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Abstract

A major consequence of anthropogenic climate change is the intensification
and extension of drought periods. Prolonged drought can alter conditions in
drained peatlands and cause disturbances in microbial communities in the
topsoil layer of the peat. Varying environmental conditions throughout the
growing season, such as the availability of organic matter and nutrients,
temperature and water table, further impact these communities and conse-
quently affect carbon and nutrient cycles. The impact of drought and new
forestry practices is largely unknown in drained peatland forests. We exam-
ined how microbial communities change over a growing season in different
harvesting intensities (continuous cover forestry, clear-cut and uncut) in a
drained peatland site using bacterial 16S and fungal ITS2 rRNA analysis.
We found seasonal differences in bacterial and fungal diversity and species
richness, and subtle changes in microbial communities at the phylum and
genus levels when comparing various environmental factors. Diversity, spe-
cies richness and relative abundance differed in spring compared to sum-
mer and autumn. However, significant differences in the microbial
community structure were not detected. Understanding the responses of
microbial communities to disturbances like drought and other environmental
factors provides new insights into the consequences of climate change on
drained forested peatlands.

transpiration and interception, which in turn depend on
the forest stand characteristics such as stand volume

Climate change is predicted to increase the risk of sum-
mer droughts and other extreme weather conditions.
These changes may alter the composition, structure
and function of soil microbial community and enzyme
production, and ultimately affect soil C and nutrient
cycling (Bogati & Walczak, 2022; Li et al.,, 2024;
Venalainen et al., 2020; Xu et al., 2021). The impact of
drought varies with the soil type, vegetation, depth,
season and microbe characteristics (Cordero
et al., 2023; de Souza et al., 2024; Lamit et al., 2021;
Peltoniemi et al., 2009; Veach et al., 2020; Wang,
Meister, et al., 2022; Xu et al., 2021; Yang et al., 2024).
The severity of drought is affected by evaporation,

and leaf mass (Launiainen et al., 2016). In peatlands,
different layers of peat and surface vegetation can
impact the microbial responses to drought significantly.
The shift in communities caused by these factors is
more visible in the top layers of the peat than in the
deep layers (Lamit et al., 2021). Lowering of the water
table (WT) has been shown to benefit fungi and
increase bacterial and fungal biomass (Andersen
et al., 2013; Jaatinen et al., 2008), resulting in more effi-
cient aerobic decomposition. Bacteria and fungi are
responsible for organic matter decomposition, but fungi
have stronger links to plants through mycorrhiza,
whereas the relationships between plants and bacteria
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are less tight (Baldrian, 2017; Mundra et al., 2022). In
controlled laboratory conditions, drought has caused
changes in the community composition of microbes in
peat (Potter et al., 2017). The study by Peltoniemi et al.
(2009) included drained peatland sites, where drought
was noticed to have changes in communities, espe-
cially in fungi and Actinobacteria. However, the overall
effects of drought on microbial communities are poorly
understood in boreal-drained forested peatlands.

Boreal forests and peatlands are globally significant
reservoirs of carbon (C) (Bradshaw & Warkentin, 2015;
Wieder et al.,, 2006). This function is affected by
weather conditions, forest management and climate
change (Charman et al., 2013; Harenda et al., 2018).
Weather conditions and forest harvesting induce
changes in soil temperature and moisture, WT, oxygen
availability, soil pH and the amount and quality of
organic matter input (Baldrian, 2017; Briones et al.,
2014; Jaatinen et al., 2008; Keiluweit et al., 2016;
Laiho, 2006; Peltoniemi et al., 2009; Peltomaa
et al., 2022). In Finland, nearly half of the original peat-
land area (10 M ha) has been drained for forestry,
majority of which was drained for the first time 50—
60 years ago. Drainage improves tree growth,
increases peat decomposition, alters the amount and
species composition of ground vegetation and onsets
the formation of raw humus layer over the original peat
(Kaunisto & Moilanen, 1998; Laiho, 1997). The raw
humus layer contains a significant nutrient pool
(Kaunisto & Moilanen, 1998) and the majority of the fine
roots of trees are concentrated in this layer (Lampela
et al., 2023; Wei et al., 2023). The physical and chemi-
cal characteristics of the raw humus layer are similar to
those of mor, an organic soil layer found in upland min-
eral soils (Laurén, 1999). Microbial communities in pris-
tine peat and upland mor layers have been studied
(Andersen et al., 2013; Kitson & Bell, 2020), but studies
on microbial communities in raw humus of drained
peatlands are scarce. The large amount of horizontally
oriented macropores in the humus layer restricts the
capillary rise of water from the underlying WT to
the humus layer. This maintains good aeration in the
root layer during wet periods. However, it also makes
the humus layer vulnerable to drought during dry
periods, which can disrupt microbe-mediated nutrient
cycling. Therefore, it is essential to study the drought-
induced changes in microbial communities, as the sup-
ply of nutrients from decomposing organic material is
the most important factor regulating forest growth in
drained peatlands (Laurén et al., 2021).

