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Tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is a major global public health 
problem, resulting in > 1 million deaths each year. Drug resistance (DR), including the multi-drug 
form (MDR-TB), is challenging control of the disease. Whilst many DR mutations in the Mtb genome 
are known, analysis of large datasets generated using whole genome sequencing (WGS) platforms 
can reveal new variants through the assessment of genotype-phenotype associations. Here, we 
apply tree-based ensemble methods to a dataset comprised of 35,777 Mtb WGS and phenotypic 
drug-susceptibility test data across first- and second-line drugs. We compare model performance 
across models trained using mutations in drug-specific regions and genome-wide variants, and 
find high predictive ability for both first-line (area under ROC curve (AUC); range 88.3–96.5) and 
second-line (AUC range 84.1–95.4) drugs. To aggregate information from low-frequency variants, 
we pool mutations by functional impact and observe large improvements in predictive accuracy 
(e.g., sensitivity: pyrazinamide + 25%; ethionamide + 10%). We further characterise loss-of-function 
mutations observed in resistant phenotypes, uncovering putative markers of resistance (e.g., ndh 
293dupG, Rv3861 78delC). Finally, we profile the distribution of known DR-associated single nucleotide 
polymorphisms across discretised minimum inhibitory concentration (MIC) data generated from 
phenotypic testing (n = 12,066), and identify mutations associated with highly resistant phenotypes 
(e.g., inhA − 779G > T and 62T > C). Overall, our work demonstrates that applying machine learning 
to large-scale WGS data is useful for providing insights into predicting Mtb binary drug resistance and 
MIC phenotypes, thereby potentially assisting diagnosis and treatment decision-making for infection 
control.

Tuberculosis disease (TB), caused by bacteria in the Mycobacterium tuberculosis Complex (MTBC), has a high 
public health burden, with 10.6 million cases and 1.3 million deaths in 2022 alone1. However, TB is curable, 
and with accurate diagnosis and effective treatment, it has the potential to improve disease control outcomes. 
The standard treatment is a 6-month course of 4 antibiotics, including isoniazid (INH), rifampicin (RIF), 
ethambutol (EMB), and pyrazinamide (PZA). However, growing resistance to first-line drugs, including RIF 
(RR-TB) and INH (HR-TB), together called multi-drug resistance (MDR-TB), presents a significant challenge to 
public health2. The development of more severe resistant phenotypes, such as pre-XDR-TB is also a key concern, 
and is defined by MDR-TB and the additional resistance to a fluoroquinolone, such as ciprofloxacin (CIP), 
ofloxacin (OFL), or moxifloxacin (MOX). For patients with MDR/RR-TB, the treatment regimen is comprised of 
bedaquiline (BDQ), prothionamide, linezolid and MOX, and for those who have pre-XDR-TB, the regimen can 
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be used without the fluoroquinolone3. Most alarmingly, is the increased prevalence of XDR-TB, which involves 
pre-XDR-TB and additional resistance to at least one Group A drug (e.g., aminoglycosides, BDQ, linezolid), and 
further restricts treatment options.

While phenotypic drug-susceptibility tests (pDSTs) and M. tuberculosis culture are generally regarded as 
the gold standard for diagnosis, genome sequencing technologies are increasingly being applied for strain 
identification and drug resistance prediction, providing valuable insights for clinical decision-making and 
surveillance activities. The development of resistance in M. tuberculosis is associated with point mutations 
in specific genes, mostly coding for either drug targets or activating enzymes. Putative resistance-conferring 
mutations against first-line drugs, particularly INH and RIF, have contributed to the development of WHO-
endorsed molecular-based diagnostics, which rely on targeted genotype assay methods, such as Genotype 
MDTBRplus (Hain Lifescience) or Xpert MTB/RIF (Cepheid). Sequencing-based in-silico rule-in classification 
methods have also been developed and can predict resistance across first- and second-line drugs using thousands 
of expertly curated drug-resistance mutations (e.g., TB-Profiler4). However, the full repertoire of mutations for 
resistance to second-line drugs is unclear, and larger structural variants, such as rare insertions or deletions 
(indels) and loss of function (LOF) variants, can play an important role in drug-resistance5. Further, some 
mutations (e.g., in gid gene) lead to low levels of resistance, which has been observed through differences in 
odds ratios6 and the analysis of minimum inhibitory concentration values (MICs) across drugs7.

With the increased application of whole genome sequencing (WGS), combined with the generation of pDST 
data, to assist TB diagnosis and management, there are opportunities for the application of computational 
methods to predict drug resistance phenotypes and characterise underlying mutations with greater 
sophistication8. These studies have included the application of statistical techniques, such as genome wide 
association study (GWAS) based regression approaches6, and the development of robust algorithmic approaches 
to infer drug-specific associations of genomic markers in the presence of co-occurring resistance phenotypes9. 
Machine learning (ML) techniques are particularly well suited for handling high-dimensional data and have 
demonstrated strong predictive performance in identifying drug resistance from M. tuberculosis WGS data. 
Such approaches are not only capable of predicting resistance, but can also be applied to draw insights into the 
mutations that hinder drug-susceptibility. For example, interpretable tree-based models have been a popular 
choice to mine TB genotype-phenotype associations and generate predictions10–12. In addition, kernel-based 
support vector machine (SVM)13 and deep-learning methods (Convolution Neural Networks)14,15 have also 
been utilised. Whilst these models can achieve high sensitivity in predictions, they do not always demonstrate 
a clear improvement in overall predictive performance, as measured by the area under the ROC curve (AUC), 
and often provide limited interpretability. It can also be difficult to implement published models, but recent 
‘container’ based frameworks can be used to build, store, and compare approaches16.

