer cells treated with IFNγ
become resistant to NK cells, suggesting that NK cells secretion of
IFNγ may be designed to involve other immune cells27 to remedy
their deficiency, suggesting a redundancy mechanism.

Macrophages
Macrophages derive from circulating monocytes and reside in
tissues where they adopt different phenotypes, such as unpolar-
ized M0 and two polarized states (M1), which is anti-tumor and
pro-inflammatory, and (M2) which is pro-tumor and anti-
inflammatory. Due to their abundance in tissues, they are most

likely the first to discover sites of infections by viruses, bacteria, and
parasites. Overactivated or infected macrophages will be killed by
bystander-activated NK cells.83 Initially, NK cells, in direct contact
with these macrophages, increase their degranulation marker
CD69 and IFNγ expression403 and collaborate closely with
macrophages to control the infection and inflammation (Fig. 7a).
NK cells and IFNγ are required and sufficient for the polarization of
tumor-associated macrophages (TAMs) to M1, which protect
against tumor growth even in the absence of adaptive immu-
nity.404 Depending on the infectious agent, NK cells will express
specific receptors to specific ligands, the involved macrophages
express. Macrophages stimulated or infected by cytomegalovirus
will stimulate co-activating receptors 2B4, NKp46, and DNAM-1 on
NK cells.405,406 At the same time, stimulation by Streptococcus
pneumonia induces clearance through activation of NKp46407 and
stimulation by bacterial moieties such as lipopolysaccharides (LPS),
an outer membrane component of gram-negative bacteria, as well
as Mycobacterium tuberculosis, Sendai or Influenza A virus,408

induce the ligands, retinoic acid early inducible-1 (RAE-1),409

ULBP1-3,405 MICA, and MICB,410 which will activate the NKG2D
receptor. The developing tumor microenvironment, with its
increased inflammation, acidic metabolism, hypoxia, and chemo-
kines, attracts monocytes to seed the tumor with what is to
become TAMs. Monocyte chemoattractant protein CCL2 (MCP-1),

Fig. 7 Crosstalk with other immune cells. a NK cells secreted IFNγ can help polarize macrophages (M0, M2) to antitumor M1 phenotype.
Macrophages reciprocate by IL-12 and IL-15 trans-presentation to increase IFNγ production by NK. Virus-infected Macrophages are killed by
NK cells, and anergic NK cells may be reactivated by macrophages IL-12 and IL-18. b Neutrophils enhance tumor defense by triggering TRAIL-
mediated apoptosis. They release IL-12 to boost IFNγ and perforin in NK cells but also downregulate NK cell receptors via PD-L1 upregulation
induced by G-CSF. To support neutrophil function, NK cells reciprocate by secreting IFNγ, GM-CSF, and TNFα. However, neutrophils can inhibit
NK cells through NET-mediated NKp46 cleavage, while tumor-associated neutrophils suppress immune responses via ARG1 release and ROS
production. c MDSCs and Tregs suppress NK cell function through direct contact or secretion of TGFβ1 and IL-2 depletion, alongside IL-10
production. MDSCs also employ TIGIT to inhibit NK cells, reducing CD3ζ and impairing NK cell receptors. They can also hinder NK cells
through direct interaction with NKp30. However, MDSCs can induce IFNγ release in NK cells via NKG2D activation by RAE-1 ligand. MDSCs
promote the trans-differentiation of naive CD4+ T cells into Foxp3+ Tregs. Additionally, MDSCs and Tregs convert extracellular ATP and ADP to
cAMP and adenosine by CD39 and CD73, inhibiting NK cell antitumor responses via A2AR binding. d T-cell production of IL-2 activates NK
cells, which, by the production of IFNγ, activates DCs. DCs reciprocate by IL-12 to reinforce IFNγ production and stimulate CD8 T-cells. NK cells
producing GM-CSF and CD154 can induce CD14+ monocyte differentiation into DCs. TAF production of PGE2 and IDO can exhaust NK cells,
thereby blocking their mutual activation with DCs and subsequent CD8 T-cell activation
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Table 1. List of clinical trials using CAR-NK, TCR-NK, and BICAR-NK

Target Trial identifier NK source Disease Phase Study Status First
Posted

Clinical trials using CAR-engineered NK cell therapy in malignant tumors

CD5 NCT05110742 Cord blood R/R hematological malignancy I/II Recruiting 2021

CD7 NCT02742727 NK-92 CD7+ R/R leukemia and lymphoma I/II Unknown 2016

5T4 NCT05194709 Not disclosed Advanced solid tumors I Recruiting 2022

BCMA NCT05182073 iPSC MM I Recruiting 2022

NCT06242249 Not disclosed R/R MM I/II Not yet recruiting 2024

NCT05008536 Cord blood R/R MM I Unknown 2021

NCT05652530 Healthy donor R/R MM I Recruiting 2022

NCT03940833 NK-92 R/R MM I/II Unknown 2019

NCT06045091 Allogenic NK R/R MM/ Plasma cell leukemia I Recruiting 2023

CD123 NCT06006403 Not disclosed AML/blastic plasmacytoid dendritic cell
neoplasm/relapse leukemia or leukemia

I/II Recruiting 2023

NCT05574608 Allogenic NK R/R AML I Recruiting 2023

NCT06201247 Healthy donor R/R AML I Recruiting 2024

CD19 NCT05020678 PB-NK B-cell malignancies I Recruiting 2021

NCT05654038 Allogenic NK B-Cell LL/Lymphoma I/II Recruiting 2022

NCT06334991 NK-92 R/R NHL I Not yet recruiting 2024

NCT04887012 Haploidentical
donor

R/R B-cell NHL I Unknown 2021

NCT01974479 Haploidentical
donor

B-cell ALL I Suspended 2013

NCT05336409 iPSC R/R CD19+ B-Cell malignancies I Recruiting 2022

NCT05739227 Allogenic NK ALL/B-cell lymphoma/CLL I Recruiting 2023

NCT04639739 Not disclosed R/R B-cell NHL I Unknown 2020

NCT05673447 Allogenic NK Diffuse large B cell lymphoma I Recruiting 2023

NCT05472558 Cord blood B-cell NHL I Recruiting 2022

NCT04887012 Haploidentical
donor

B-cell NHL I Unknown 2021

NCT05336409 iPSC R/R CD19+ B-Cell malignancies/NHL I Recruiting 2022

NCT05563545 Not disclosed ALL I Completed 2022

NCT05410041 Not disclosed ALL/CLL/NHL I Unknown 2022

NCT05645601 Allogenic NK R/R B-cell hematologic malignancies I Recruiting 2022

NCT06464861 Cord blood R/R B cell lymphoma I Not yet recruiting 2024

NCT03056339 Cord blood B-lymphoid malignancies I/II Completed: Phase I
Interim results reported
202090

Phase 1/2 results
reported 2024579

2017

NCT05618925 NK-92 R/R NHL I Recruiting 2022

NCT04796675 Cord blood B-cell lymphoid malignancies I Unknown 2021

NCT04796688 Not disclosed ALL/CLL and B-cell lymphoma I Recruiting 2021

NCT05379647 Not disclosed R/R B-cell ALL I Recruiting 2022

NCT03690310 iPSC R/R B-Cell lymphoma I Recruiting 2018

NCT03824951 iPSC R/R B-Cell lymphoma I Recruiting 2019

NCT01974479 Haploidentical
donor

B-cell ALL I Suspended 2013

NCT00995137 Haploidentical
donor

R/R ALL I Completed 2009

NCT06206902 Not disclosed NHL I Recruiting 2024

NCT02892695 NK-92 CD19+ leukemia/ lymphoma I/II Unknown 2016

NCT05020015 Not disclosed R/R B-cell NHL II Not yet recruiting 2021

NCT04245722 iPSC R/R B-NHL/CLL I Recruiting
Interim trial results
2021583

2020

CD22 NCT03692767 iPSC R/R B-Cell lymphoma I Unknown 2018
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Table 1. continued

Target Trial identifier NK source Disease Phase Study Status First
Posted

CD33 NCT05008575 Not disclosed AML I Unknown 2021

NCT02944162 NK-92 AML I/II Unknown 2016

NCT05665075 Allogeneic NK AML I Recruiting 2022

CD70 NCT05092451 Cord blood R/R Hematological malignances I/II Recruiting 2021

NCT05703854 Cord blood Renal cancer/ mesothelioma/
osteosarcoma

I/II Recruiting 2023

Claudin18.2 NCT06464965 Cord blood Gastric cancer/pancreas adenocarcinoma I Not yet recruiting 2024

Claudin6 NCT05410717 Autologous PB-NK CLDN6+ advanced solid tumors I Recruiting 2022

CLL1 NCT06307054 Patient or healthy
donor

R/R AML I Recruiting 2024

NCT06027853 iPSC AML I Recruiting 2023

DLL3 NCT05507593 Not disclosed Extensive stage SCLC I Recruiting 2022

HER-2 NCT04319757 Not disclosed Advanced or metastatic HER2+ solid
tumors

I Recruiting 2020

NCT03383978 NK-92 Recurrent HER2+ glioblastoma I Recruiting 2017

Mesothelin ChiCTR2100048100 Autologous Refractory epithelial ovarian carcinoma 0 Recruiting 2021

NCT03692637 iPSC Epithelial ovarian cancer I Unknown 2018

MUC1 NCT02839954 Not disclosed R/R MUC1+ solid tumors I/II Unknown 2016

NKG2D ligands NCT05528341 NK-92 R/R solid tumors I Recruiting 2022

NCT05247957 Cord blood R/R AML NA Terminated 2022

NCT03415100 PB-NK Metastic solid tumors I Unknown
Interim results reported
2019584

2018

NCT06478459 Not disclosed Non-resectable pancreatic cancer I Not yet recruiting 2024

NCT05776355 Not disclosed Platinum-resistant recurrent ovarian
cancer

NA Recruiting 2023

NCT05213195 Not disclosed Refractory metastatic colorectal cancer I Recruiting 2022

NCT06379451 Not disclosed MM I Not yet recruiting 2024

NCT04623944 Allogeneic NK Refractory MDS and AML I Not yet recruiting 2020

NCT05734898 Not disclosed R/R AML NA Recruiting 2023

PSMA NCT03692663 iPSC Castration-resistant prostate cancer I Not yet recruiting 2018

TAA (Not
disclosed)

NCT05856643 Not disclosed Ovarian epithelial carcinoma I Not yet recruiting 2023

NCT05686720 Not disclosed Advanced triple negative breast cancer I Not yet recruiting 2023

NCT05845502 Not disclosed Advanced hepatocellular carcinoma NA Not yet recruiting 2023