Peatland forest management, such as drainage and
harvesting, induces differences in the vegetation, which
in turn affects the microbial communities due to changes
in organic matter input (Laiho, 2006; Peltoniemi
et al., 2009). Forest stand characteristics, including tree
species, leaf mass and basal area, can affect the
interception capacity (Launiainen et al., 2016) and
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evapotranspiration and therefore also affect WT and
drought intensity. Mature spruce stands with high leaf
mass are particularly vulnerable to drought (Netherer
et al., 2024). Activities like harvesting and drainage can
affect the WT, oxygen availability, organic matter quality
and chemical properties of soil (Peltomaa et al., 2022).
Furthermore, new forest management methods such as
continuous cover forestry (CCF) are becoming more
common. The CCF preserves part of stand and ground
vegetation, maintaining more stable soil moisture and
temperature conditions and maintains a higher potential
for C accumulation than clear-cut or uncut forests.
Therefore, CCF can be expected to cause fewer
changes in the microbial community than clear-cutting
(Kim et al., 2021; Roth et al., 2023).

The rRNA transcripts have been used to identify
active populations in mixed microbial communities
(Blazewicz et al., 2013; Salgar-Chaparro & Machuca,
2019). By adapting these methods, we can obtain a
snapshot of the microbial functional groups in the soil.
However, using rRNA ftranscripts to determine the
microbial community does not fully capture the active
community, as rRNA represents the potential for
the activity, rather than the activity itself (Blazewicz
et al,, 2013). Furthermore, when studying only the
active community, the samples often contain 16S rRNA
genes from dead or dormant cells (Li et al., 2017). As a
part of the ribosome, rRNA is involved in cell physiology
and changes, and therefore can be linked to the com-
munity members that are or have recently been active
(Gourse et al., 1996; Kerkhof & Ward, 1993; Poulsen
etal., 1993).

This study aimed to examine the effects of drought,
seasonal changes and forest harvesting intensity on
bacterial and fungal communities in the topsoil layer
consisting of raw humus and surface peat of dried peat-
land forest over a growing season. During the experi-
ment, there was a prolonged drought period in the
summer. Our Norway spruce-dominated study sites
were treated with clear-cut, selective cutting (CCF),
whereas one of them was left uncut providing us with a
set of different moisture regimes within the same study
area. We used bacterial 16S and fungal ITS2 rRNA
analysis to discover the present active community
members. We hypothesized that (1) the microbial com-
munities vary seasonally and respond to drought,
(2) the bacterial and fungal communities show different
responses to drought and (3) their responses are
dependent on forest stand characteristics.

EXPERIMENTAL PROCEDURES
Site description and sampling

Soil samples were collected from a nutrient-rich drained
peatland forest dominated by Norway spruce (Picea
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abies (L.) Karst.) in Paroninkorpi (61.01° N, 24.75° E) in
Southern Finland. The ditch network was established at
the beginning of the 1960s and underwent ditch clean-
ing in 2018. The current ditch spacing is 50 m, the
depth is ca. 0.6 m, and the peat deposit is >1.5 m deep
and formed of a thin raw humus layer (5—10 cm) over-
laying moderately decomposed Carex-wood peat. The
site was divided into plots (40 x 40 m) representing
three harvesting intensities: (1) clear-cut (all trees
removed, basal area 0 m? ha "), (2) CCF (basal area
12m?ha~") and (3) uncut forest (the basal
area 25 m? ha™"). The harvesting was conducted when
the thick snow cover protected the ground vegetation
and soil in February 2017. The ground vegetation was
formed by dwarf shrubs (Vaccinium myrtillus L., V. vitis-
idaea L.), mosses (mainly Pleurozium schreberi Brid.,
Hylocomium splendens (Hedw.). Schimp. and some
Sphagnum sp.), and ferns in the CCF and uncut plots.
In the clear-cut plots, thick patches of raspberry (Rubus
idaeus L.) and birch (Betula sp.) had taken over the
site, along with young Norway spruce seedlings planted
in 2018. The pH, C and N content and C:N ratio of the
peat in management plots are shown in Table 1 to pro-
vide background information on the area’s characteris-
tics. More detailed descriptions of the study site can be
found in Palviainen et al. (2022) and Peltomaa
et al. (2022).