Building on this work, our study aims to apply and evaluate the performance of ML models on a large 
dataset comprised of > 35,000 MTBC with WGS, spanning all major lineages and sourced from over 60 
countries. We apply XGBoost17; a scalable and efficient implementation of Gradient-Boosted-Trees (GBTs), 
which has demonstrated strong performance across various applications, including TB. We assess the impact of 
different feature sets on model performance, including drug-specific regions (targeted approach), as well as the 
inclusion of pooled rare variants and LOF mutations. Furthermore, we use available MIC data and categorise 
samples by resistance severity, using established epidemiological cut-off (ECOFF) thresholds18. We analyse 
the distribution of known drug resistance mutations across the phenotypic categories to examine genotype-
phenotype associations with greater resolution. Further analysis reveals previously unreported putative variants 
that account for additional variation in resistance phenotypes.

Results
Mycobacterium tuberculosis genomic diversity and distribution of drug resistance
WGS (> 20-fold coverage) and corresponding pDST data were publicly available for 35,777 M. tuberculosis 
isolates. This “35k” dataset included all four major lineages, with L4 and L2 being the most abundant (L1 9.1%; 
L2 29.0%; L3 14.1%; L4 46.7%) (Table 1). The isolates were sourced from 66 different countries, covering all 
WHO regions (Table 1). The availability of pDST data varied by drug. The most complete data was available for 
first-line drugs RIF (95.0%), INH (93.6%), and EMB (84.7%), while data for PZA was more limited (42.6%). 
Resistance to Rifabutin (RFB), which is used to treat TB in those who cannot tolerate RIF (e.g., patients with 
HIV/AIDS), was also analysed. Of the 35k isolates, 43.9% demonstrated phenotypic resistance to at least one 
of the drugs included, and there was a high prevalence of phenotypic MDR-TB+ (27.6%), pre-XDR+ (16.9%) 
and XDR-TB (5.3%) (Table 1). Due to TB patients receiving combinations of treatments, the co-occurrence of 
phenotypic resistance across 13 drugs was assessed (Fig. S1). Evidence of co-occurrence was observed amongst 
commonly co-administered first-line drugs (RIF, INH, PZA, EMB) (Pearson correlation range 0.58–1) and two 
second-line classes, such as fluoroquinolones (0.70–1) and aminoglycosides (0.65–1). RFB is a derivative of RIF, 
which accounts for their strong correlation (0.91). Further, there was a high concordance between genotypic 
resistance, as inferred by TB-Profiler, and pDST, ranging from 89% to 97% (Table S1), particularly for RIF (97%), 
INH (96.6%), MDR-TB (96.8%), and CIP (97.5%).

Applications of machine learning approaches
We evaluated two different ensemble tree-based ML methods - random forest (RF) and gradient boosted trees 
(GBTs) - assessing their predictive performance (AUC, sensitivity, and specificity) on a hold-out test dataset 
(Table S2) (see “Methods” for details). There were initially three possible input sets of variants, including in drug-
specific regions (total 58 candidate genes; 56–143 variants) (F1), across 58 candidate genes (895–1428 variants) 
(F2), and genome-wide common variants (5603–10,487 variants) with non-major allele frequency > 0.5% (F3). 
Across ML methods, we predicted phenotypic resistance for 14 drugs (INH, RIF, EMB, PZA, streptomycin (STM), 
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OFL, MOX, levofloxacin (LEV), amikacin (AMI), capreomycin (CAP), kanamycin (KAN), CIP, ethionamide 
(ETH) and RFB). Overall, the highest AUC values were achieved using the feature set (F2) that incorporated 
filtered genomic variants across all candidate genes for each prediction. The combination of GBTs with the F2 
feature set (GBT + F2) achieved the highest AUC performance for ETH (86.3), OFL (88.2), PZA (88.3), MOX 
(89.1), KAN (91.0), RFB (94.9), and CIP (95.4) (Table 2).

In contrast, the combined RF and F2 (RF + F2) approach achieved the highest AUC for INH (96.5), RIF 
(96.6) and CAP (84.1). Models with the highest AUC generally yielded the highest sensitivity values, with 
exceptions for EMB (RF + F2, 91.8%), PZA (RF + F2, 85.0%) and LEV (GBT + F2, 92.5%) (Table  2). Whilst 
most models performed better with the F2 dataset, certain drugs showed highest AUC with the drug-specific 
candidate gene regions (F1), notably for EMB (GBT, 91.7), AMK (RF, 90.7) and LEV (GBT, 93.5), highlighting 