TROP2 NCT06454890 Not disclosed NSCLC I/II Not yet recruiting 2024

NCT06358430 Cord blood Colorectal cancer/MRD I Not yet recruiting 2024

NCT05922930 Cord blood Pancreatic cancer/ovarian cancer/
adenocarcinoma

I/II Recruiting 2023

NCT06066424 Cord blood Solid tumors I Recruiting 2023

PD-L1 NCT04847466 NK-92 Gastroesophageal Junction (GEJ) Cancers/
advanced HNSCC

II Recruiting 2021

NCT06239220 NK-92 Recurrent and metastatic HNSCC II Recruiting 2024

NCT04390399 NK-92 Pancreatic cancer II Recruiting 2020

ROBO1 NCT03940820 Not disclosed Solid tumor I/II Unknown 2019

CD19/CD22 NCT03824964 iPSC Refractory B-Cell Lymphoma I Unknown 2019

CD33/CLL1 NCT05215015 Not disclosed AML I Unknown 2022

ChiCTR2100047084 Not disclosed R/R AML I Recruiting 2021

NCT05987696 iPSC AML/MRD I Not yet recruiting 2023

CD33/DLL3 NCT06367673 iPSC AML I Recruiting 2024

CD19/70 NCT05667155 Cord blood R/R B-cell NHL I Recruiting 2022

NCT05842707 Cord blood R/R B-cell NHL I/II Recruiting 2023

CD33/TIM3 ChiCTR2100043081 Cord blood AML 0 Recruiting 2021

MICA/B NCT06342986 iPSC Gynecologic cancer/ovarian cancer/
fallopian tube cancer/primary peritoneal
cavity cancer

I Not yet recruiting 2024
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which interacts with CCR2, plays a prominent role in this
recruitment.305 Recruited monocytes are either polarized into M1
macrophages characterized by IL-12high IL-23high IL-10low and have
phagocytic and antitumor activity, or M2, which are IL-12low IL-
23low IL-10high and TGFβ1high with no phagocytic activity and
secrete TGFβ1 to inhibit NK cells anti-tumor activity.411 However,
these two states are interchangeable, depending on the balance
between immunosuppression and immunostimulation.412 For
example, stimulation by LPS can revert M0 and M2 macrophages
to an M1 phenotype, leading to NK cell activation.83 This activation
could help restore anergic NK activity by cytokines such as IL-18
and IL-12.114 Similarly, IL-15 trans presented by M1 macrophages
after contact with bacterial moieties leads to strong NK cell
activation.413 Virus-infected Macrophages are killed by NK cells. In
patients with severe COVID-19, a surge in many proinflammatory
cytokines leads to acute respiratory disease syndrome originating
from macrophage-activation syndrome. In these patients, the
number of NK cells was dramatically reduced, and their activation
by K562 leukemia was impaired compared to healthy controls.
Additionally, these patients had very low levels of IL-12, IL-15, and
IL-21 needed to activate NK cells. These findings suggest that in
severe COVID-19 patients, NK cells are highly exhausted and fail to
kill virus-infected macrophages that produce proinflammatory
cytokines.91 To evaluate the efficacy of engineered allogenic cord
blood NK cells, clinical trial NCT04324996 (Table 1) is evaluating
NKG2D-ACE2 CAR-NK targeting the S protein of SARS-CoV-2 and
NKG2DL on the surface of infected cells with ACE2 and NKG2D,
respectively.

Neutrophils
Neutrophils are required for NK cell development in mice and
humans,414 and patients with chronic neutropenia have increased
frequencies of CD56bright NK cells and lack mature CD56dim NK
cells.415 Neutrophils have an anti-tumor effect mediated by TNF-
related apoptosis-inducing ligand (TRAIL), which can induce
apoptosis in leukemic cells416 (Fig. 7b). Additionally, neutrophils
release IL-12, crucial for NK cells’ enhanced IFNγ and perforin
production.417 However, in tumor-bearing animals, neutrophils
downregulated chemokine receptor CCR1, NKp46, and NKG2D
expression in NK cells through direct contact with NK cells,
weakening their tumor infiltration and responsiveness.418 This
immunosuppression was mediated by neutrophils’ increased PD-
L1 expression, induced by G-CSF, the regulator of neutrophils’
generation and differentiation, and the STAT3 signaling. Since NK
cells also produce pro-inflammatory cytokine GM-CSF, they might
attract neutrophils, thereby upregulating pro-inflammatory CXCL2,
CCL3, and LTb4, which sustain immune cell recruitment into
inflamed tissues.334 It is unclear whether neutrophils have a
beneficial role in NK cell’s antitumor activity. Still, the fact that
their numbers are increased in cancer patients304 and that
neutrophils are a critical component of the inflammatory process,
which is now accepted as part of tumorigenesis,419 suggests that
neutrophils may be mostly immunosuppressive forces in tumors,
promoting angiogenesis, extracellular matrix remodeling, metas-
tasis, and immunosuppression.420 By secretion of IFNγ, GM-CSF,
and TNFα, NK cells can enhance neutrophil survival, activa-
tion,421,422 and the formation of Neutrophils Extracellular Traps

Table 1. continued

Target Trial identifier NK source Disease Phase Study Status First
Posted

CLL1 NCT06027853 iPSC AML I Not yet recruiting 2023

Clinical trials using TCR-engineered NK cell therapy in malignant tumors

PRAME NCT06383572 Cord blood Myeloid malignancies I/II Recruiting 2024

NY-ESO-1 NCT06083883 Healthy donor Synovialsarcoma/ myxoid/round cell
Liposarcoma

I/II Suspended 2023

Clinical trials using Bi-CAR-engineered NK cell therapy in malignant tumors

CD33/FLT3 NCT06325748 Healthy donor AML/MDS/CD33+and or FLT3+
Hematological Malignancies

I Recruiting 2024

CD30/CD16A NCT04074746 Cord blood R/R CD30+HL and NHL I/II Not yet recruiting 2019

ROBO1 NCT03941457 Not disclosed Pancreatic cancer I/II Recruiting 2019

ROBO1 NCT03931720 Not disclosed Malignant Tumor I/II Recruiting 2019

Clinical trials using CAR-engineered NK cell therapy in Autoimmune Diseases or COVID19

CD19 NCT06464679 Not disclosed Autoimmune diseases I Not yet recruiting 2024

NCT06318533 Not disclosed Autoimmune diseases I Recruiting 2024

NCT06208280 Not disclosed Autoimmune diseases I Recruiting 2024

NCT06468683 Not disclosed Lupus erythematosis I Not yet recruiting 2024

NCT06377228 Not disclosed Refractory lupus nephritis I Not yet recruiting 2024

NCT06421701 Not disclosed SLE I Not yet recruiting 2024

NCT06255028 Not disclosed SLE I Not yet recruiting 2024

NCT06010472 Not disclosed SLE I Recruiting 2023

NCT06337474 Not disclosed Thrombocytopenia Alloimmune I Not yet recruiting 2024

NCT06469190 Not disclosed R/R Immune Nephropathy I Not yet recruiting 2024

NKG2D ligands NCT04324996 Cord blood COVID-19 I/II Unknown 2020

ALL acute lymphoblastic leukemia, AML acute myeloid leukemia, BCMA B cell maturation antigen, CAR chimeric antigen receptor, CLL chronic lymphocytic
leukemia, CR complete remission, CRS cytokine-release syndrome, HLA human leukocyte antigen, hnCD16 high-affinity non-cleavable CD16, HNSCC head and
neck squamous cell carcinoma, iPSC induced pluripotent stem cell, MDS myelodysplastic syndrome, MRD minimal residual disease, MICA/B MHC class I chain-
related protein A and B, NHL non-Hodgkin lymphoma, NK natural killer, NSCLC non-small cell lung cancer, ORR objective response rate, PB peripheral blood,
PSMA prostate specific membrane antigen, ROBO1 roundabout homolog 1, R/R relapsed or refractory, SCLC small cell lung cancer, SLE systemic lupus
erythematosus, 5T4 oncofetal trophoblast glycoprotein, TCR T-cell receptor, COVID-19 Coronavirus disease 2019, TIM3 T-cell immunoglobulin and mucin
domain 3
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(NET).423 However, neutrophils can inhibit NK cells through NKp46
cleavage by NETs enriched in cathepsin G.424 Tumor Neutrophils
are the primary source of Arginase I (ARGI),425 which they store in
granules. ARG1 depletion of L-Arginine by hydrolysis to
L-ornithine and urea profoundly suppresses T-cell immune
responses.426 Finally, neutrophils produce reactive oxygen species
(ROS) such as H2O2, O2

–, OH·, and HOCl, which reduce NK survival
and cytotoxicity.427 Therefore, NK cells and neutrophils can
modulate each other.

Myeloid-derived stem cells (MDSCs) and Tregs
These cells mediate NK cell function suppression by direct contact
or secretion of TGFβ1428–430 and IL-2 depletion,431 respectively.
However, both produce immunosuppressive IL-10. MDSCs could
also suppress NK cells via the inhibitory receptor TIGIT (Fig. 7c), an
effect abrogated by TIGIT blockade.432 Additionally, NK exposed to
MDSCs have reduced CD3ζ, with impaired natural cytotoxicity
receptors NKp46, NKp30, and CD16.433 MDSCs can also inhibit NK
cells by direct interaction with NKp30.434 However, MDSCs were
reported to stimulate NK cells to release IFN-γ by activating
NKG2D by MDSCs ligand RAE-1.435 Retinoids and TGFβ produced
by MDSC promote the trans-differentiation of naive CD4+ T cells
into Foxp3+ Tregs.436 Interestingly, MDSCs and Tregs can convert
extracellular ATP and ADP in the TME to cAMP by CD39 and,
subsequently, CD73 dephosphorylates AMP to adenosine, which
by binding to adenosine receptor (A2AR) on NK cells inhibits their
antitumor response.437

Collaboration, suppression, and murder of T-cells
IL-2 released by activated T cells plays a role in NK cell activation
and IFNγ production.438,439 Conversely, T helper cell type 1 (Th1)
polarization requires IFNγ provided by activated NK cells.440 The
same IFN-γ secreted by NK cells will also stimulate IL-12 production
by DCs, which activates CD8+ T anti-tumor activity441 (Fig. 7d).
Similarly, activation of DCs by Cetuximab-activated NK cells
enhanced antigen-specific T-cell immune responses in patients
with head and neck cancer.442 In another mutual collaboration, NK
cells expressing the OX40 ligand and B7 will induce the proliferation
of T-cells.443 Therefore, the presence of both NK and T-cells in
tumors will be synergistic and beneficial, as shown in colorectal
cancer patients where NK cells and CD8+ T cell infiltration is
associated with prolonged patient survival.444 NK cells ability to
constitutively secrete TGFβ128 may reduce inflammation and inhibit
T-cell cytotoxicity and proliferation,29 allowing tissue repair.30

Additionally, NK cells secretion of immunosuppressive IL-10 in early
response to systemic but not to local infection,32,33 indirectly limits
T-cell activation by blocking DCs secretion of IL-12 and production
of factors involved in antigen presentation34 and T-cell anti-viral
response,35 thus promoting T-cell exhaustion36 and reducing
immune-mediated damage to tissues. The involvement of NK cells
in directly dampening T-cell activity by cytokines (IL-10, TGFβ1) and
indirectly by blocking IL-12 cytokine secretion by DCs through
NKp30 has now been extended to the direct kill of activated T-cells
that express B7-H6.95 This finding also applies to CAR-CD19-T cells,
which, upon knockout of their B7-H6, escape being killed and
expand more. Concurrently to B7-H6-induced expression on
activated T-cells, Kilian et al, observed downregulation of HLA-E
and C-type lectin domain family 2 member D, perhaps further
enhancing T-cells killing by NK cells. It is interesting to note that NK
cells also kill immature DCs (see below) through NKp30 recognition
and that this kill is prevented in mature DCs by enhanced
expression of HLA-E.

