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Quantum spin Hall insulators have attracted significant attention in recent years. Understanding the 
optical properties and spin Hall effect in these materials is crucial for technological advancements. 
In this study, we present theoretical analyses to explore the optical properties, Berry curvature and 
spin Hall conductivity of pristine and perturbed PbBiI using the linear combination of atomic orbitals 
and the Kubo formula. The system is not centrosymmetric and it is hosting at the same time Rashba 
spin-splitting and quantized spin Hall conductivity. Our calculations reveal that the electronic structure 
can be modified using staggered exchange fields and electric fields, leading to changes in the optical 
properties. Additionally, the spin Berry curvature and spin Hall conductivity are investigated as a 
function of the energy and temperature. The results indicate that due to the small dynamical spin Hall 
conductivity, generating an ac spin current in the PbBiI requires the use of external magnetic fields or 
magnetic materials.

In the realm of condensed matter physics, the emergence of topological materials has ushered in a new era of 
exploration, leading to the discovery of quantum phenomena with transformative implications. Among these 
materials, quantum spin Hall (QSH) insulators occupy a pivotal position, representing a paradigm shift in the 
understanding of topologically nontrivial electronic states1. The notion of a QSH insulator was first proposed 
by Bernevig et al.2, reflecting a revolutionary break from conventional electronic behavior by introducing the 
concept of topological protection for electronic states. These materials manifest insulating behavior in bulk but 
host robust conducting edge states topologically protected against back-scattering by time-reversal symmetry, 
ushering in the promise of dissipationless electronic transport and novel spin-based functionalities3–5.

Experimental investigations have validated the existence of QSH behavior in various material platforms, 
ranging from one- and two-dimensional systems to designed heterostructures, expanding the horizons of 
potential applications of these topological electronic states6–9. These experimental efforts have illuminated the 
intricate interplay between topological and electronic properties at the heart of QSH insulators. Recent advances 
in experimental techniques, ranging from magneto-transport measurements to angle-resolved photoemission 
spectroscopy, have uncovered a plethora of materials showcasing QSH behavior, expanding the horizon of 
potential platforms for exploiting the remarkable attributes of these topological materials10,11. Such strides 
in materials discovery and characterization open avenues for investigating the interplay between topological 
electronic states and intricate quantum phenomena.

Understanding the implications of QSH insulators extends beyond fundamental physics, venturing into 
the realm of practical applications in electronics and spintronics. The chiral nature of the edge states in QSH 
insulators offers the tantalizing prospect of dissipationless spin transport, holding promise for the development of 
efficient spin logic and memory devices that harness the spin degrees of freedom of electrons12–15. Moreover, the 
intricate interplay between the topological and electronic properties of these materials underpins their potential 
for realizing topologically protected quantum computation and information processing16,17. Recent theoretical 
advances have further underscored the potential of QSH insulators in redefining the limits of electronic and 
spin-based functionalities. The proposals for utilizing edge states in QSH insulators have opened up new 
avenues for achieving dissipationless spin transport and laying the groundwork for advancements in spin-based 
information processing and quantum computing18,19. The foundations set forth by the theoretical models have 
not only provided a roadmap for understanding the fundamental behavior of QSH insulators but also set the 
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stage for exploring their transformative implications20,21. Amid these developments, the experimental realization 
of the quantum spin Hall effect and the identification of materials exhibiting topologically nontrivial electronic 
states have paved the way for exploring unique opportunities for harnessing their extraordinary properties22,23. 
The ensuing synthesis of theory and experiment has propelled the field of topological electronics into a realm of 
unprecedented promise and potential.

The QSH insulating phase has been investigated in both centrosymmetric24–26and noncentrosymmetric 
systems27,28, however, there are not so many cases where the QSH coexists with the Rashba spin splitting. In 
this paper, we will study a system where we have both the QSH effect and Rashba spin-splitting. Large Rashba 
spin-splitting is found in materials formed by heavy elements with strong intrinsic SOC such as Bi, Pb, and W, 
among others29–32. To date, several types of QSHIs have been reported, and recently it proposed a honeycomb 
noncentrosymmetric QSHIs consisting of IV, V, and VII elements and Rashba-like SOC and unconventional spin 
texture33. Until now, the properties of this material have been well studied in the presence of various disturbances. 
It has been shown that the thermodynamic properties of this material can be adjusted by a staggered exchange 
field34. Additionally, the effect of external fields on the electronic and optical properties of this material has also 
been well studied35–37.