Drug N Best model AUC % Sens. % Spec. % PPV % NPV % Accuracy %

INH 33,313 RF + F2 96.50 95.00 98.00 96.80 96.90 96.80

RIF 33,087 RF + F2 96.60 95.50 97.50 94.60 98.00 96.90

EMB 29,950 GBT + F1 91.70 92.00 91.20 70.20 98.00 91.40

PZA 15,107 GBT + F2 88.30 84.44 92.20 71.60 96.20 90.70

STM 11,383 RF + F2 89.60 88.00 91.30 84.00 93.50 90.10

AMK 17,624 RF + F1 90.70 82.30 99.00 90.00 98.20 97.50

CAP 10,215 RF + F2 84.10 71.80 96.50 69.80 96.80 94.00

KAN 18,328 GBT + F2 91.00 83.50 98.68 90.50 97.50 96.70

CIP 402 GBT + F2 95.40 92.30 98.50 92.30 98.50 97.50

OFL 3520 GBT + F2 88.10 81.00 95.30 84.90 93.70 91.80

MOX 15,829 GBT + F2 89.10 84.30 93.90 72.50 96.90 92.40

ETH 14,649 GBT + F2 86.30 81.60 91.00 69.50 95.10 89.00

LEV 15,617 GBT + F1 93.50 88.90 98.10 92.30 97.20 96.30

RFB 10,815 GBT + F2 94.90 93.50 96.30 93.80 96.20 95.30

Table 2. Best-performing models (AUC) on hold-out test dataset for the across 14 drugs. AUC area under 
curve, Sens sensitivity, Spec specificity, PPV positive predictive value, NPV negative predictive value, F1 
variants in drug-specific regions, F2 variants across candidate genes, RF random forest, GBT gradient boosted 
tree, INH isoniazid, RIF rifampicin, EMB ethambuto, PZA pyrazinamide, STM streptomycin, AMK amikacin, 
CAP capreomycin, KAN kanamycin, CIP ciprofloxacin, OFL ofloxacin, MOX moxifloxacin, ETH ethionamide, 
LEV levofloxacin, RFB rifabutin.

 

Characteristics N %

Lineage

 L4 16,687 46.6

 L2 10,365 29.0

 L3 5038 14.1

 L1 3266 9.1

Others 421 1.1

World Health Organization 
Region

 Europe 13,381 37.4

 Africa 8756 24.5

 South East Asia 5518 15.4

 Western Pacific 3964 11.1

 Americas 3176 8.9

 Other 982 2.8

Genotypic drug-resistance

MDR-TB 433 1.2

Pre XDR-TB 4034 11.3

XDR-TB 2156 6.0

Susceptible 18,378 51.3

Other 10,776 30.2

Table 1. Characteristics of the M. tuberculosis dataset (N = 35,777). MDR Multidrug-Resistant TB, Pre-XDR 
Pre-Extensively Drug-resistant TB, XDR Extensively Drug-resistant TB.
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the value of a more targeted approach (Table 2). Among RF models, F1 slightly outperformed F2 for MOX in 
sensitivity (+ 0.5%). Specificity remained high across all models (ranges 89.0–99.5%). Finally, GBT models were 
applied to genome-wide variants (F3), but this did not significantly improve predictive performance over F2 for 
any drug (Table S3).

Inclusion of rare functional variants through aggregating variant counts
We aggregated variant counts per gene for each isolate (see “Methods”) to capture low-frequency mutations 
(< 0.1%) within coding regions, using them to supplement the F1 feature set (“F1+”). For the GBT models, 
F1+ yielded improved AUC values compared to F1  for INH (96.0), PZA (89.3), STM (90.9), CAP (86.1), MOX 
(90.2), ETH (85.0), and LEV (93.8) (Table S4). Considerable improvements in sensitivity were observed for 
PZA (81.6%), STM (91.3%), CAP (74.3%), and ETH (80.2%), compared to F1. Specificity was comparable 
across the feature sets (ranges F1 90.3–99.3%; F1+ 91.2–99.5%). Feature importance analysis of these updated 
models confirmed that the aggregated counts contributed additional information gain, enhancing predictive 
performance (Figs. S2–S6). For PZA, the highest total information gain was for aggregated pncA mutations, with 
impacts on protein sequence modification and high deleteriousness (Fig. S5).

Comparisons with other models and rule-in classification
We compared the performance of our ML models against other high-performing models (Deelder et al.10. 
(“DE19”), Kouchaki et al.19. (“KO19”), Green et al.15 (“GR22”); each n > 10k), and the in-silico tool TB-Profiler, 
to assess the benefits of including genome-wide variants and the impact of a larger-scale dataset on predictive 
performance. Overall, we found comparable performance in terms of AUC, sensitivity, and specificity compared 
to previously published models (Fig. 1; Table S5). For example, our best-performing (AUC-based) models across 
the first-line drugs (ranges: AUC 88.3–96.6; sensitivity 84.4–95.5%; specificity 91.2–98.0%) were comparable 
to DE19 (n = 16,507) GBT models (ranges: AUC 95.5–97.9; sensitivity 69.7–91.1%; specificity 94.2–98.9%) 
(Fig.  1). We observe modest sensitivity improvements for INH (+ 3.9%), RIF (+ 6.7%), EMB (+ 9.2%) and 
PZA (+ 14.5%). However, our best-performing model showed similar or lower performance for second-line 
injectables compared to DE19 (ranges AUC 84.1–95.4 for our model vs.  88.4–99.7 for DE19) (Fig. 1). There was 

Fig. 1. Comparing predictive performance of our ’Best Model’ to models from previously published studies. 
AUC (A), sensitivity (B) are specificity (C) are compared between our ’best model’ as highlighted in Table 2 
to TB-Profiler and previously published models: Deelder et al., 2019 (GBT-CRM), Kouchaki et al., 2019 
(Best Ensemble Tree Model) and Green et al., 2022 (CNN). ’NA’ indicates where no samples were available 
for prediction for that specific drug. Numbers inside bars represent the number of samples available for each 
drug in each study. TB-Profiler results were made using the samples used in this study. INH isoniazid, RIF 
rifampicin, EMB ethambutol, PZA pyrazinamide, STM streptomycin, AMK amikacin, CAP capreomycin, KAN 
kanamycin,  CIP ciprofloxacin, OFL ofloxacin, MOX moxifloxacin, ETH ethionamide, LEV levofloxacin, RFB 
rifabutin. Low numbers of resistant isolates were available for ethionamide and ciprofloxacin prediction by 
Green et al., (2022) so performance was not assessed.
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an increase in sensitivity for MOX (83.4% vs. DE19 53.5%) and ETH (81.6% vs. DE19 68.1%), likely due to a 
large increase in sample size (MOX: +15,203 isolates; ETH: +13,935 isolates) (Fig. 1).