Dendritic cells
NK cells enhance DCs maturation, IL-12 production, and priming
of CD4(+) T-cell proliferation and IFNγ secretion445 (Fig. 7d).
Immature DCs are killed by a subset of NK cells lacking KIRs446 and
through signals mediated by NKp30,76 whereas mature DCs are

protected from NK lysis by upregulation of MHC I molecules,447

HLA-E in particular.446 This DCs selection is important for the
downstream development of adaptive immunity. CD56bright NK
cells producing GM-CSF and CD154 can induce CD14+ monocyte
differentiation into DCs, in RA and psoriatic arthritis patients.330

Therefore, NK cells promote monocyte differentiation into DC to
sustain the disease. NK cells expression of ChemR23313 and
CCRL2,314 which by attraction to chemerin recruit NK to colocalize
with Chem23-expressing DCs in inflammatory sites. ChemR23 is
also expressed on macrophages, adipocytes, and endothelial
cells,315–317 suggesting they all colocalize with NK cells. As
mentioned earlier, human NK cells activated by IL-2 express
SIPR1,4 and 5, a G-coupled receptor protein chemoattracted to
bioactive lipid S1P.318,319 Receptor SIPR5 expression by NK and
DCs suggests their colocalization.320 Similarly, the induction of
IFNγ from CD56bright subset interaction with DCs induces surface
molecules CD62L, CCR7, and CXCR3331 in NK cells, thus increasing
their potential to colocalize with DCs.

Tumor-associated fibroblasts (TAFs)
TAFs are heterogeneous populations derived from various cell
types, including normal fibroblasts, smooth muscle cells, pericytes,
and tumor epithelial cells transformed by the epithelial-
mesenchymal transition. This heterogeneity creates a complex
matrix in the tumor environment mainly focused on tissue
remodeling by producing MMPs, VEGFA, and FAP. It also produces
tumor-promoting factors, including FGF2, IGF, and HGF, and
immunosuppressive factors TGFβ, PGE2, and IDO, as well as factors
promoting inflammation, like chemokines CCL2, CXC, CXCL12,
CXCL8, and IL-6. The concept that tumor-promoting inflammation
by cancer cells and by the associated tumor microenvironment can
support cancer progression is a well-established hallmark of
cancer.376 TAFs production of inflammatory mediators Prostaglan-
din E2 (PGE2) and Indoleamine 2,3-dioxygenase (IDO) can suppress
NK cells.448 PGE2, a significant product of cyclooxygenases,
suppresses NK cell function by signaling through PGE2 receptors
Ep(1-4),449–451 with Ep4 being the most potent at inhibiting IFNγ
production.452 Additionally, tumor-derived PGE2 signaling through
EP2 and EP4 receptors increases T-reg cell activity in lung
cancer,453 further antagonizing NK cells. Similarly, PGE2 impairs
the NK cell and DCs interactions, reducing IL-12 secretion by DCs
and CD4 T-cell polarization.454 Tumor PGE2 was also reported to
inhibit chemokine receptors on cDC cells, preventing their
attraction by CCL5 and XCL1 secreted by NK cells.322 IDO
metabolizes Tryptophan to L-kynurenine, which inhibits the
upregulation of NKp46 and NKG2D under IL-2 stimulation.
Therefore, IDO depletes tryptophan and starves, particularly T-
cells,455 thus disrupting the cooperation between NK and T-cells,
inhibiting CD4 and CD8 T-cells,456 and NK cell cytotoxicity.457

Knockdown of IDO in cancer cells enhanced their sensitivity to NK
cells in vitro and promoted their accumulation in the tumors.458

Platelets
NK cells are essential for controlling metastasis. However, this task
might be impeded by platelets, which are small non-nucleated
fragments of megakaryocytes that aggregate with fibrin deposits
on cancer cells’ surface in a process miming coagulation.459

Additionally, aggregated platelets could transfer MHC I to MHC
I-deficient cancer cells, thereby interfering with the missing self-
recognition by NK cells.460 In addition to the physical shielding of
cancer cells, platelets are the richest source of TGFβ1, down-
regulating NKG2D in NK cells.461

NATURAL KILLER CELLS MEDIATED CANCER
IMMUNOTHERAPIES
Currently, NK cells used therapeutically are derived from PB,462

umbilical Cord blood (CB), and in vitro differentiated CD34+
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progenitor cells,463 induced pluripotent stem cells (iPSCs),464 and
immortalized NK cell lines, most notably NK-92 cell line which
lacks most KIRs and is more likely to resist inhibition.465 NK cells
isolated from PB are, by definition, mature with a complete
armamentarium. However, they are stubbornly challenging to
engineer, especially if repeated manipulations are needed to build
on previous improvements. Like other continuously produced
innate immune cells, primary NK cells lifespan is short (~2 weeks).
This poses serious challenges for their use in immunotherapies. By
definition, NK cells derived from CB are allogenic and were shown
to induce monocyte-to-dendritic cell conversion in patient-
derived cultures of primary and metastatic colorectal cancer.466

CB NK cells proliferate better than adult PB NK cells467 and can be
obtained without the screening and leukapheresis required for
adult PB NK. PB and CB NK cells can be expanded to large
numbers using antigen-presenting feeder cells.468,469 Ex-vivo-
activated autologous NK cells display less anti-tumor efficacy470

than allogeneic NK cells471 because self-class I HLA signaling
suppresses NK cytotoxicity and cytokine release.472 Additionally,
unlike allogeneic T-cells, allogeneic NK cells mediate anticancer
effects without causing graft versus host disease.473–475 However,
the effectiveness of allogeneic donor NK stimulated ex-vivo is
reduced by competition for cytokines79,476 and approaches relying
only on CAR technology, as CAR-NK cells suffer from tumor cell
escape by HLA aberrant expression and epitope loss.477 Moreover,
cytokine administration would be required to sustain NK cells after
in vivo transfer,478 exposing patients to potential side effects.
Therefore, developing novel NK cell activation strategies to reduce
cytokine toxicity, increase resistance to immunosuppression, and
enhance NK cell persistence is critical.

Arming NK cells with activating cytokine signaling
The activating signaling from cytokines serves a different purpose
than the signaling from activating ligand/receptor interactions.
Ligand/receptor activation signals mobilize the machinery for cell
killing but can also trigger proliferation. On the other hand,
cytokines signaling initially directs the NK cell’s maturation and
later serves to enhance their survival and proliferation. This is
achieved mainly through transcription factors STATs, which
produce a battery of genes that will maintain the NK cellular
homeostasis. Ligand-receptor activation signals mostly originate
from aberrant cells, while cytokines are secreted and used mainly
between immune cells. NK cells do not manufacture interleukins
and depend on other immune cells for survival. NK cells will
respond to IL-2 and IFNγ from T cells, IL-12, IL-15, IL-18, and IL-21
from DCs and macrophages. IL-2 stimulates both NK and T cells,
including Tregs. For this reason, and to reduce IL-2 toxicity in
immunotherapies, efforts were devoted to creating potent IL-2
forms that discriminate between NK cells and Tregs.479–481 We
contributed to this effort by tethering IL-2 to its receptor IL2Rβ.288

Our strategy abrogated IL-2 toxicity and allowed enhanced NK cell
activation and cytotoxicity in vitro and in vivo. IL-15 is the only
cytokine capable of inducing NK cell proliferation in vivo.
Embattled T-cells receive survival factors and cytokines in the
tumor as trans-presented IL-15 by DCs.482 Surprisingly, the mature
NK population could collapse in vivo when DCs are depleted,
suggesting that most NK stimulation in vivo occurs through IL-15
trans presentation by DCs.483 IL-15 is among a few cytokines that
can extend telomeres by enhancing telomerase activity in NK,
NKT, and CD8 T-cells.484 However, telomeres erode at a rate of
50 bp/year in human T-cells,485 with old individuals having shorter
telomeres than young subjects.486 This implies that differentiated
primary NK cells used in immunotherapies will probably have
similar shortcomings. In vitro, the viability of CB-NK expressing
soluble IL-15 and CAR-CD19 declined precipitously from day four
post-plating,487 suggesting telomeres loss due to insufficient
activation from CARs. IL-15 substantially improved CB-NK use in
NK cells, especially when combined with the knockout of the CIS

gene.488 However, reports suggest that secreted IL-15 expands
primary and CB-NK cells but causes severe487 to lethal toxicity and
cytokine release syndrome in animal models.489 Others reported
that NK cell chronic stimulation by IL-15 leads to exhaustion by a
metabolic defect.490 IL-12 produced by DCs and macrophages
stimulates NK cells and leads to IFNγ production, which enhances
DCs activation and induces T-cell polarization. Additionally, we
have seen earlier that IL-12 with IL-18 can reverse the anergy of
NK cells in MHC I deficient tumors,114 suggesting IL-12 will have a
critical role in NK-mediated immunotherapy. However, the use of
IL-12 in the clinic is hampered by its induced neutropenia and
thrombocytopenia.491

The generation of mouse cytomegalovirus-specific long-lived
memory NK cells with higher responses compared to naïve NK
cells was shown to be dependent on IL-12-STAT4 signaling.492

Short-term pre-activation with a combination of IL-12/15/18 can
induce memory characteristics in human NK cells.462 These
memory-like NK cells have prolonged expression of CD25, capable
of responding to IL-2 at picomolar concentrations.493 Therefore,
strategies to develop memory NK cells ex vivo for clinical therapy
are worthy of investigation.
IL-18, when combined with IL-12, potentiates the production of

IFNγ and TNF in NK cells.494 Alone, IL-18 induces NK cells with a
helper phenotype expressing chemokine CCR7 that migrate to
secondary lymphoid organs,367 where they could potentially
synergize with adaptive immunity. However, IL-18 pleiotropic
effect, role in tumor hypoxia and pregnancy, and its ability to
induce more than 1000 genes in NK cells, as well as its overlap
with IL-2, IL-12, and IL-15 functions366 render its use in
immunotherapy problematic. Another intriguing effect of IL-18 is
its ability to convert CD56dim to helper CD56bright CD16 Neg

phenotype,367 which is potentially more pro-angiogenic. IL-18 is
normally inactivated by binding to serum IL-18 binding protein.
However, a remarkable recent advance was able to circumvent
this hurdle.495

IL-21 induces the transcription of many genes,496 including
suppressors of cytokine signaling, Socs1, and Socs3, which
downregulate the JAK–STAT pathway and inhibit IL-2 signal-
ing.497,498 IL-21 activates Stat3,499,500 and Stat1.501 This latter leads
to IFNγ production.502 IL-21 showed some benefit when used as
monotherapy in the clinic but will probably need to be combined
with other modalities.503 IL-21 is a B-cell growth factor that can
potentially promote the growth of lymphomas.504 Therefore, its
use as a soluble factor entails some risks. Acknowledging that
strategies using single cytokines are less likely to succeed is also
important. Instead, a rationale for efficient combinations of
cytokines such as IL-2 or IL-15 with IL-21, IL-12, or IL-18 should
be developed. For example, IL-15 may preserve telomeres better
than IL-2. IL-21 may increase the metabolic fitness of NK cells,
while IL-12 and IL-18 may reverse exhaustion. However, the best
combination of cytokines may still require their use with other
modalities.