Soil samples for the soil microbial community analy-
sis were collected from the surface soil including raw
humus and surface peat (0—10 cm) in the spring (May),
summer (July), and autumn (September) of 2021. The
samples with three replicates were taken 1 m apart
from each other in the middle of each plot, ca. 20 m
from the ditches. The sampling placement (80 m
between the plots) was selected to avoid edge effects
from different directions (at least 2 x height of the
trees) and for standardization of drainage effect (dis-
tance from the ditches). The ground vegetation was
removed prior to sampling. Soil cores were collected
using a cylinder sampler (diameter 3 cm). The soil was
homogenized in a sterilized container by shaking, and
then transferred to a sterilized 50 mL plastic tube, pre-
served with DNA/RNA Shield (Zymo Research, CA,
USA), and placed on ice. The tubes were stored at
—20°C before RNA extraction in the laboratory. Soil
temperature in the field was measured at a depth of
10 cm using a digital stick thermometer (Orthex Group,
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Finland). The WT was monitored from groundwater
tubes installed down to 1 m depth (see Palviainen
et al., 2022 for further details) located within a 1-2 m
distance from the soil sampling points. Weather data
was collected ca. 20 km from the study site (Lammi
Pappila weather station), by the Finnish Meteorological
Institute.

RNA extraction and sequencing

RNA was extracted from the soil samples using the
RNA PowerSoil® Total RNA Isolation Kit (Qiagen,
Ireland) following the manufacturer’s instructions. RNA
concentration was verified using the Qubit RNA High
Sensitivity RNA Assay Kit (Invitrogen, Life Technolo-
gies, CA, USA) and Qubit 2.0 fluorometer (Invitrogen).
Complementary DNA (cDNA) was synthesized using
the Quantinova Reverse Transcription Kit (Qiagen).

The samples were sequenced by Novogene Com-
pany Ltd. (UK) using a sequencing depth of 100 K raw
tags (a recommendation for complex data such as soil
samples). For the amplicon generation, the bacterial
V3-V4 region of the 16S rRNA gene was amplified
using the primer pair 341F/806R (Table 2; Herlemann
et al.,, 2011), whereas the primer pair ITS3-2024F/
ITS4-2409R (Table 2; Bellemain et al., 2010) was used
for the fungal internal transcribed spacer 2 (ITS2)
region. The PCR products were selected by 2% aga-
rose gel electrophoresis, end-repaired, A-tailed and fur-
ther ligated with lllumina adapters. The libraries were
sequenced on a paired-end lllumina platform to gener-
ate 250-bp paired-end raw reads.

Samples were further processed by using QIIME2
(Version 2024.5; Bolyen et al., 2019). The primer
sequences (Table 2) were discarded by using Cutadapt
(Martin, 2011). DADAZ2 (Callahan et al., 2016) pipeline
was used to detect and correct lllumina amplicon
sequence data, filter any phiX reads and chimeric
sequences and merge paired reads. It should be noted
that whereas bacterial sequences were run with for-
ward and reverse sequences, fungal sequences were
only run with forward sequences. This was done due to
the low quality of the autumn samples. The spring sam-
ples were good quality. The bacterial sequences were
truncated at 170 bp (forward) and 200 (reverse). Fungal
sequences were truncated at 220 bp. The truncation

The pH, carbon (C) and nitrogen (N) content as well as the C:N ratio of the peat in 2021 in the clear-cut, continuous cover forestry

TABLE 1
(CCF) and uncut forest plots (data from the Natural Resources Institute Finland).
Forest management pH
Clear-cut 4.04 (0.18)
CCF 3.90 (0.19)
Uncut 3.76 (0.16)

Note: Standard deviations are given in parenthesis.