We also compared our results with KO19 (n = 13,167), who utilised ensemble tree models combined with 
dimensionality reduction methods on variants in candidate genes, and GR22 (n = 22,615), which developed a 
convolutional neural network (CNN) model. Our best-performing model (ranges 84.1–96.6) had comparable 
performance across all drugs when compared to KO19 (ranges AUC 84.4–97.8) and GR22 (ranges AUC 82.3–
98.1), with the exception of STM (Fig. 1). However, GR22 showed greater sensitivity across all drugs (first-line: 
92.8–98.8%; second-line: 65.1–97.2%), except for ETH (+ 27.8%) and LEV (+ 19.5%), where our best-performing 
model achieved higher sensitivity (Fig.  1). GR22 had limited data on resistant isolates for ethionamide and 
ciprofloxacin predictions, preventing performance assessment for these drugs within their hold-out data. 
Interestingly, a larger sample size did not always lead to improved sensitivity. For example, GR22 achieved greater 
sensitivity (+ 13.8%) with 12,908 fewer samples for AMK (Fig. 1). When comparing our performance to that of 
the TB-Profiler software4, we found similar sensitivity values (first-line: 87–97%; second-line: 79.2–92.2%) to ML 
approaches (Fig. 1, Table S1).

Association of loss-of-function variants with phenotypic resistance
The assessment of feature importance statistics indicated that aggregated low-frequency mutations play an 
important role in drug-resistance prediction. To gain further insights, we conducted a targeted association 
analysis focusing on these low-frequency mutations, particularly loss-of-function (LOF) variants. This analysis 
revealed 64 distinct significant variants (adjusted P < 0.05), with notable associations for ETH (21), INH (17), 
STM (7), and PZA (6), primarily comprising indels that caused frameshifts (fs) in the gene reading frame (see 
Data S1 for a full list). Importantly, only a few variants were observed exclusively in resistant isolates, including 
pncA Glu173fs (PZA; odds ratio = 182, L2.2 and L4.3), ethA 440_441insT (ETH; OR = 27.6, L2), and ndh 
293dupG (INH; OR = 12.6, L4.1) (Table 3). Half of the LOF variants (32/64) were found in a single lineage; 
therefore, we prioritised those in multiple lineages (n = 32) (Table  3). Single LOF mutations associated with 
drug resistance included those linked to BDQ (Rv0678 Glu49fs, OR = 27.4, P < 10− 6), CAP (tlyA Arg133fs, 
OR = 26.9, P = 2.4 × 10− 5), EMB (embR Thr120fs OR = 3.3, P = 0.0011) and STM (Rv3861 Ile27fs, OR = 7.0, 
P = 0.002). We also found multiple mutations associated with INH (ndh Val238fs; mshA Val238fs; Rv1907c 
Asp48fs; Rv27252c Arg391fs, Arg97fs, and Gly56fs; ORs > 3), RIF (Rv27252c Arg391fs and Arg97fs; ORs > 4.3), 
PZA (pncA Glu173fs, Asp136fs, and Ser65fs; ORs > 12) and clofazimine (CLF) (Rv0678 Asp47fs and Glu49fs; 
ORs > 12) (Table 3). Notably, nearly half (15/32) of the prioritised LOF variants were found in ethA, which were 
linked to ETH resistance, including Phe414fs, Asp464fs, Leu225fs, and Pro160fs, with all ORs greater than 10 
(Table 3).  We also identified instances of cross-resistance; for example, BDQ and CLF were both associated with 
LOF variants in Rv0678, including Glu49fs (ORs > 12). Similarly, INH and RIF were associated with mutations 
in  Rv2752c (Arg391fs, Arg97fs) mutations (Table  3). Most of the prioritised variants (30/32) are in a WHO 
mutation catalogue20, except Rv1907c Asp48fs (INH, OR = 4.0, P < 10− 6) and Rv3861 Ile27fs (STM, OR = 7.0, 
P = 0.002) (Table 3).

Genomic associations with MIC phenotypes
To gain insights into the levels of resistance conferred by mutations in known target genes, we fitted multinomial 
ordinal regression models on MIC phenotype data18 (see “Methods”). Notably, the variants Rv1313c -3741T > C 
(relative risks (RRs): AMK 10.2, KAN 50.2; adjusted P < 10− 6) and gyrA 280G > A (RRs: LEV 15.6, MOX 9.2; 
adjusted P < 10− 6) were frequently identified with the highest risk of resistance among the second-line injectables 
and fluoroquinolones, respectively (Table 4; see Data S1 for a full list). Additionally, multiple single nucleotide 
polymorphisms (SNPs) within the short genomic region 1,673,423–1,673,432, which are upstream modifiers of 
inhA and fabG1, were identified as being associated with extreme drug resistance against INH ( ≥ ~ 120 x ECOFF 
MIC threshold ). We also analysed the frequencies of these mutations across MIC categories, which further 
supports the observed high levels of resistance (Figures S7–S10).

Discussion
With the increasing adoption of sequencing-based approaches for managing TB infections, generating substantial 
amounts of of M. tuberculosis data, there is a need to explore ML techniques for characterising the genetic 
mutations underlying drug resistance. In this study, we assess the predictive performance of ensemble tree-based 
approaches on a large-scale WGS and pDST dataset comprising over   35,000 MTBC isolates. We emphasise 
the importance of targeted approaches to enhance the interpretability and applicability of drug-resistance 
predictions, evaluating three different feature sets (F1–F3). Notably, despite its greater feature count,  the F3 
set, comprising common (MAF > 0.5%) genome-wide variants, did not outperform the F2 feature set, which 
focused on genomic variants in candidate drug-resistance genes. While drug resistance mutations outside 
known candidate genes may exist and be important for prediction, their rarity could lead to their exclusion from 
the genome-wide model. This resulted in reduced model dimensionality  and refined feature selection, though 
low-frequency genome-wide variants may be integrated into ML prediction in the future, particularly through 
aggregating features.