Countering Immunosuppressive factors
TGFβ is one of the main driving forces in the TME to exhaust NK
cells. It suppresses NK cells by the induction of miR-183, which
binds and represses DAP12 transcription/translation, a common
dysfunction in NK cells infiltrating lung cancers.505 TGFβ helps
cancer immune evasion by converting NK cells into exhausted
type1 innate lymphoid cells with reduced anticancer activity
(Fig. 8) and sequestration in tissues due to overexpression of α1
integrin and CD103.183 NK cells exposed to TGFβ or to its relative
Activin, acquire a gene signature and phenotype similar to the less
cytotoxic ILCs, becoming unable to control tumor growth in
mice,183–185 suggesting a possible mechanism of NK cells
exhaustion by reverting to an ILCs state. Engineering efforts that
effectively addressed this issue were the introduction of a
dominant negative of the TGFβ1 receptor, which competes with
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the endogenous TGFβ1R506 and separately, in another study
through the knockout of TGFβR2.507

Knockdown of IDO in cancer cells increased their sensitivity to
NK cells in vitro and promoted their accumulation in the tumors
in vivo.458 L-Kynuenie, generated through IDO, depletes trypto-
phan, starves immune cells, impairs NK cell viability, and inhibits
the upregulation of NKp46 and NKG2D under IL-2 stimulation. IDO
is upregulated in cancer cells, APCs, and endothelial cells by TGFβ,
IFN-γ, PGE2, PD-1, CTLA-4, IL-6, and TNF-α (reviewed in ref. 508).
Therefore, IDO inhibition must be coupled with other modalities,
such as immune checkpoints inhibitor of PD-1/PDL-1.
PGE2 and IDO suppress NK cells.448 Specifically, PGE2 increases

T-reg cell activity in lung cancer by signaling through PGE2
receptors, with receptor EP4 being the most potent in further
antagonizing NK cells. Similarly, PGE2 impairs the NK cell and DCs
interactions, reducing IL-12 secretion by DCs and CD4 T-cell
polarization. Tumor PGE2 was also reported to inhibit chemokine
receptors on cDC cells. Most importantly, PGE2 could induce PD-
L1 expression.509 Therefore, PGE2 inhibition must be also coupled
with other modalities, such as immune checkpoints PD-1/PDL-1.
Inhibitors of the Cox2-PGE2 axis, such as Celecoxib, cause

bleeding and cannot be used long-term. Therefore, targeting
the EP4 receptor with antagonists in combination with PD-1/PDL-1
would be more efficacious (reviewed in ref. 510).
Extracellular ATP rises in pathological conditions such as

inflammation, ischemia, tumorigenesis, and hypoxia. In tumors,
this extracellular ATP is converted into immunosuppressive
adenosine using two ectonucleotidases CD39 and CD73 expressed
on cancer cells, T-cells, T-regs, macrophages, neutrophils, MDSCs,
NK, and the vasculature, thereby enriching the TME with high
levels of adenosine511 (Fig. 8). Adenosine binds to widely
expressed adenosine receptor A2AR, including on NK cells,
macrophages, and DCs. The immunosuppression of adenosine is
illustrated by tumor rejection in more than 60% of A2AR -deficient
mice407 and promoting the accumulation of highly cytotoxic
CD56dim NK cells with upregulation of CX3CR1 transcription in NK
cells, suggesting that adenosine prevents NK cells maturation and
infiltration into tumors.512 Further, emphasizing the impact of
adenosine inhibition of NK cells is the synergy between anti-PD1
and A2AR inhibitors, which inhibited metastatic melanoma and
was primarily dependent on NK cells and IFNγ more than CD8+

T-cells.513 Blocking ATP hydrolysis using antibodies against CD39

Fig. 8 Strategies for arming and deploying NK cells. Chimeric antigen receptor (CAR) comprises an extracellular domain with the single-chain
variable fragment scFv region (H heavy and L light chain) connected by a flexible hinge region mainly derived from CD8 to the
transmembrane domain region primarily derived from CD28. The intracellular domain evolved in multiple iterations from a first generation
developed in 1993 with CD3ζ, DAP12, or DAP10. This first generation proved not to be very effective in the clinic. By 1998, a significant leap
was achieved in the second generation by adding costimulatory domains such as CD28, introduced by the Sadelain group, and later 4-1BB
and 2B4 for NK cells. This second generation showed persistence and utility in the clinic. The third generation built on adding multiple
costimulatory domains, while the fourth added the cytokine component or cytokine receptors and STAT binding domains. Therapeutic
antibodies can directly mediate ADCC by NK cells expressing CD16. Immune checkpoint blockade directed against PD-1, CTLA-4, and TIGIT is
another strategy that removes the brakes on NK cells. Bi-specific engagers mainly target CD16 and link it with tumor antigens, while tri-
specific links CD16 and an activating receptor on NK cells to an antigen on tumor cells. Another modality utilizes an antigen recognition
domain that binds to inhibitory ligands coupled to intracellular domains of activating receptors. This strategy converts inhibition of the TME
into an activation signal. Seven levels of intervention to enhance anti-tumor activity: 1- Improving collaboration between NK cells and other
effector cells such as T-cells, DCs, Macrophages, and Neutrophils. 2-armoring NK cells with cytokine signaling, 3- Engineering NK cells to
improve persistence, metabolism, and resistance to exhaustion, 4- Preventing immunosuppression by TGFβ1, IDO, PGE2, adenosine, 5-
Improving NK cells homing into tumors, 6- Preventing tumor angiogenesis and immunosuppression, 7- Reducing immunosuppression by
MDSCs, T-regs, and TAFs
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and CD73 prevented adenosine accumulation, stimulated DCs and
macrophages, and restored T-cell anti-tumor activity.514 Therefore,
reducing adenosine accumulation in combination with ICIs is an
efficacious strategy.
In another mechanism of tumor resistance to NK cells, tumor

cells up-regulate collagen expression to enhance adhesive
structures in the TME. This consolidation of collagen protects
tumor cells by binding to soluble leukocyte-associated Ig-like
receptor-1 (LAIR-1) expressing NK cells. Upon engagement with
tumor collagen, human LAIR-1 associates with SHP-1 and SHP-2
and proceeds to dephosphorylate VAV1, thereby dampening NK
activation (Fig. 6).

Restoring dysfunctional NK cells
The impact of immune checkpoints on lifting exhaustion in T-cells
is well established. However, for NK cells, the state of exhaustion is
not well defined, as NK cells require at least two activating signals
in addition to cytokines to mature and operate. These conditions
are challenging to produce in the TME, where NK cells are usually
dysfunctional.515–518 However, even NK cells that are being
created in the bone marrow could be affected by the growth of
remote tumors in mice by a process involving the downregulation
of IL-15Rα+ cells among bone marrow stromal cells and the
interrupted maturation of NK cells,519 a dysfunction that is
remedied by IL-15 administration. Immature NK cells found in
tumors were also reported in humans, and their presence was
correlated with poor survival.520 Overall, an NK cell could be
rendered dysfunctional remotely, even before it encounters a
cancer cell. A transcriptional profile for these dysfunctional/
exhausted NK cells is the low expression of T-Bet and Eomes
transcription factors521 necessary to sustain maturation, identity,
and anticancer activity,522 as well as CD16 and KIRs expression.153

In the early TME, Cb11+ myeloid cells (Basophils, monocytes,
macrophages, and DCs), express soluble IL-15, and this contributes
to the inflammatory response that helps NK cells proliferate in the
early tumor stage, making IL-15, an activating component of the
early TME, but later, due to mounting immunosuppressive forces
in established tumors, IL-15 production diminishes.523 Addition-
ally, NK cells that engage cancer cells and interact with other cells
in the TME could be exhausted due to an overwhelming multitude
of immunosuppressive factors and lack of activating cytokines
with increased expression of inhibitory receptors including,
NKG2A, CD96, PD-1, and TIGIT,524–528 as well as an across the
board downregulation of major activating receptors which include
DNAM-1, NCRs, NKG2D, CD16.282,529–531 The function of NK cells in
cancer patients could be restored by chemotherapy,532–534

through multiple mechanisms, or by surgical removal of the
primary tumor.535 NK cell function will most likely also depends on
the tumor burden. Therefore, these modalities may be necessary
to complement new and emerging clinical interventions.