C(gkg™ N (g kg™ C:N-ratio
51 (4.8) 1.9(0.2) 27 2.7)
51 (4.4) 22(02) 23(2.7)
47 (2.5) 1.9(0.2) 24 (2.5)



4 0of 17

HILLGEN ET AL.

ENVIRONMENTAL MICR ‘W

TABLE 2 Primers used in amplicon sequencing of the bacterial 16S and the fungal internal transcribed spacer 2 (ITS2) regions.

Amplified region
Bacterial 16S V3-V4

Fragment length
470 bp

Fungal ITS2 380 bp

was decided based on the quality of the samples. The
tree for phylogenetic diversity analyses was created by
using QIIME2 phylogeny plugin. Taxonomic analysis
was done using pre-trained classifiers. For bacteria,
SILVA 138 SSU database and classifier were used
(Robeson et al., 2020; https://www.arb-silva.de) and for
fungi UNITE v.10.0 (Version 04.04.2024; Abarenkov
et al., 2024; https://unite.ut.ee/). The classification was
done using scikit-learn (Pedregosa et al., 2011) and the
sequences were assigned to ASVs (amplicon sequenc-
ing variants).

Statistical analyses

All statistical testing was performed with R software
(version 4.3.2). Statistical testing, data normalization,
rarefaction, diversity and richness analyses and exami-
nation of community composition were performed using
Phyloseq (version 1.46.0). In statistical testing, p-
values <0.05 were considered significant. Data was rar-
efied (minimum sequencing depth reduced by 10%)
and alpha diversity indices, observed species, species
richness (Chao1; Chao, 1984) abundance-based cov-
erage estimator (ACE; Chao & Lee, 1992) and diversity
(Shannon index; Shannon, 1948 and Simpson index;
Simpson, 1949) were calculated. The normality of the
data was checked using Shapiro—Wilk test (Shapiro &
Wilk, 1965) and Q-Q plots. Differences in alpha diver-
sity between seasons and harvest intensity were then
examined using the Kruskal-Wallis test (Kruskal &
Wallis, 1952), as data was not normally distributed and
included multiple groups. Differences were then visual-
ized using a boxplot. Lastly, the differences were fur-
ther examined using the Wilcoxon rank-sum test
(Mann & Whitney, 1947). Principle coordinate analysis
(PCoA) plots were created using Bray—Curtis dissimi-
larity matrix to visualize community-level sample dis-
similarity (beta diversity). Dominant taxa were
calculated for bacterial and fungal phyla. The relative
abundance of bacterial and fungal phyla was visualized
using barplots. The hierarchical clustering of the rela-
tive abundance of the most common 35 bacterial and
fungal genera was examined using a hierarchical clus-
tering heatmap. Statistical differences in beta diversity
and relative abundances on a phylum and genus level
in relation to multiple environmental factors (season,
harvest intensity, WT, pH and soil temperature) were

Primers Sequences (5'-3')

341F CCTAYGGGRBGCASCAG
806R GGACTACNNGGGTATCTAAT
ITS3-2024F GCATCGATGAAGAACGCAGC
ITS4-2409R TCCTCCGCTTATTGATATGC

examined using non-parametric permutational multivar-
iate analysis of variance (PERMANOVA) ‘adonis2’
function of the vegan package (version 2.6-6.1). Rela-
tionships between the samples were examined and
visualized using the UpSet plot.

RESULTS
Weather and WT

The average air temperature of the preceding month
before samplings was 3.69°C in spring, 20.0°C in sum-
mer and 14.0°C in autumn. The precipitation sums for
the corresponding times were 27.5, 34.3, and
115.5 mm, respectively. The daily weather data is pre-
sented in Figure S1. The low summertime precipitation
was reflected in the WT, which was significantly lower
(p <0.05) during summer than in spring sampling
(Table 3). Additionally, the soil temperatures were
higher in summer than in spring in all plots (p <0.05)
(Table 3). According to the Finnish Meteorological Insti-
tute, the summer of 2021 was the second warmest in
statistics from the beginning of the 20th century for the
whole country. From June to August, the average num-
ber of hot weather days (>25°C) for the whole country
was 50, while the normal average for the same period
is 33 days. The average temperature during this
period in the study area was 21°C. From the last days
of June to mid-July, there was almost no rainfall at all in
the study area. The average temperature during this
period in the study area was 21°C. The highest daily
average temperature during the same period was
24.5°C and the lowest 18°C. This period consists of
18 days with only one with 2.2 mm of precipitation and
11 consecutive days without precipitation. The average
precipitation during summer was quite typical for the
whole country. However, the precipitation did not
spread evenly over the summer, and there were
periods with almost no rainfall (June and July) and
heavy rain (August).