Importantly, the inclusion of co-occurring variants boosted the predictive performance for certain drugs, 
corroborating findings from previous studies10,15. For example, resistance to second-line drugs is often 
accompanied by resistance to first-line drugs due to treatment regimens. Consequently, mutations that cause 
RIF and INH resistance often rank highly in predictive models (see Data S1). While the presence of co-occurring 
mutations may reflect underlying biological processes, such as pre-resistance mutations increasing the risk of 
developing further resistance, they are not always causative20. Their inclusion can limit the interpretability and 
reliability of ML models, which is critical for understanding resistance-driving mutations in genomic surveillance 
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and mitigating biases from dataset structures. To address these issues, we adopted a more targeted approach, 
using genomic variants from drug-specific genomic regions in our models. This strategy improved performance 
for EMB, AMK, and LEV, and did not have a detrimental impact on predictive performance, except for PZA 
and ETH. By concentrating on features with higher relevance, we reduced noise in the ML models. Our findings 
demonstrate the potential of ML and targeted approaches for drug-resistance diagnostics, particularly when 
combined with methods like targeted next-generation sequencing (e.g., Amplicon Sequencing (AMP-SEQ))21.

By supplementing the feature set with aggregated counts of rare mutations, we improved the predictive 
performance for INH, PZA, STM, CAP, MOX, ETH, and LEV. Aggregating rare variants allows us to consider 
their combined effects, which might otherwise be masked by more frequent variants. This approach is important 
for capturing emerging or under-sampled drug-resistant mutations in predictive models. Notably, pooled 
variants significantly enhanced sensitivity performance for PZA, as characterised by the high density of pncA 
mutations with additive small effects22,23. Similarly, sensitivity gains for ETH could be attributed to the pooling of 
high-impact variants in the ethA gene, supported by feature importance analysis. A multi-dimensional analysis 
of feature contributions further demonstrates the effect of pooling genomic information across models for 

Drug Gene Position Variant
Conditional 
OR P-value*

Percent of resistant 
strains with 
LOF mutation** 
(Susceptible %) Lineage distribution (%)

BDQ Rv0678 779,130 Glu49fs 27.37 < 4 × 10− 8 6.8% (0.26%) 2.2 (57.1%), 3 (2.4%), 4.1 (7.1%), 4.2 (2.4%), 4.3 (21.4%), 4.4 (9.5%)

CAP tlyA 1,918,335 Arg133fs 26.90 2 × 10− 5 0.58% (0.02%) 2.2 (42.9%), 3.1 (14.3%), 4.3 (28.6%), 4.8 (14.3%)

CLF Rv0678
779,130 Glu49fs 12.72 < 9 × 10− 9 2.5% (0.2%) 2.2 (57.1%), 3 (2.4%), 4.1 (7.1%), 4.2 (2.4%), 4.3 (21.4%), 4.4 (9.5%)

779,127 Asp47fs 12.57 4 × 10− 5 1.26% (0.1%) 2.2 (66.6%),3 (5.6%), 4.1 (5.6%), 4.3 (22.2%)

EMB embR 1,416,989 Thr120fs 3.30 0.001 0.26% (0.08%) 1.1 (10.8%),1.2 (2.7%), 2.2 (73.0%), 4.2 (2.70%), 4.4 (8.1%), 4.6 (2.7%)

ETH ethA

4,326,231 Phe414fs 20.66 < 6 × 10− 13 0.88% (0.04%) 1.1 (1.8%), 2.2 (63.6%), 3 (7.3%), 3.1 (1.8%), 4.1 (12.7%), 4.4 (1.8%) 
4.8 (10.9%)

4,326,082 Asp464fs 15.80 2 × 10− 4 0.27% (0.02%) 2.2 (25.4%), 4.1 (1.82%), 4.8 (72.73%)

4,326,800 Leu225fs 10.53 5 × 10− 4 0.27% (0.03%) 2.2 (46.7%), 3 (6.7%), 4.1 (6.7%), 4.3 (26.7%), 4.8 (13.3%)

4,326,994 Pro160fs 10.28 1 × 10− 5 0.44% (0.04%) 2.2 (90.1%), 4.4 (6.1%), 4.9 (3.0%)

4,327,472 ethA_c.2T > G 8.48 6 × 10− 6 0.51% (0.06%) 2.2 (31.7%), 3 (0.8%), 4.1 (5.8%), 4.2 (60.0%), 6.1 (1.7%)

4,326,419 Ala352fs 8.41 2 × 10− 6 0.57% (0.07%) 1.1 (8.9%), 2.1 (2.2%), 2.2 (46.7%), 3 (6.7%), 4.1 (4.4%), 4.2 (24.4%), 
4.4 (2.2%), 5.1 (4.4%)

4,327,293 Tyr60fs 7.89 0.006 0.2% (0.03%) 2.2 (80%), 4.4 (10.0%), 4.6 (10.0%)

4,326,439 Asn345fs 5.92 0.009 0.2% (0.03%) 1.1 (81.8%), 4.3 (18.2%)

4,326,648 Tyr276fs 5.92 0.009 0.2% (0.03%) 2.2 (86.4%), 3 (4.55%), 4.1 (9.09%)