Immune checkpoints blockades
Since NK cell response integrates both inhibitory and activation
signals, the blockade of any inhibitory receptor should enhance
NK cell activation. Using ICI in the form of antibodies that bind
these receptors and block the binding of their cognate ligands
from cancer cells has shown a clear impact in T-cell immu-
notherapies, especially for PD-1 and CTLA-4. The participation of
NK cells alongside T-cells in these therapies was notice-
able,525,536–538 especially in MHC I-defective tumors. However,
recent studies showed minimal PD-1 expression in NK cells from
tumors, raising questions about its importance in PDL-1-
expressing tumors.539 The same study suggested that TIGIT is
markedly upregulated in these NK cells. CTLA-4 blockade with
Ipilumab’s impact on NK cells is not clear. However, it was found
to operate through the elimination of T-regs by NK cells mediated
ADCC.540 CTLA4 engagement with ligands leads to its phosphor-
ylation and recruitment of SHP-1 and SHP-2, leading to VAV1

dephosphorylation. After engagement with PDL-1, PD-1 ITSM
domain phosphorylation at Tyrosine Y248 recruits SHP-2, suppres-
sing NK cell activation (Fig. 6).
TIGIT is consistently upregulated in NK cells in human primary

tumors and viral infection.539 TIGIT blockade reverses the exhaus-
tion of NK cells from colon cancer patients and promotes their
antitumor responses in mouse models.524 Additionally, NK cells
expressing low TIGIT are resistant to MDSCs inhibition,432

suggesting the importance of this receptor in the crosstalk within
the TME. In patients with metastatic melanoma, functionally
impaired/exhausted, NK cells upregulated TIM-3 in NK cells
compared to healthy subjects, and TIM-3 blockade in vitro reversed
this exhausted phenotype.541 In T-cells, TIM-3 engagement with
ligands leads to the phosphorylation of two tyrosines in its
cytoplasmic tail (Y256 and Y263), leading to the dissociation of
HLA-B associated transcript-3 (Bat-3). This dissociation disrupts LCK,
ZAP70, and TCR activation.542 However, disengaged Bat-3 can also
associate with P300, leading to transcription of MDM2, P21, BCL2,
and the acetylation of P53, which may slow NK cell proliferation.
Engagement of TIGIT with PVR and its phosphorylation through
the Src- family kinases Fyn and Lck results in SHP-1 and SHP-2
recruitment, which in turn downregulates the PI3K, MAPK, and NF-
KB signaling pathways and promotes VAV1 dephosphorylation.
LAG-3 is highly expressed in T-cells from Hodgkin lymphoma and
leukemia patients, and its synergy with anti-PD-1 was evident.543 In
vitro, chronic stimulation of NK cells leads to epigenetic changes,
upregulation of LAG-3 and PD-1, and NK cell dysfunction.544 LAG-3
mediated inhibition controls AKT phosphorylation and STAT5
activation leading to reduced mitochondria mass and quies-
cence.545 However, LAG-3 impact on NK cells remains obscure and
needs more investigation. This might be due to the presence of
many inhibiting receptors on NK cell surface that oppose any
activation by ICIs. Additionally, a significant obstacle to ICI success
is the simultaneous co-expression of many ICs in T-cells and
probably NK cells, causing ICI failure.546

Eliminating NK cells fratricide
Acquisition of tumor antigens by NK cells through engagement
with cancer cells in a membrane transfer process called
trogocytosis could lead to the misidentification of these NK cells
as targets and their death by other NK cells. Interaction between
ligands and receptors leads to the loss of the membrane patch
harboring the ligand to NK cells. The example of NKG2D
interaction with ligand RaeI revealed that this process required
clathrin-dependent internalization of NKG2D, leaving RaeI on the
cell surface for a period of at least 24 h.547 RaeI-dressed NK cells do
not kill each other, suggesting they lost NKG2D in this process and
are only killed by cells that did not interact with cancer cells. The
loss of NKG2D would render these trogocytic NK cells anergic. In
mice, the interaction of receptor 2B4 on one NK cell with its ligand
CD48 on another NK cell was reported to prevent fratricide.
Blocking this interaction with antibodies led to fratricide.548

Because CD48 is expressed on all nucleated hematopoietic cells,
it may provide a non-MHC mechanism of self-tolerance. Fratricide
is worsened when using ADCC and CAR-NK mediated therapies
that will increase the visibility of NK cells if they express the
antigen naturally or acquire it by trogocytosis. Multiple myeloma
expressing high levels of CD38 and targeted with anti-CD38
Daratumumab (Dara), reduces NK cell number due to ADCC-
mediated fratricide.549 Knockout of CD38 in expanded primary NK
cells prevented Dara-induced fratricide in NSG mice, which are
devoid of NK cells.550 However, host NK cells would probably be
targeted by ADCC if the patient is not lymphodepleted first. A
similar strategy using iPSCs cells FT576, depleted of CD38 in
combination with Dara, prevented fratricide and showed efficacy
in preclinical models, opening a path to clinical translation.551

However, the fratricide caused by trogocytosis cannot be
eliminated by knockout of the antigen on NK cells. Rezvani et al.
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cleverly put a brake on killing trogocytic NK cells by adding a self-
inhibitory iCAR targeting co-receptor Cs1 which is expressed on all
NK cells and transmits an inhibitory signal via the KIR2DL1
cytoplasmic domain in iCAR. CD19+ cells did not express Cs1 and
were targeted by an additional CAR against CD19.552

NK cell engagers
Contact between immune cells and cancer cells can be
encouraged by “engagers” that serve as a bridge by binding
simultaneously to an activating receptor on the immune cell and a
tumor-specific antigen on the cancer cell. Bite, trike, or
tetraspecific engagers involve 2 or 3 or 4 receptors to strengthen
the engagement and increase activation signals. The attractive
aspect of engagers is the non-need to genetically modify immune
cells and primarily target host immune cells to reactivate them.
Early generations of engagers designed for T-cells and targeting
CD3 have shown some success in hematological disease, with
some toxicities that limited their efficacy. Among them, Blinatu-
momab, the first bite approved by the FDA, is a dual CD19 and
CD3 engager. Blinatumomab is used to manage minimal residual
disease after chemotherapy but is ineffective for certain patients
who may relapse due to loss of CD19 or T-cell exhaustion. Several
toxicities were reported for Blinatumomab, including neutropenia,
neurotoxicity, infection, and cytokine release syndrome. Indeed,
CD3-targeting engagers have been associated with severe toxicity,
as in the case of Duvortuxizumab (anti-TAA+anti-CD3) and
AFM11(anti-CD16a+anti-CD3). New generations of engagers seem
to shift focus on the potential of innate immunity and enhancing
its role in helping adaptive immunity. Three trifunctional NK cell
engagers, targeting NKp46 and CD16 on NK cells and a tumor
antigen on cancer cells (CD19, CD20, and EGFR) were shown to
enhance cancer cell killing by human primary NK cells in vitro and
in mice models.553 Another NK cell engager, AFM13
(CD16+ CD30), used with cord blood NK cells, exhibited
enhanced killing of CD30+ leukemia and lymphoma targets.554

Several clinical trials evaluate multiple engagers, mainly targeting
T-cells,555 with one ongoing trial NCT04074746 (Table 1) evaluat-
ing CB NK cells combined with AFM13 against R/R CD30+ Hodgkin
lymphoma and non-Hodgkin lymphoma (reviewed in ref. 556).

ENGINEERED NK CELLS
The therapeutic efficacy of non-engineered NK cells is suboptimal,
and using autologous unmodified NK cells is not conducive to
better antitumor activity.470–472 Similarly, autologous NK cells

derived from cancer patients are particularly weak candidates as
they may be already in exhausted and dysfunctional states516,528

that could even be beneficial to tumors.373,374 These states
suggest NK cell’s plasticity and ability for re-education in the
tumor microenvironment. Therefore, understanding how NK cells
are co-opted in tumors may help design better strategies to
engineer resilient and incorruptible NK cells.

Clonal cell lines a canvas still waiting for art
The first NK-based clinical trial was done using the cell line NK-92,
which was originally derived from a patient’s blood with diffuse
lymphadenopathy, B-symptoms and circulating LGL. Despite
aggressive chemotherapy the patient passed of progressive
lymphoma, roughly five weeks after admission. For this reason,
the FDA requires NK-92 cell irradiation prior to administration. NK-
92 is an obligate IL-2-dependent cell line with an anti-tumor
activity superior to other NK cell lines and has a high safety profile
despite its allogenic nature.465 NK-92 genome is aneuploid with a
heterozygous stop mutation in the P53 gene. Clonal NK-92 cells
are CD56bright, CD16neg, and KIRneg, a phenotype close to the
recently identified NK2 population,42 making them a plausible
descendent of the ILCP lineage. Whether it is possible to
reprogram/reeducate NK-92 into a clonal cell line similar to an
NK1 or an NK3 subset, is an intriguing question. Similar clonal NK
cell lines were isolated (Table 2), but NK-92 unique characteristics,
such as lack of KIRs and ease of genetic engineering are not yet
fully exploited. This is probably due to the modest results using
NK-92 in a phase I clinical trial, which showed minor responses in
two patients out of twelve81 and another using CD33-CARNK-92
which showed safety but obvious clinical efficacy.557 The reported
lack of efficacy in another phase I clinical trial for refractory and
relapsed acute myeloid leukemia558 was attributed to circulating
exosomes carrying an immunosuppressive cargo and disabling
NK-92.559 Another clinical trial reported safety and some evidence
of efficacy.560 A significant impediment to NK-92 use is the
requirement for its irradiation. Thirty-one years after its first
isolation,465 and despite widespread use, no reports of sponta-
neous IL-2-independent NK-92 clones exist. NK-92 does not cause
tumors in ICR/scid mice even when supplemented with exogen-
ous IL-2 or producing its IL-2.561,562 The risk that NK-92 cells could
proliferate in vivo without a sustaining signaling has not been
demonstrated in vivo. Still, it is speculated based on anecdotal
findings with different tumor cell lines that caused subcutaneous
nodules when implanted in terminal cancer patients despite
failing in healthy volunteers.563 Additionally, numerous studies

Table 2. List of human clonal NK cell lines

Cell line Year established/
published

Patient diagnosis Age of
donor

Sex EBV
status

Cytokine
dependence

Clinical Trials

NK3.3 1982 Cloning of primary MLC-activated cells in a
medium containing interleukin-2

N/A N/A EBV− IL-2-dependent NO

YT 1983 Acute lymphoblastic lymphoma (with
thymoma)

15 Male EBV+ IL-2-independent NO

NK-92 1992/1994 LGL-NHL 50 Male EBV− IL-2-dependent Yes (Table 1)

NKL 1996 NK-LGLL 63 Male EBV− IL-2-dependent NO

NK-YS 1996 NK cell lymphoma, Nasal angiocentric,
Leukemic state with systemic skin infiltration