16S-rRNA and IT2-rRNA gene sequencing
results

Amplicon sequencing of bacterial 16S rRNA sequences
resulted in, on average, 73,467 effective and 71,386
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TABLE 3 Soil temperatures and water table (WT) in the clear-cut, continuous cover forestry (CCF) and uncut in spring, summer and autumn

sampling.

Sampling Forest management

Spring Clear-cut
CCF
Uncut

Summer Clear-cut
CCF
Uncut

Autumn Clear-cut
CCF
Uncut

annotated tags (Figure S2, Table S1). However, due to
the low amount of bacterial RNA, the 16S sequencing
could not be performed for one clear-cut sample in the
spring, one CCF sample in the summer and two uncut
forest samples in the autumn. The amplicon sequenc-
ing of fungal ITS2 rRNA sequences resulted, on aver-
age, in 83,751 effective and 60,518 annotated tags
(Figure S2, Table S1). However, none of the summer
samples contained enough high-quality fungal RNA for
sequencing. Like the bacterial RNA, the fungal RNA
was low for one clear-cut and one CCF sample in the
spring, and two clear-cut samples in the autumn, result-
ing in no ITS2 sequencing. Further analysis produced
10,317 bacterial and 5660 fungal ASVs.

Good’s coverage ranged from 95% to 99%
(Table S2), indicating that most of the bacterial and fun-
gal types have been detected in the samples. ASV
classification resulted in 53 phyla, 137 classes,
296 orders, 477 families and 789 genera for bacteria
and 12 phyla, 23 classes, 35 orders, 42 families and
39 genera for fungi.

Bacterial and fungal community richness
and diversity

Overall, species richness and diversity were highest in
spring compared to summer and autumn. Examining
observed species, alpha diversity (Shannon and Simp-
son) and species richness (Chao1 and ACE) revealed
no statistical differences between bacterial or fungal
richness and diversity and harvest intensities.
Observed species and diversity and richness were
highest in spring for bacteria and in autumn for fungi
(Table S2; Figure 1). Additionally, statistical differences
(p <0.05) could be detected between seasons. For bac-
teria, comparing spring to summer and autumn resulted
in significant statistical differences, but there were no
statistical differences between autumn and summer,
and in Simpson analysis between spring and summer
(Figure 1A). For fungi, the difference in species

Soil temperature (°C) (WT, positive down; cm)

6 49
4 42
3 58
25 99
18 90
17 102
12 69
12 41
11 62

richness and diversity was also statistically significant
between spring and autumn (Figure 1B).

PCoA analysis (beta diversity) showed dissimilarity
in microbial communities. There was a distinct structure
in bacteria between spring samples and autumn and
summer samples (Figure 2A). Statistical testing
revealed a highly significant difference (p <0.01)
between seasons in bacterial beta diversity. Likewise,
PCoA analysis revealed a distinct structure between
spring and autumn in fungal beta diversity (Figure 2B).
Fungal communities also showed significant differ-
ences in beta diversity (p <0.05) between seasons but
not as strongly as bacteria.

Bacterial and fungal community
composition

The most common phyla for bacteria and fungi accord-
ing to relative abundance in different samples are pre-
sented in Figure 3. For fungi, unassigned phyla were
largely present in the samples. The most abundant bac-
teria in the phylum level were Acidobacteriota, Proteo-
bacteria and Actinobacteria. The most abundant fungal
phyla were Basidiomycota and Ascomycota. In spring,
Acidobacteriota accounted for 77.8% of the dominant
taxa, followed by Proteobacteria (22%). During sum-
mer, Proteobacteria dominated all the samples and
accounted for 100% of the dominant taxa. Proteobac-
teria was also the most dominant in autumn (62%) but
was accompanied by Acidobacteria and Actinobacteria
with 12.5% share each. The fungal communities were
dominated by Basidiomycota and Ascomycota. In
spring, Basidiomycota covered 57.1% of the dominant
taxa, whereas Ascomycota covered 28.6%. However,
during autumn, Basidiomycota covered only 14.3% and
Ascomycota was not among the dominant taxa. Unas-
signed phyla were significant in both seasons, account-
ing for 14.3% in spring and 85.7% in autumn. The most
dominant bacterial phyla in all harvest intensities were
Proteobacteria and Acidobacteriota. In clear-cut,
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higher diversity. The observed species is named ‘Observed’. The asterisks mark statistical significance (*p <0.05, **p <0.01).