4,327,363 Lys37fs 4.80 < 6 × 10− 1 0.54% (0.12%) 2.2 (94.7%), 3 (0.6%), 4.1 (1.2%), 4.3 (0.6%), 4.6 (2.9%)

4,326,770 Tyr235fs 4.74 0.014 0.2% (0.04%) 2.2 (96.1%), 3 (3.9%)

4,326,718 Cys253fs 3.95 0.014 0.24% (0.06%) 2.2 (14.3%), 3 (14.3%), 4 (2.9%), 4.1 (17.1%), 4.3 (28.6%), 4.6 (5.7%), 
4.8 (17.1%)

4,326,087 Arg463fs 3.64 < 6 × 10− 8 1.42% (0.39%) 2.2 (98.5%), 3.1 (1.5%)

4,326,426 Phe349fs 3.55 0.009 0.3% (0.09%) 1.1 (2.1%), 2.2 (32.6%), 3 (15.2%), 4.1 (10.9%), 4.3 (15.2%), 4.6 
(8.7%), 4.8 (10.9%), 4.9 (4.4%)

4,326,589 Leu295fs 3.38 0.033 0.2% (0.06%) 2.2 (94.1%), 4.3 (5.9%)

INH

mshA 576,057 Val238fs 9.49 0.018 0.05% (0%) 2.2 (16.6%), 3 (50.0%), 4.1 (16.7%), 4.4 (16.7%)

ndh 2,102,072 Ala324fs 7.91 0.005 0.08% (0.01%) 2.2 (50.0%), 3 (8.3%), 4.1 (16.7%), 4.3 (16.7%), 4.9 (8.3%)

Rv2752c

3,065,022 Arg391fs 9.49 0.018 0.05% (0%) 2.2 (80.0%), 4.8 (20.0%)

3,065,903 Arg97fs 5.54 0.035 0.05% (0.01%) 2.2 (42.8%), 3 (42.9%), 4.1 (14.3%)

3,066,026 Gly56fs 4.75 0.018 0.07% (0.01%) 1.2 (9.0%), 2.2 (18.2%), 3 (18.2%), 4.1 (45.5%), 4.4 (9.1%)

Rv1907c 2,153,725 Asp48fs*** 4.03 < 10− 30 46.61% (17.81%)
1.1 (< 0.1%), 1.2 (0.1%), 2.1 (1.4%), 2.2 (97.9%), 3 (0.1%), 3.1 
(< 0.1%), 4.1 (< 0.1%), 4.2 (0.1%), 4.3 (< 0.1%), 4.4 (< 0.1%), 4.5 
(< 0.1%), 4.8 (< 0.1%), 4.9 (< 0.1%), 5.1 (< 0.1%)

PZA pncA

2,288,724 Glu173fs 182.28 < 3 × 10− 29 1.47% (0%) 2.2 (99.3%), 4.3 (0.7%)

2,289,049 Ser65fs 15.00 3 × 10− 4 0.24% (0.02%) 2.2 (17.8%), 3.1 (64.3%), 4.1 (10.7%), 4.2 (3.6%), 6.3 (3.6%)

2,288,834 Asp136fs 12.86 9 × 10− 4 0.21% (0.02%) 2.2 (48.2%), 4.1 (3.7%), 4.2 (7.4%), 4.3 (37.0%), 4.8 (3.7%)

RIF Rv2752c
3,065,022 Arg391fs 12.92 0.006 0.06% (0%) 2.2 (80.0%), 4.8 (20.0%)

3,065,903 Arg97fs 4.31 0.033 0.06% (0.01%) 2.2 (42.8%), 3 (42.9%), 4.1 (14.3%)

STM Rv3861 4,338,020 Ile27fs*** 7.04 0.002 0.28% (0.04%) 1.1 (6.7%), 2.2 (73.3%), 4.1 (20.0%)

Table 3. Loss-of-Function Variants associated with drug-resistant phenotypes. OR odds ratio; *adjusted 
P-value; **percentage of resistant (and susceptible) samples with LOF mutation; ***absent from the WHO 
catalogue; OR odds ratio, LOF loss of function, BQD bedaquiline, CAP capreomycin, CLF clofazimine, EMB 
ethambuto, ETH ethionamide, INH isoniazid, PZA pyrazinamide, RIF rifampicin, STM streptomycin.
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multiple drugs, and highlights the capacity of such exploratory approaches to mine potentially novel resistance 
associations from large genomic datasets.

The observed performance improvements for INH, PZA, ETH and STM may have also stem from the 
combined impact of LOF mutations, which we investigated further through association analysis of their 
individual effects on drug-resistant phenotypes. We identified LOF mutations in pncA and ethA, including 
premature stop codons, deletions, and frameshifts, potentially preventing the activation of PZA and ETH into 
their active forms. Both drugs are pro-drugs that require activation by pyrazinamidase (pncA) and ethionamide 
monooxygenase (ethA), respectively24,25. Mutations in mshA were also found to be associated with INH and RIF 
resistance, and are implicated in the bio-activation pathway for ETH26. This insight suggests that LOF mutations 
may be a key resistance mechanism against pro-drugs in M. tuberculosis. In addition, multiple LOF mutations 
were observed in Rv0678, which encodes the transcriptional repressor of the Mmps5-MmpSL efflux pumps27,28. 
The overexpression of Mmps5-MmpSL confers cross-resistance to CLF and BDQ, highlighting its significance 
for targeted next-generation sequencing diagnostics28. Notably, LOF mutations were not exclusive to resistant 
isolates and were observed in some susceptible samples, potentially due to their association with low levels of 
resistance or pDSTs errors5. Two potential novel frameshift mutations in Rv3861 (Ile27fs, STM) and Rv1907c 
(Asp48fs, INH) were observed across independent lineages and are absent from the current WHO mutation 
catalogue. Intriguingly, Rv1907c is part of the katG operon and has been associated with INH resistance29. After 
undergoing functional validation, the inclusion of such variants could help to increase the sensitivity of genetic-
based DSTs and underlying mutation libraries.