19 Female EBV+ IL-2-dependent NO

KHYG-1 1997 Aggressive NK leukemia 45 Female EBV− IL-2-dependent NO

HANK1 1998 Nasal-like NK/T-cell lymphoma 46 Female EBV+ IL-2-dependent NO

SNK-6 1998 Nasal NK/T-cell lymphoma 62 Male EBV+ IL-2-dependent NO

SNT-8 1998 Nasal NK/T-cell lymphoma 48 Female EBV+ IL-2-dependent NO

IMC-1 2004 Aggressive NK cell leukemia 42 Male EBV− IL-2-dependent NO

LGL large granular lymphocyte, LGLL large granular lymphocyte leukemia, NHL non-Hodgkin’s lymphoma, EBV Epstein-Barr virus
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have shown no association between blood transfusion from
precancerous blood donors and non-Hodgkin lymphoma
risk,564–566 suggesting the unlikelihood of allogenic transfer of
cancerous cells in healthy recipients. However, it cannot be
excluded that NK-92 cells could proliferate if driven by self-
sustaining IL-2 stimulation in severely immunodeficient patients.
Therefore, combinations of tumor-suppressing signaling and
suicide switches such as prodrug activating cytochrome P450
and HSV-TK enzymes or drug-activated iCasp9 switch, all inserted
in multiple and separate chromosomal locations in the NK-92 cells
genome could be a convincing step toward the potential use of
this remarkable cell line in cancer patients, safely. This is possible
through multiple rounds of infection and selection. However,
more effort should be first deployed to improve the clonal cell
lines’ efficacy by first determining the optimal signaling that drives
cytotoxicity and resistance to exhaustion, followed by deciding
what series of genes to add to improve tumor homing and
strengthen activation signaling and what genes to eliminate,
including ICs, to reinforce all these aspects and further enhance
safety. Unfortunately, groups improving NK cell lines are rarely
funded. Since its isolation, NK-92 and many other human NK cell
lines have been instrumental in elucidating the biology of NK cells.
However, except for NK-92 none of them advanced to clinical use
in humans. The translational importance of NK cell lines will
probably be more evident if they were to be used to treat animal
cancers. A canine NK cell line (CN89)567 was reported as CD5+,
CD8+, CD45+, CD56+, CD79a+ and NKp46+. However, its IL-2-
independence and the B-cell marker CD79a+ as well as the
absence of reports of cytolytic activity, cast doubt about its
antitumor activity. While many canine clinical trials are ongoing
(reviewed568), no canine NK cell line is being tested. However, the
possibility of using human NK-92 for canine cancer by blocking
xenoreaction with immunosuppressors is suggested by a phase I
clinical trial in dogs, where a human T-cell line derived from child
leukemia called TALL-104 was used safely.569 Unlike other T-cells,
TALL-104 has lost its MHC I dependence and become an MHC I
non-restricted T-cell line, much like NK cells. No toxicity to dogs
was observed in the clinical trial. Seven dogs out of 19 showed a
response, with one complete remission. Cyclosporin, an immuno-
suppressor was administered to dogs prior to TALL-104 infusion to
prevent an anaphylactic reaction.

Chimeric antigen receptors (CARs) advances in the clinic
CARs are synthetic constructs emulating the TCR function but
without the HLA requirement developed first for T-cells (CAR-T).
They comprised in their first iteration (first generation) an
extracellular antigen recognition domain, which is the single-
chain fragment variable (ScFv) derived from an antibody tethered
to a transmembrane domain and the intracellular activation
domain CD3ζ chain (Fig. 8). The binding of ScFv to a specific
antigen triggers activation. However, this design allowed very
short-term proliferation. The second-generation CARs added the
CD28 activation domain, later reinforced by another costimulatory
molecule, CD134 (OX40), or CD137 (4-1BB) for CAR-T570 and 2B4571

or CD137 for CAR-NK.572 The latest and fourth generation added
cytokines IL-12 expression under the control of the NFAT6 minimal
promoter that initiates IL-12 transcription upon CAR-T-cell
activation.573 In another approach, cytokines such as IL-15 could
be produced constitutively (reviewed in ref. 574).
Novel strategies to convert inhibition into activation are

emerging. For example, TGFβ immunosuppression in the TME
can be converted into activation by tethering TGFβR2 extracellular
domain to NKG2D cytoplasmic domain.575 Another strategy
converted IL-4 suppressive signals in the TME into proliferative
signals from the ectodomain of the IL-4 receptor to the
cytoplasmic domain of the IL-7 receptor.576 NKG2D, a specific
NK activator and specifically its extracellular recognition domain,
could replace the ScFv and be tethered to DAP10 and CD3ζ.577

These innovative strategies seem to work with NK cells and may
improve immunotherapies. The mere expression of CAR in NK cells
may enhance the baseline signaling through the interaction of
endogenous cell components with the costimulatory domains,
even without antigen stimulation. This phenomenon has been
reported for CAR-T and is termed tonic signaling and has been
explained by the heterodimerization of CAR’s CD28 with the
endogenous CD28.578 We have seen a comparable effect in NK-92
expressing CD28-based CAR, leading to faster cell growth than
naïve NK-92, without engagement with antigen (Chen et al.
unpublished data). In T-cells, CARs induce cytotoxicity and
proliferation by producing an autocrine loop of cytokines, whereas
in NK cells they only induce cytotoxicity. Therefore, in contrast to
CAR-T, CAR-NK cells need the addition of cytokines for survival
and metabolic fitness.
Four representative clinical trials using different sources of NK

cells (cord blood, iPSCs, and PB NK) are discussed here. Rezvani
et al. in a clinical trial initiated in 2017 (NCT03056339), reported in
2020 phase I interim results.90 These showed that cord blood CAR-
NK-CD19 cells armored with soluble IL-15 could persist in patients
for over a year with a single infusion, with an overall response rate
(ORR) of 73% and achieving complete remission (CR) for seven out
of eleven patients, without any cytokine related syndrome (CRS),
graft versus host disease (GVHD), Immune effector cell-associated
neurotoxicity syndrome (ICANS) or NK-related toxicity as. The
phase1/2 results were recently reported,579 with an ORR (d30)=
48.6%, ORR (d100)= 48.6%, 1 year: Overall survival (OS)= 86%,
and progression-free survival (PFS)= 32%, with no CRS/ICANS/
GVHD. Notably, the patients who achieved higher ORR had higher
levels and longer persistence of CAR-NK cells. Most of these
patients received a lymphodepleting nonmyeloablative prepara-
tive regimen of cyclophosphamide and fludarabine prior to CAR-
NK infusion and received follow-up treatment 30 days post-
infusion. Studies have shown that lymphodepletion enhances
CAR-T efficacy by eliminating “cytokine sinks” competition by
T-regs and other competing immune system elements.580

Lymphodepletion conditions the immune system to eliminate
regulatory mechanisms that could hinder the functioning of
infused CAR-T cells. Therefore, lymphodepletion prior to infusion
most probably enhances CAR-NK efficacy. Furthermore, radiation
treatment induced CXCL8 secretion from tumor cells and
enhanced the directional migration of CD56dim NK cells to the
tumor.581 Conditioning and multifactorial therapies will be even
more necessary to give cell immunotherapies a winning chance
against the more challenging solid tumors.
So far, the US Food and Drug Administration (FDA) has only

approved CAR-T cell therapies against hematological cancers.
Solid tumor heterogeneity and antigenic diversity, in addition to
the TME immunosuppressive factors, are challenging. Therefore,
better design of CARs incorporating other activation signals such
as STAT3 and STAT5582 and other useful activators that may allow
better survival of CAR-NK cells in the TME if combined with other
modalities.
Another clinical trial (NCT04245722),583 used FT596, an off-the-

shelf, CAR-NK-CD19 cell therapy derived from iPSCs, in patients
with relapsed/refractory (R/R) B-cell lymphomas (BCLs) and
chronic lymphocytic leukemia. FT596 employs three anti-tumor
strategies: (1) a proprietary CD19-targeting CAR; (2) a high-affinity,
non-cleavable CD16 Fc receptor that facilitates tumor targeting
and enhances ADCC when paired with a therapeutic mAb; and (3)
an IL-15/IL-15 receptor fusion that promotes cytokine-
autonomous persistence. Preclinical in vivo models of leukemia
and lymphoma have shown FT596 CAR-mediated effectiveness
against CD19+ tumor cells. Additionally, when combined with the
anti-CD20 agent rituximab, FT596 was effective against both
CD19+ and CD19− tumor cells.
In the interim results reported in 2021, No dose-limiting

toxicities, no ICANS/GVHD, but two cases of CRS were reported.
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After the first FT596 treatment cycle, ORR was observed in 5/8
patients receiving FT596 as monotherapy; when combined with
Rituximab the ORR was obtained in 5/9 patients. At single-dose
levels of at least 90 million FT596 cells as monotherapy, 8 of 11
patients achieved an OR, including 7 CRs. Among the 4 patients
with prior CAR-T cell therapy treatment, a dose of at least 90
million FT596 cells, achieved CR in two patients. Most importantly,
No B- or T-cell mediated anti-FT596 responses were seen. These
results demonstrate the efficacy and safety of off-the-shelf NK cells
derived from iPSCs. Noteworthy is the use of conditioning
chemotherapy (cyclophosphamide and Fludarabine) prior to cell
infusion.
In clinical trial NCT03415100, Xiao et al.584 used a novel chimeric

antigen receptor (CAR) combining the extracellular domain of the
natural killer (NK) cell receptor NKG2D with DAP12. Expression of
the NKG2D-RNA-CAR significantly enhanced NK cell cytolytic
activity in vitro, and in vivo in mice. The clinical trial interim results
reported in 2019 showed that three patients with metastatic
colorectal cancer were treated with local infusion of CAR-NK cells.
Two patients experienced reduced ascites generation and a
marked decrease in tumor cells in ascites samples (2/2, RECIST:
SD), while one patient exhibited rapid tumor regression and a
complete metabolic response in treated liver lesions (1/1, RECIST:
SD). This small sample clinical trial shows the potency of PB NK
cells when activated with hybrid chimeric antigen receptors based
on NK cell receptors.
Another phase 1 clinical trial (NCT06325748) is currently

enrolling adult patients with R/R CD33 and/or FLT3 expressing
heme malignancies for allogenic treatment using SENTI-202, a
Logic Gated off-the-shelf CAR-NK cell therapy candidate that
selectively targets hematologic malignancies, using three tech-
nologies: 1) the OR GATE, which is an activating CAR that targets
either or both CD33 and FLT3, 2) the NOT GATE, which recognize
and protect healthy cells from being killed. And 3) a calibrated
release of IL-15 to increase the persistence/expansion and activity
of CAR-NK cells and potentially the host immune cells. This first-in-
man trial will inform on the potential of this novel technology.