Proteobacteria covered 62.5% and 25% of dominant (66.7%), in CCF Basidiomycota (40%) and in uncut
taxa, in CCF the equivalent percentages were 50% and Basidiomycota (50%). Additionally, unknown phyla
38%, and in the uncut site 57.1% and 42.9%. Dominant ~ were dominant in all harvest intensities (in clear-cut
fungal communities in clear-cut were Ascomycota 33%, in CCF 60% and in uncut 50%). Permutational
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multivariate analysis of variance did not reveal statisti-
cal significance between season or harvesting intensity
on a phylum level. Only bacterial phylum, Myxococcota
showed statistical significance when it comes to har-
vest intensity (p <0.05).

The most common bacterial and fungal genera,
according to relative abundance in different samples,
are presented in Figure 4. The share of unassigned

genera was high, especially in fungal samples in autumn.
Bacterial genera Pseudomonas (Pseudomonadota)
varied significantly with soil temperature (p <0.05). Addi-
tionally, genus Roseiarcus (Pseudomonadota) varied sig-
nificantly with the season (p <0.05), and uncultured
eubacterium WD260 varied significantly with WT. When
examining the hierarchical clustering of the samples from
the genus-level heatmaps (Figure 5), bacterial and fungal
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samples cluster according to season and harvest
intensity. Spring samples, in particular, cluster together,
whereas there is slightly more variation in clustering with
summer and autumn samples in both bacterial and fungal
relative abundance. Examining the Upset plot (Figure 6A)
revealed that in bacteria spring samples share the great-
est number of ASVs. Despite the season and harvest
intensity, the summer and autumn samples share much
less ASVs. The least shared ASVs are with samples
taken from clear-cut in summer and autumn. In fungi
(Figure 6B), the number of shared ASV’s is more moder-
ate. However, autumn samples (despite the harvest

intensity) share the greatest number of ASVs. Spring and
autumn samples taken from uncut, clear-cut samples in
spring and CCF samples in spring also all share a high
amount of ASVs.

DISCUSSION

We examined seasonal changes, the effects of pro-
longed drought periods during summer, and harvesting
intensity on bacterial and fungal communities in drained
forested peatlands over one growing season. We
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hypothesized seasonal changes in microbial communi-
ties. While the bacterial and fungal species richness
and diversity did vary seasonally, there were only sub-
tle changes in relative abundances in bacterial commu-
nities. It has been found that the diversity and
community structure can be significantly different at the
beginning of the growing season compared to the end
(Santalahti et al., 2016; Shigyo et al., 2019; Wan
et al., 2024). Additionally, in Wang et al. (2021) eukary-
otic microbiomes, including fungi, showed significant
shifts in community structure in rewetted peatlands,
whereas in prokaryotic microbiomes were less prone to

change. Although no seasonal variation was detected
in the fungal relative abundances in our study, the
drought period during the summer likely affected
the fungal samples. This leads to an open question of
whether the fungal communities are more vulnerable to
drought.