Our best performing models are comparable to previously employed approaches on large-scale M. 
tuberculosis WGS data. While CNN models have demonstrated higher sensitivity15, likely due to their capacity 
for gene-level representation and retention of rare-variants, our increased sample size enhances the statistical 
power of our analyses. However, the underlying architecture and feature selection must also be considered to 
optimise model performance. A direct comparison using the same dataset would clarify whether improvements 
are due to sample size or model architecture. Nonetheless, comparing models across datasets can be challenging 
due to varying software requirements and input formats, alongside reproducibility issues in prior publications. 
Utilising standardised environments, such as Docker containers within ML-TB, could simplify this model 
comparison16. Further research will focus on optimising these models for practical deployment.

Post-hoc MIC-based analysis may further elucidate the effects of mutations on the severity of drug-resistance. 
For example, our MIC analysis revealed mutations in the nine-base pair segment of the inhA promoter region, 
previously associated with a binary resistance phenotype against INH, which also demonstrated evidence of 
homoplasy30. These mutations are linked to ‘extreme’ INH resistance phenotypes, where samples exhibit MICs 
over 100-fold higher than the resistance threshold. Similarly for ETH, a structural analogue of INH31, variants 
in the inhA promoter regions were also identified in significant association with the highest ordinal MIC 
phenotype. These findings may suggest a role for these promoter region variants in mediating the development 
of high-level INH and ETH resistance through affecting overexpression of the drug target. Although GWAS 
analysis have been applied to MIC data32, we focused on a targeted risk-ratio analysis of known loci across 
ordinal levels, which limited the number of statistical tests and allowed us to uncover significant enrichment 
within severe resistance phenotypes. Further research should examine variants associated with intermediate 
resistance profiles to identify similar effects that may not have been captured using GWAS methods7.  There is 
also potential to utilise MIC data for quantitative resistance predictions using ML approaches.

There are several limitations that could be addressed by future studies. Predictive performance for some 
drugs, such as CAP, remains limited and could benefit from a larger sample size or broader genomic coverage 
in feature sets. Additionally, confounding effects from population structure may affect our approaches, despite 
lineage inclusion; this could be mitigated through feature weighting or sampling approaches12. Such approaches 
could enhance model interpretability during training. Earlier studies recommended filtering out lineage-specific 
and synonymous mutations before model training to enhance the relevance of selected features33. However, both 
phylogenetic background and lineage-specific mutations have been linked to drug resistance34. Additionally, the 
role of synonymous mutations in drug resistance is gaining recognition, particularly concerning their potential 

Drug Position (gene) Variant*
Suscept.
Coeff. Low Coeff. Resist. Coeff. Resist. P-value Resist. RR

RIF 763,555 (rpoB) 230 C > T − 0.358 0.474 1.913 < 3 × 10− 7 6.773

INH 1,673,423 (inhA) − 779G > T** − 4.843 1.050 4.192 < 10− 6 66.168

EMB 4,248,002 (embB) 1489 C > A − 4.584 − 1.930 2.164 < 3 × 10− 10 8.707

AMK 1,473,246 (Rv1313c) − 3741T > C ** − 6.422 − 4.975 2.320 < 2 × 10− 14 10.174

KAN 1,473,246 (Rv1313c) − 3741T > C ** − 3.684 − 3.063 3.915 < 10− 6 50.165

ETH 1,674,263 (inhA) 62T > C − 14.794 0.380 3.457 < 2 × 10− 6 31.708

LEV 7581 (gyrA) 280G > A − 2.933 − 3.774 2.746 < 10− 6 15.575

MOX 7581 (gyrA) 280G > A − 3.340 − 3.694 2.221 < 10− 6 9.215

Table 4. Summary of the variants with the highest relative-risk ratios for high MIC across 8 drugs. *Missense 
variant, unless specified; **Upstream Gene Variant; RR relative risk, RIF rifampicin, INH isoniazid, EMB 
ethambutol, AMK amikacin, KAN kanamycin, ETH ethionamide, LEV levofloxacin, OFL ofloxacin, MOX 
moxifloxacin.
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to influence the translation of drug activators35. This underscores the evolving nature of feature selection, 
highlighting the need for ongoing research to adapt to these changes. Moreover, how features are represented in 
a model significantly impacts its performance, interpretability, and applicability. Following previous approaches, 
we used one-hot encoding for SNPs and indels, which may have led to limitations such as sparse matrices 
and reference bias, especially in datasets containing multiple lineages. Although alternative representations, 
like DNA sequences, could have been considered, we opted for one-hot encoding for its interpretatability and 
downstream deployment ease. Profiling tools like TB-Profiler, which conduct targeted variant calling for drug-
resistance prediction4, could benefit from smoother integration with ML models utilising this format. Finally, 
while we have applied multivariate statistical approaches, future research should also explore the impacts of 
variant interactions, for example, on MIC phenotypes.

Conclusion
In lieu of this future work, our study has demonstrated that the application of targeted, efficient, and interpretable 
ML approaches can lead to improved predictions of drug-resistant TB and diagnosis. These targeted ML models 
could be effectively combined with next-generation sequencing technologies, such as AMP-SEQ, to streamline 
the sequencing process and reduce resource requirements,  making genetic-based DST approaches more 
accessible and scalable in low-resource settings36.