Engineered NK cells and the persistence problem
Infused allogenic haploidentical NK cells do not persist for more
than 3 weeks and are eliminated by the recipient patient’s
immune system.89,471,585,586 However, this rejection could be
delayed by lymphodepletion,79 which, although not required in
autologous NK cell transfer might improve NK cytolytic activity as
mentioned earlier and especially when T-cells are weakened in the
recipient.587 The most used lymphodepleting agents, cyclopho-
sphamide or Fludarabine are given for one week. Lymphodeple-
tion also eliminates “cytokine sinks” competition by T-regs and
other competing immune system elements.580 The importance of
lymphodepletion for NK cell expansion in the recipient is clearly
demonstrated by the increased number of NK cells settling in the
bone marrow when lymphodepletion intensity increases.588

Autologous NK cells would, in theory, persist more if the
conditions that incapacitated/exhausted them in the cancer
patient were removed. For this reason, we believe that engineer-
ing autologous NK cells, for example, by depletion of inhibiting
receptors and increasing activating signaling, is a logical approach.
Knockdown of HLA in haploidentical (half-identical) NK cells,
assuming it is easily doable and does not lead to fratricide through
missing self, may increase persistence and delay elimination by
the recipient immune system. This approach was shown to work
for human T-cells.589 A more practical solution is increasing the
intensity of lymphodepletion, which may be an effective way to
increase persistence, especially when combined with cytokine
production by infused NK cells.590 Another possible therapeutic
option could be the adaptive NK cells NKG2ChighCD57+ that
expand in humans infected with HCMV.179,180 Interestingly, these
cells downregulate PLZF, making them probably less susceptible

to reverting to a less cytolytic ILC1 phenotype. These adaptive NK
cells have significant persistence,591 pronounced ADCC, resistance
to MDSCs and are intrinsically resistant to Treg cells.592

TCR-dressed NK cells
Engineering TCRs in allogeneic T-cells is a significant challenge
since introduced TCRs will form mispaired non-specific TCRs.593,594

Therefore, expressing TCRs in NK cells that lack TCRs is a more
sensible approach.595 TCRs that recognize tumor antigens
presented by MHC can bind to all cellular antigens, including
intracellular antigens unreachable by CAR-T and CAR-NK. CARs
target only membrane proteins, which are encoded by one-fourth
of the human genome,596 leaving 75% of proteins out of reach.
This reduces the usefulness of the CARs approach, which also
suffers from tumor antigen escape.597 Additionally, targeting
normal overexpressed antigens by CARs can veer off-target or
completely deplete normal tissue. This approach is exemplified by
the anti-CD19 CAR strategy, which kills all B-cells,598 leaving cured
survivors with a permanent need for antibody infusion and a lack
of response to vaccination in pandemics.599 Tumor-infiltrating T-
cells isolated from tumors often express tumor-specific
TCRs.600–602 However, they may already be exhausted.603,604 NK
cells naturally attack tumors in an MHC-independent manner,
clearing tumors that antigen-specific T-cells cannot possibly
target.38,605,606 NK cells are activated when MHC I expression is
downregulated in transformed607 and virus-infected cells.170 The
acquisition of resistance phenotype by tumor cells is often caused
by the expression of inhibitory signals from MHC I.608 Indeed, HLA-
E and HLA-G inhibit tumor cell lysis by NK cells.608,609 Therefore,
combining the TCR-antigen-MHC-dependent recognition with
innate MHC-independent tumor recognition will expand NK cells’
killing repertoire. TCR activation enables T-cells to manufacture IL-
21 in an autocrine loop610 to activate Stat1611 and Stat3.612 Stat3
enhances telomeres maintenance.613 TCR activation also allows
the production of IL-2,611 which promotes T-cell proliferation by
activating STAT5. Finally, TCR activation prolongs cytokine
signaling by downregulating CIS and Socs3.614 However, since
CAR-NK and TCR-NK cells do not proliferate in response to
antigens, as they require cytokines, adding a potent cytokine such
as IL-15, IL-21, IL-2, or their combination will enhance the
longevity and fitness of NK cells. The persistence of NK cells is
another pressing problem, and lessons learned from CAR-T show
that the shortening of telomeres depends on patients’ age and
that the loss continues during the manufacturing process of CAR-T
cells. Indeed, introducing hTERT mRNA in CD19-CAR-T led to more
persistence in vivo,615 and the exhaustion of CAR-T directed
against melanoma correlated with telomeres length.616 Similar
strategies are probably needed to enhance NK cell persistence.
Two clinical trials are currently testing TCR-NK. NCT06383572, a
phase I/II trial evaluating the safety, and effectiveness of PRAME-T
cell receptor-natural killer (PRAME-TCR-NK) cells against AML,
MDS, and relapsed/refractory multiple myeloma. NCT06083883 is
another phase 1/1b trial evaluating an Affinity-enhanced T-cell
Receptor (TCR) Against the NY-ESO-1 in patients with advanced
synovial sarcoma and myxoid/round cell liposarcoma. Both clinical
trials use lymphodepleting chemotherapy.

ENVIRONMENTAL FACTORS
A series of studies evaluating the impact of the environment on
human NK cells revealed that CD16pos NK cell cytolytic activity
could be increased in males and females to last up to 7 days by a
simple walk in the forest “forest bathing” while a walk in the city
did not,617–620 with, nevertheless, a surprising decrease of CD4
cells. More recent studies confirmed the increase in CD56pos NK
cells in a forest bathing group compared to an urban group.621,622

The earlier pioneering studies suspected phytoncides released
from pine trees, which were confirmed to be the main factor in NK
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cell enhancement623 (Fig. 9). The relaxed feeling in the forest
caused a decrease in the concentrations of cortisol in the blood
and adrenaline in urine, suggesting the possibility of less immune
inhibition from cortisol.619 A phytoncide (α-pinene) was shown to
activate the ERK/AKT pathway in NK-92 cells and to increase their
cytolytic activity,624 suggesting a direct effect on NK cells. Similar
effects were noted for other phytochemicals, such as cymene and
camphor. However, we hypothesize that the complex composition
of phytoncide, which includes α-pinene, β-pinene, 1,8-Cineole, γ-
Terpinene, Camphene, and Limonene, could have multiple targets
that enhance innate immunity in particular NK cells. The Aryl
Hydrocarbon Receptor (AhR) and aryl hydrocarbon receptor
nuclear translocator (ARNT) are heterodimerizing transcription
factors involved in sensing and responding to toxic xenobiotic
chemicals by activating the transcription of CYP1A1, CYP1B1,
IDO1, TDO, IL-22, GSTA and Aryl-Hydrocarbon Receptor Repressor
AhRR. Recent work showed that in the pine beetle (Dendroctonus
armandi), both AhR and ARNT were substantially induced by
β-pinene and Limonene,625 leading to the induction of several
phase I enzymes. IL-22 enhances Tryptophan synthesis in the gut
and increases Trp hydroxylase (THP1), leading to Serotonin and
endogenous tryptophan derivative, 6-formylindolo[3,2-b] carba-
zole (FICZ) production by deamination of Tryptamine.626 FICZ is
also a potent ligand for AhR and can potentiate NK cell IFNγ
production and cytolytic activity and control of tumors.627

More evidence is mounting to support AhR/ARNT role in
mediating the transcription of genes involved in inflammation and
control of the differentiation and activity of adaptive and innate
immune cells.628 Additionally, NK cells stimulated by cytokine IL-2,

IL-15, or IL-12 induce AhR expression, which can be activated by
tryptophan derivative FICZ, the most potent ligand for the AhR
produced endogenously and by gut microorganisms.629 Activated
AhR also enhances the activation of the AKT serine/threonine
kinase AKT pathway to promote cell survival.630 Activated AhR
regulates NK cell migration through the Asb2 gene, which
mediates the degradation of Filamin A via ubiquitination, leading
to increased NK cell migration into tumors631 (Fig. 9). Therefore,
we hypothesize that “forest bathing” might activate ERK/AKT by
specific products such as α-pinene and induce AhR through
β-pinene and Limonene. AhR is then activated by endogenous
ligands, among which is tryptophan derivative FICZ, whose
production by gut microbiota is promoted by phytoncide-AhR-
induced IL-22. Interestingly, immunosuppressive tryptophan
derivative Kynurenine, produced by IDO in tumors, can also
activate AhR in T-cells to generate T-regs,632 inhibit CD4 and CD8 T
cells,456 and reduce NK cytotoxicity.457 Therefore, tryptophan
derivative FICZ and tryptophan metabolite Kynurenine have
different impacts on AhR activation. However, FICZ binds to AhR
in the nanomolar range and outcompetes kynurenine and its
metabolites. Another metabolite of tryptophan is serotonin, which
incidentally increases during forest bathing,633 suggesting that
taking a walk in the forest may cause a shift in Tryptophan
metabolism from the kynurenine pathway, which mostly degrades
Tryptophan in the liver by Trp-2,3-dioxygenase (TDO), indolea-
mine-2,3-dioxygenase (IDO), to the 5-HT pathway by TPH, which
takes place in both the gut and brain and the Indole pathway
catalyzed by the gut microbiota to generate indoles such FICZ.
Interestingly, the kynurenine pathway seems to dominate in

Fig. 9 Impact of the environment on NK cells: Phytoncide model. From the pine beetle to humans, a response to xenobiotics via the
xenobiotic response element is mediated by the Aryl hydrocarbon receptor, which is induced by natural compounds and environmental
pollutants that bind and activate AhR. Endogenous compound FICZ derived from Tryptophan metabolism can bind AhR with high affinity and
trigger the expression of phase I enzymes, IDO, TDO, and IL-22 with wide-ranging physiological effects. AhR activation by FICZ affects NK
cytolytic activity, and migration to tumors, with possibly a shift in Tryptophan metabolism by the microbiome from the Kynurenine pathway,
which mainly degrades tryptophan in the liver by TDO, and IDO, to the beneficial 5-HT pathway by TPH, in the gut and brain and the Indole
pathway catalyzed by the gut microbiota to generate indoles such FICZ which reinforces this signaling loop and enhances cancer control
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tumors mostly through IDO, and consequently, tumors are
depleted of Tryptophan. This suggests that supplementing indoles
such as FICZ with its strong affinity to AhR or strengthening
microbiota production of indoles, possibly by forest phytoncides,
might counterbalance the kynurenine pathway inhibition of NK
cells in tumors.

CONCLUDING REMARKS
We attempted to review many aspects of NK biology in healthy
and pathological conditions. How they are inhibited, and why
their killing requires the synergy between multiple activation
signals. NK cells can support angiogenesis in tumors and
pregnancy and reduce T-cell overreaction to infection through
IL-10 secretion to prevent tissue damage. They can also activate
DCs, which in response, secrete IL-12 to enhance NK cell’s
secretion of IFNγ, which is required for CD4 polarization. They help
M0 and M2 macrophages transition to the pro-inflammatory M1
phenotype and induce monocyte conversion to DCs. They can
detect and kill cancer cells lacking MHC I and senescent, stressed,
and virus-infected cells. And can by delivering GNLY via
nanotubes, specifically, kill bacteria in DCs, macrophages and
trophoblasts, without harming host cells. We also examined the
vast interactions with other immune cells of innate and adaptive
immunity. It is clear at this point that NK cells are not created to do
a unique specific task. This bewildering range of tasks will require
many functionally adaptive or reprogramed NK cell states. This is
probably achieved through origination from two lineages and
egress at early stages from the bone marrow and subsequent
wide variety of spatiotemporal education and maturation
processes from which heterogenous NK cell populations emerge.
Therefore, when using NK cells for therapeutic purposes, are these
functionally adaptive/reprogrammed states of NK cells optimal?
For example, the potential for reciprocal crosstalk between
cytokine-producing CD56bright subset, which accumulates in
draining lymph nodes634 with comigrating neutrophils,635 sug-
gests an important role of this subset in the development of
adaptive immune responses. Similarly, the CD56bright, CD16neg NK
cell subset high antioxidative capacity and resistance to ROS
produced by neutrophils636 suggests this subset more than the
CD56dim, CD16pos is more suitable to resist inhibition by tumor
resident neutrophils and participate in the cross-talk between
neutrophil NK and DCs. Additionally, the downregulation of
NKp46 and NKG2D expression, induced by phagocytes produced