During the summer drought, WT dropped 50 cm in
clear-cut, 48 cm in CCF and 44 cm in uncut forest. After
the precipitation increased, WT rose by 30 cm in clear-
cut, 21 cm in CCF and 40 cm in uncut forest. Seasonal
droughts have already been shown to decrease forest
growth in boreal areas (Aakala & Kuuluvainen, 2011;
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Brecka et al., 2018; Keiluweit et al., 2016), but their
effects on microbes and soil C processes are less
studied (Potter et al., 2017). In our study, the drought
potentially affected fungi and prevented high-quality
RNA for fungal sequencing in all experimental plots in
the summer and autumn. Fungi have been reported to
be more vulnerable to drought than bacteria (Allison &
Treseder, 2008; Jaatinen et al, 2007; Krivtsov
et al.,, 2006; Xue et al., 2021). Thus, increased drought
may negatively affect fungi-driven organic matter
decomposition and tree growth. Furthermore,
microbes have been shown to react to drought leading
to changes in the soil C cycle and decomposition in
other ecosystems and soil types such as grasslands
(Metze et al.,, 2023) and silt-clay loam soil (Xie
et al., 2021). Our results might potentially indicate that
drought may alter significantly microbially mediated C
and nutrient cycling because fungi are the primary
decomposers in boreal forest soils. However, the
question of whether fungal functions and community
structure are affected by drought remains open. It has
been studied by Wang, Wang, et al. (2022) that in
rewetted peatlands fungal and bacterial communities
change significantly during wet and dry periods, indi-
cating that microbial communities are susceptible to
extreme weather conditions. Our samples included a

high amount of unassigned fungal ASV’s especially in
autumn, which makes drawing further conclusions dif-
ficult. We argue that the matter should be further
investigated and studied in the future on forested
drained peatlands, as the drought evidently affected
the sampling and further analysis with missing sum-
mer samples for fungi.

We found clear seasonal changes in microbial rich-
ness and diversity, but no significant differences
between summer and autumn. The diversity and rich-
ness values were highest in spring for bacteria and
autumn for fungi. Spring samples also showed more
similarity for bacteria, whereas bacterial samples taken
in summer and autumn were not as tightly related to
each other. Fungal samples showed more systematic
separation into spring and autumn. Seasonal changes
in microbial diversity, richness and community compo-
sition have been examined and discovered in various
environments and combined with other environmental
factors like soil chemical properties and habitat charac-
teristics can affect the microbial community richness
and diversity (Luo et al.,, 2019; Shen et al., 2021;
Solanki et al., 2024; Wan et al., 2024; Yu et al., 2024).
Our results indicated that in drained peatland forests,
both bacterial and fungal species richness and diversity
are affected by seasonal changes, while bacterial
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diversity and richness are higher in spring, fungal
richness and diversity are higher in autumn.

The common phyla found among fungi and bacteria
are abundant in both peatland forests and peatlands
overall (Generd, 2017; Kalam et al., 2020; Santalahti
et al., 2016). Although Basidiomycota can be found
especially in the upper layers of the peat (Lusa &
Bomberg, 2021), they do not usually dominate the
fungal community in peatlands (Thromann, 2006),
whereas Basidiomycota are important and commonly
found ectomycorrhizal fungi in boreal forests
(Santalahti et al., 2016). In our study, the CCF and con-
trol communities were dominated by Basidiomycota in
spring. However, the relative abundance of both Basi-
diomycota and Ascomycota declined on our sites in
autumn. This might be due to the poorer quality of the

autumn samples, leading to a lower portion of assigned
ASV’s in the autumn samples. Additionally, we did not
find a statistically significant association between sea-
sons, harvest intensity or any other environmental fac-
tor studied like WT. In Peltoniemi et al. (2009),
Basidiomycota responded to the WT drawdown in peat
soil and the Ascomycota became the dominant phyla
after the treatment. Most soil fungi belong to Ascomy-
cota and Basidiomycota, which form mutualistic rela-
tionships with plants and decompose recalcitrant
organic C, including cellulose and polyphenolic com-
pounds (Lynd et al., 2002).