Methods
Sequencing data analysis
Illumina whole genome sequencing data (WGS) was sourced from public repositories/archives for 50,723 M. 
tuberculosis isolates4. Raw sequencing reads were aligned to the H37Rv reference genome (NCBI Reference 
Sequence: NC_000962.3) using the BWA-mem aligner (v0.7.17)37 following trimming with Trimmomatic 
(v0.39)38. SNPs and indels were identified on the aligned reads using samtools39 and joint genotyping was 
performed using GATK GenotypeGVCFs (v4.1.3.0) (gatk.broadinstitute.org)39. Monomorphic SNPs, variants 
in non-unique regions of the genome (e.g. pe/ppe genes), and variants with > 10% missing calls were excluded.

Data pre-processing
To create predictive ML models for each drug, multiple feature matrices along with the corresponding phenotype/
classification labels were built per drug for the relevant sample. Only the genomic loci with a non-major allele 
frequency (MAF) (recalculated after sub-setting samples for each drug) of greater than 0.1% were retained. This 
filtering was applied to control the number of input features for the ML model, mainly to limit computational 
complexity and time, and to prevent the model overfitting. The bedtools (v2.31)40 intersect tool was used to only 
retain genes associated with drug resistance and these were extracted from the TB-profiler list library (Table S6)4. 
For each sample, only the presence or absence of a variant (SNP, indel) at a given genomic locus was encoded, as 
1 and 0, respectively, in a numpy matrix. Lineage information per isolate (up to the second degree, e.g. Lineage 
4.1) was predicted using TB-Profiler4, and this data was appended to the feature matrices. The performance of 
ML models was generally observed across three different feature sets: (i) resistance-associated regions for the 
specific drug in question with MAF > 0.1% (F1; 56–143 variants; specific regions in Table S6); (ii) resistance-
associated regions for any antibiotic drug profiled in the TB-Profiler database with MAF > 0.1% (18 drugs, 
895–1428 mutations; Table S6) (F2), and variants across the whole genome (5603−10,487 variants after filtering 
for MAF > 0.5%) (F3) (Tables S9–S10). Rare variants, which are unlikely to have high feature importance, were 
excluded from the F1 and F2 datasets. However, the F1 dataset was supplemented with aggregated counts of 
rare variants predicted by SnpEff to have moderate-to-high functional impact (MAF < 0.1%), resulting in the 
F1 + dataset. This allowed for the combined effects of rare variants to be incorporated into the predictions. MAF 
cut-offs were determined using histograms to assess the distribution of rare variants, informing the thresholds 
for feature inclusion in each dataset (Fig. S11).

Machine learning algorithms
The Random Forest (RF) and Gradient-boosted Tree (GBT) algorithms were used across the three feature sets 
(F1, F2 and F3) to train models to predict resistance to INH, RIF, EMB, PZA, STM, OFL, MOX, LEV, AMI, CAP, 
KAN, ETH and RFB. The sklearn Python library (v1.4.1)41 and the XGBoost Python API (1.7.6) were used for 
model implementation. All these approaches have been previously utilised in the context of training models for 
drug resistance prediction from WGS data10,19. Prior to training, the data was split into training (80%) and testing 
(20%) datasets. The majority (80%) of the data was used to train the model and 20% was used to calculate the 
hold-out performance for each tuned model. Hyperparameter tuning and classification threshold optimisation 
were performed using a stratified five-fold cross-validation on the training set using specified parameters and 
ranges through a Randomised Grid Search approach (Table S7)41. We report cross-validation and holdout-test 
performance results for all models, except for GBT + F3 (stratified 5-fold cross-validation results only). This 
was due to the high dimensionality of the input feature matrix, and thus only cross-validation results for the 
F3 feature set on default parameters are described (Table S3). A permutation feature importance algorithm was 
used to assess contributions of input variants to predictive performance.

Loss-of-function association analysis
The SNPEff software (version 5.1)42 (H37Rv reference genome) was used for the functional annotation of variants 
found in the canonical drug-resistance associated regions (Table S6). Variants with a LOF annotation for at 
least one transcript were then selected. Associations between resistance and LOF variants were assessed using 
a Fisher’s exact test on a zero-padded contingency matrix and conditional odds ratios were calculated for all 
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variants demonstrating at least five resistant isolates harbouring the alternate allele. P-values were adjusted using 
the Benjamini Hochberg method, and a threshold of 0.01 was applied to prioritise variants. An analysis of the 
lineage distribution of the putative LOF variants was performed post-hoc to account for population structure 
and validate robust markers linked to resistance.

MIC phenotype analysis
Isolates with MIC phenotype values were categorised into four incremental levels (Susceptible, ‘Low’ resistance, 
‘High’ resistance, and Resistant [‘Extreme’]) based on recommended ECOFF thresholds (Table S8). Variants in 
drug-specific resistance-associated regions with a MAF of 0.5% were selected. A proportional odds multivariate 
logistic regression model was fitted with all selected variants (MASS package in R43). Variants with regression 
coefficients > 1 and significant at the adjusted P-value (Benjamini Hochberg) threshold of 0.01 were further used 
as inputs into a multinomial regression model (nnet package in R44) to estimate relative-risk coefficients across 
each category (reference level = ‘High’).

Data availability
No new samples were sequenced for this study. The sample accession numbers, feature importance values, and 
relevant code for machine learning and statistical analysis is available in a dedicated GitHub repository:  h t t p s : / / 
g i t h u b . c o m / S S I D 0 8 / T B - M L     . Data S1 refers to the supplementary files held within this repository.
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