ROS was observed in the CD56dim but not the CD56bright subset of
NK cells.637 On the other hand, a clear advantage of CD56dim and
CD16pos is their potential combination with therapeutic anti-
bodies. Additionally, CD56bright, like uneducated NK cells respond
to inhibitory signals with strong production of phosphatase SHP-1,
leading to rapid inactivation (Fig. 10), while CD56dim, educated,
licensed NK cells produce less SHP-1 when encountering these
inhibitory ligands, allowing them to better resist inhibition.145

Similarly, clonal NK cell lines isolated from patients have distinct
phenotypes reflecting NK cell diversity. They, however, provide a
homogenous starting population that allows precise genetic
engineering that is only limited by imagination. However, most
genetic modifications on NK cell lines often implement progresses
made in CAR-T for T-cells, not based on NK cell biology. For
example, the NK-92 cell line, with its superior anticancer proper-
ties, has not been radically engineered to proliferate in vivo under
suicide switches in animal models to test whether this prolifera-
tion can eradicate tumors. Studies showing that suicide switches
can control NK-92 proliferation in vivo are also lacking. The fact
that clinical trials using NK-92 showed little benefit suggests that
NK-92 still needs further improvement by engineering. NK cells are
among the early responders, and by lysing cancer cells, they
expose tumor antigens to the care of DCs, which present them to
T-cells in tumor-draining lymph nodes to induce polarization of
CD4 T-cells into Th1 helper cells and the conversion of CD8 T-cells
into cytotoxic T-cells (CTL). NK cells again intervene to allow the
polarization of CD4 T-cells by secretion of IFNγ, which is also
enhanced by IL-12 from DCs. This collaboration between DCs, NK,
and T-cells is the prelude to establishing an effective adaptive
anti-tumor immunity. The killing of immature DCs and activated
T-cells by NK cells through the NKp30 and the modulation of MHC
I HAL-E expression to prevent the killing or facilitate it, solidifies
NK cell role in shaping adaptive immunity with significant
consequences on CAR-T and NK-mediated immunotherapies.
Therefore, strategies using NK cells will likely work if NK cells are
engineered to enhance DCs and T-cell responses and to access
and survive in the TME.
Immune checkpoint blockade has become a cornerstone in

cancer immunotherapies. However, combinations with agents that
block immunosuppression in the TME are necessary. Lymphode-
pletion and radiation therapy can help in this direction, but
lessons learned suggest it will not be enough. An important
direction is the genetic engineering of NK cells to create robust
and versatile signaling incorporating several activation pathways
found in NK cells without hyperactivating and exhausting NK cells.
Another lesson learned is that NK cells can switch sides and play a
supportive role in tumors and metastasis. Whether genetic
engineering can preclude this is an important direction. Aside
from cancer immunotherapy, NK cells can recognize stressed and
senescent cells, and this developing area could prevent the
development of cancers. This is an exciting direction for which
genetically engineered NK cell lines might be more suitable.
CARs and TCRs not only enhance the killing of targeted cells but

may also help the directional homing by collecting NK cells in
antigen-rich tumors. Similarly, ectopic chemokine receptor expres-
sion could dramatically improve NK cells homing into tumors.
Inhibition of IDO, PGE2, A2aR, and TGFβ, coupled with factors that
enhance tumor perfusion, such as metronomic chemotherapy,
which also increases NK cell recruitment into tumors, may
enhance NK-mediated immunotherapies. Like CAR-T, the suc-
cesses reported using CAR-NK immunotherapies are mostly for
hematological cancers. Patients who respond can also relapse,
suggesting either a lack of NK cells persistence, exhaustion, or
possibly a conversion to a pro-tumorigenic function. While the
two first possibilities could be remedied by genetic engineering, a
re-education of NK cells in the cancer patient leading to a
conversion into a less protumor phenotype would be a complex
problem to solve. Such conversion could be determined by single-

Fig. 10 SHP-1 content is modulated by licensing and determines the
degree of activation. CD56bright uneducated NK cells respond to
inhibitory signals with strong production of phosphatase SHP-1,
leading to their rapid inactivation, while educated, licensed CD56dim

NK cells have reduced SHP-1 production when responding to
inhibitory ligands, allowing them to resist deactivation
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cell RNAseq analysis of CAR-NK cells from patients. For example,
treatment with TFGβ1 converts NK cells to a less cytolytic state like
ILC1s, presumably through the loss of EOMES. Blocking or
reverting this conversion could restore NK cell cytolytic activity.
Another possible way to enhance NK function is by targeting

intracellular checkpoints. VAV1 is the hub for various activating
and inhibitory pathways, acting as a switch to turn off NK
activation and prevent the downstream activation cascade268

(Fig. 5). Preventing VAV1 deactivation could offer a potent means
to activate NK cells, with, however, the potential risk of higher
toxicity to normal tissues. The dominant inhibitory signals
originate from MHC I engagement with KIRs, leading to
phosphorylation of their ITIMs domain, which creates a docking
space for SHP-1 and SHP-2. The involvement of SHP-1 in VAV1,
PIP3, and SLP76 dephosphorylation has been established,265,638

while SHP-2 dampens NK cells cytotoxicity, independently of KIR
inhibition.639 Another regulator of NK cell function is CIS (cytokine-
inducible SH2-containing protein). CIS is a member of the Socs
family and targets STAT activation. The knockout of the CIS gene
was reported to substantially improve CB-NK expressing soluble
IL-15.488

The journey to enhance NK cell cytotoxicity and persistence is
following in the footsteps of CAR-T development. However, there
is a clear need to engineer activation signaling and co-stimulatory
molecules specific to NK cells and their biology. The use of
cytokine(s) and multiple activation signals will be mandatory.
Incorporating elements to resist/modulate the TME will be
necessary to allow NK cells to survive and engage in fruitful
cross-talks with other effectors of immunity. The use of CARs, TCRs,
ICI, engagers, radiation therapy, or bespoken chemotherapy
regimens need to be optimized to increase the therapeutic
efficacy of NK cells. All these improvements might benefit from
immunomodulation by beneficial environmental factors and the
strengthening of indoles-producing microbiota that enhance the
immune response. These interventions could easily be incorpo-
rated into any treatment, and their beneficial impact merits further
investigations.

FORWARD-LOOKING PERSPECTIVE
Since the early 1970s, substantial research efforts have aimed to
unravel NK cells’ functions and killing mechanisms. This effort is
dwarfed by the extensive focus on adaptive immunity cells
discovered earlier and which are fundamental to vaccine efficacy.
As our understanding deepens, it becomes evident that NK cells
are diverse populations engaged in various roles, using a complex
balance of activating and inhibitory receptor signaling. Unfortu-
nately, this balance does not always lead to desired outcomes,
such as in cancer patients.
Two recent groundbreaking studies have identified the

progenitor of NK cells, emphasizing that EOMES is crucial in
differentiating NK cells from non-cytolytic ILC1s. Interestingly, NK
cells exposed to TGFβ or Activin acquire a gene signature similar
to ILCs, suggesting that NK cell exhaustion might involve reverting
to an ILC state. Another significant study revealed that NK cells
could kill activated T-cells, including CAR-CD19 T-cells, a capability
they already possess against immature DCs. This finding raises
important questions: Do patient NK cells hinder current CAR-T
therapies? Could NK-mediated immunotherapies undermine the
patient’s T-cell compartment, limiting adaptive immunity? And
might combining CAR-T and CAR-NK therapies be counter-
productive? Using high-dimensional single-cell analysis of human
natural killer cells, an equally groundbreaking advance delineated
three major populations of mature NK cells in PB.42 Two
populations, NK1 and NK3, originated from ENKPs, and another
NK2, originated from ILCPs. Which of these populations is a perfect
fit for natural killer therapies remains to be confirmed.

Promising advances in NK-mediated immunotherapies are
emerging, with numerous clinical trials underway90,487,590,640

(Table 1), making the full potential of NK cells increasingly
attainable. These advances are bolstered by novel signal
transduction engineering and precise gene editing using
CRISPR/Cas9 technologies. Single-cell RNA sequencing (scRNA-
seq) offers a detailed view of individual NK cell transcriptomes,
enabling the identification of distinct NK cell subpopulations and
their functional states.42 AI-driven clustering algorithms can
categorize these cells based on gene expression, identifying
subsets with enhanced cytotoxicity or resistance to tumor-induced
immunosuppression and uncovering key regulatory genes and
pathways. AI can design next-generation CARs for NK cells based
on specific NK activating receptors, avoiding issues of exhaustion
and overactivation. AI can optimize the ex vivo expansion and
activation of NK cells, enhancing their potency and viability.
Personalized data can guide the design of genetically engineered
NK cells tailored to individual patient needs. Additionally, AI can
identify synergistic combinations of NK cell therapies with other
treatments, such as checkpoint inhibitors or cytokines.
Engineering autologous NK cells could address persistence

issues more effectively than haploidentical transfers, especially if
the KIR advantage of allogenic NK cells could be replicated
through gene editing. AI can also predict which haplotype would
persist more in a given patient. CAR-NK therapies may offer a
cost-effective alternative to current prohibitively expensive CAR-
T therapies, potentially improving access to treatment. Banking
NK cells for multiple uses in multiple patients, particularly for
cells from CB, could help bridge this gap. However, more clinical
trials in large animal models, such as dogs with spontaneous
tumors, are needed to validate therapies for tumors with similar
signatures in humans and dogs, like osteosarcoma. Given recent
reports of CAR-T lymphoma risks,641 this approach could also
test the safety of new immunotherapies due to potential risks
associated with gene editing strategies, with possible off-target
effects, which might also be seen in CAR-NK therapies if used at
larger scales. In this regard, more research is needed to examine
the safety of combining elements that could increase the fitness
and survival of NK cells but may lead to a gain of function. NK
cell immunotherapies are extending to autoimmune diseases
such as SLE with several clinical trials launched and recruiting
(Table 1). These are targeting the B-cell compartment for
elimination via CAR-CD19-NK. For other autoimmune disorders,
NK cells expressing the extracellular domain of PDL-1 can target
autoreactive T cells, which overexpress PD-1. This strategy has
shown efficacy in the preclinical model and might be applicable
to autoreactive follicular T-cells.642 Another encouraging direc-
tion is the bourgeoning of NK cell engagers as a safe way to
enhance NK cells without genetic modifications. However, it
appears they will not be sufficient as monotherapy and must be
combined with other modalities. Engineering engagers with
cytokines such as IL-15 provide better survival to NK cells.
(reviewed41).
This is a time of great promise. As we gain deeper insights into

NK cell signaling and the molecular mechanisms of their activation
and inhibition, advances in NK-mediated immunotherapies will
accelerate, leading us toward a brighter future.
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