In bacteria Proteobacteria, Actinobacteriota and
Acidobacteriota are all common phyla in boreal peat-
lands and soils (Aislabie & Deslippe, 2013;
Generd, 2017; Kolton et al., 2022; Lewin et al., 2016;
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Sun et al.,, 2014; Zhang et al., 2014). They can be aci-
dophilic or aciduric bacteria (Curtis et al., 2002; Kalam
et al., 2020), and they respond differently to WT draw-
down (Kitson & Bell, 2020). Actinobacteriota have been
noticed to potentially respond negatively to WT draw-
down in wet and nutrient-rich sites, but benefit in
nutrient-poor sites (Jaatinen et al., 2007). Proteobac-
teria can respond positively or negatively to drought
(Potter et al., 2017), but the abundance increases dur-
ing rewetting (He et al., 2015). It has been noticed that
Acidobacteriota benefits from drainage in peat soil as
they become the dominant group (Urbanova &
Barta, 2016). In our samples, the relative abundance of
Acidobacteriota was quite stable but shifted in summer
and autumn, becoming more abundant in CCF (sum-
mer) and uncut (autumn). Furthermore, the relative
abundance of Proteobacteria increased across the har-
vest intensities, whereas the relative abundance of
Actinobacteriota stayed quite stable or increased
slightly towards summer and autumn. Additionally, we
found that the relative abundance of phylum Myxococ-
cota varied significantly between harvest intensity.
Forest harvesting affects stand and ground vege-
tation (Kim et al., 2021), microclimate (Chronakova
et al., 2019), and WT which is controlled by interception
and evapotranspiration (Sarkkola et al., 2013). The
changes in the vegetation affect microbes through
the soil-plant-microbial interactions (Mundra
et al., 2022; Schulp et al., 2008; Tedersoo et al., 2015;
Wardle et al., 2004), and the removal of trees alters
the light, temperature and moisture conditions. Myco-
coccota are unusual bacteria, capable of predation
and fruiting body formation (Thiery & Kaimer, 2020;
Wielgoss et al., 2019) and potentially photosynthesis
(Li et al., 2023). Myxococcota can be found in
various aerobic environments and their unique
ecology allows them to exist in several types of environ-
ments (Reichenbach, 1999), which could explain our
observations.

The relative abundance of bacteria was quite sta-
ble across the seasons and harvest intensities. The
Acidobacteriae Subgroup_2, related to phosphorus
‘mining’ in nutrient-poor soils (Jones et al., 2009;
Mason et al., 2021), was abundant in spring, poten-
tially indicating a higher springtime soluble phospho-
rus demand of plants. The genera related to the
decomposition of recalcitrant C, such as cellulose
(Acidothermus; Talia et al., 2012) and aromatic com-
pounds (Roseiarcus; Man et al.,, 2022), were more
abundant in spring than in autumn in the CCF and the
uncut forest potentially reflecting the changes in the
pool of labile substrates (Kirschbaum, 2013). Addition-
ally, Roseiarcus showed significant differences in rela-
tive abundance when compared to season. The
observations reflect the soil acidity and the ground
vegetation of the management plots since most of
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these genera are concerned as acidophilic
(e.g., Acinetobacter, Chloroflexi, AD3) and often
regarded as members of mosses’ or shrubs’ micro-
biome associated with N cycling in low N environ-
ments (e.g., Candidatus Solibacter, candidate phylum
WPS-2) (Holland-Moritz et al.,, 2018; Huber
et al., 2017; Jenkins et al., 2009; Kohler et al., 2021;
Kolton et al., 2022; Rodriguez-Mena et al., 2022; Tian
et al., 2019). The relative abundance of genus Pseu-
domonas was significantly different when compared
with soil temperature, and the relative abundance of a
genus of uncultured eubacterium WD260 differed sig-
nificantly when compared with WT. Fungal genera did
not differ significantly when compared with environ-
mental factors. However, the relative abundance of
ectomycorrhizal genus Asterostroma was high in all
harvest intensities in spring but declined in the
autumn.

To conclude, this study investigated the microbial
communities and drought in the topsoil layer of drained
forested boreal peatlands. Despite the limited research
on this topic, there is a growing demand for information
due to new forestry practices and the impacts of climate
change. We found some strong indications of seasonal
changes in bacterial and fungal community diversity
and species richness. Furthermore, some differences
were observed in bacterial phyla and genera based on
harvesting intensity, soil temperature, season and
WT. We found some potential indications of the effects
of drought, but due to the low quality of fungal samples
in summer and autumn we could not draw further con-
clusions about whether the fungal abundance was
affected by the drought. Additionally, there were no
indications that the drought affected the bacterial rela-
tive abundance. Since our study was carried out only
over one growing season, we suggest that similar
longer-term studies in varying weather conditions
should be conducted. As the seasonal droughts are
predicted to increase in boreal areas due to climate
change-promoted increase in temperature and evapo-
transpiration, as well as due to more irregular precipita-
tion patterns (Diffenbaugh & Field, 2013; Donat
et al.,, 2016; Gauthier et al., 2015; Ge et al., 2010;
Reyer et al., 2015), further examination of the effects of
prolonged drought periods on the microbial communi-
ties is essential.
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