When there is no topological insulator phase, we cannot have the QSH phase but we can still have the 
ordinary spin Hall effect. The spin Hall conductivity (SHC) is a fundamental property of materials that describes 
the ability of a material to generate a spin current in response to an applied electric field38–43. This phenomenon 
arises from spin-orbit coupling, where the motion of electrons interacts with their spin degrees of freedom. In 
the presence of an electric field, electrons experience a transverse deflection due to the spin-orbit interaction, 
leading to the generation of a spin current perpendicular to the charge current. The SHC tensor quantifies this 
effect and provides valuable information about the spin dynamics in materials. Understanding and controlling 
the SHC is crucial for developing spintronic devices, such as spin-based transistors and memory storage devices, 
which rely on the manipulation of electron spins for information processing44–46.

This paper begins by exploring the theoretical background in Theory section to gain insight into the 
properties of the PbBiI. Next, theoretical frameworks are applied to calculate these properties in Results and 
discussion section, and the results are summarized in Conclusions section.

Theory
Pristine and perturbed Hamiltonian
The geometric structure of the PbBiI is depicted in Fig. 1(a) with top and side views, consisting of Bi (V), Pb (IV), 
and I (VII) elements. The distance parameters are approximately d ≈  1.3 Å and h = 3.04 Å. Previous analysis 
reveals that the highest valence comes from the px,y-Bi orbitals, while the pz-Bi orbitals give the most relevant 
contribution to the lowest conduction band. As a result, we can ignore the Pb and I components in the electronic 
band structure of PbBiI. Hence, we focus on the single-particle bands with l = 1 (p-orbitals), s = 1/2 for spin 
angular momentum, and j1,2 = 1/2, 3/2. The bands with j z= ± 3/2 are far from the Fermi level, and we have 

Fig. 1.  (a) Side and top view of the geometry structure of the PbBiI with Bi = V, Pb = IV, and I = VII by the 
buckled parameter d ≃ 1.3 and Pb-I (h) and Bi-Pb bond lengths 1.35 and 3.04 Å, respectively. (b) 3D band 
structure and contour plot of ϵ 3 − ϵ 2 in the kx- ky plane.
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left the bands for two spin directions with jz = ± 1/2. Therefore, the effective Hamiltonian in the basis of |j, jz⟩
= |1/2, 3/2, ± 1/2 ⟩ can be expressed as:

	

H
−→
k


=




−ϵ 1/2 0 0 0

0 −ϵ 1/2 0 0

0 0 +ϵ 3/2 0

0 0 0 +ϵ 3/2




+




ζ 1/2k
2 iα R,1/2k− 0 γ k−

−iα R,1/2k+ ζ 1/2k
2 γ k+ 0

0 γ k− −ζ 3/2k
2 0

γ k+ 0 0 −ζ 3/2k
2


 ,

� (1)

The onsite energies are determined to be ϵ 1/2 = 0.1685 eV and ϵ 3/2 = 0.1575 eV while other parameters are 

obtained from ab initiocalculations33 and are ζ 1/2 = 0.008187 eV/Å 2, ζ 3/2 = 0.038068 eV/Å 2, α R,1/2 = 3.0919 

eV/Å, γ = −3.5853 eV/Å, where k± = kx ± iky, and k =
√
k2x + k2y . The parameter 

α R,1/2 represents the 
Rashba splitting in the conduction band, while γ  is the spin-orbit coupling between the valence and conduction 
band. The PbBiI has a bulk gap of EΓ = 0.275 eV and the Rashba-like spin splitting gap ER = 0.051eV in the 
valence bands. The spin texture around the valence bands confirms the Rashba-type spin-splitting33.

To introduce perturbations on the PbBiI system, external electric and magnetic exchange fields are applied 
to the Hamiltonian. The magnetic proximity effect arises from the induction of magnetic exchange fields in a 
material when it is in proximity to a ferromagnetic or antiferromagnetic substrate. These induced fields influence 
the orbital angular momentum within the basis, resulting in modifications to the Hamiltonian. Additionally, an 
external electric field can be applied by placing the PbBiI between two voltage gates. The modified Hamiltonian 
with perturbation terms H′

(−→
k
)

 is expressed as:

	
H′

(−→
k
)
= H

(−→
k
)
+HR +HI � (2)

where HR and HI  are the external staggered exchange field and electric field contributions respectively and 
are given by

	
HR = − |jz|

(
Rj1 0

0 Rj2

)
⊗ σ z.� (3)

and

	

HI =




−I/2 0 0 0

0 +I/2 0 0

0 0 −I/2 0

0 0 0 +I/2


� (4)

The induced exchange field Rji corresponds to the total angular momentum ji ( i = 1, 2)47, Here, σz represents 
the z-component of the 2 ×  2 Pauli matrix, and I  can be controlled via electric field.

The band structure from the k.p effective Hamiltonian for pristine PbBiI accurately reproduces the first-
principles DFT calculations33,37 reported in previous works confirming the reliability of Hamiltonian Eq. 
(1) and its parameters used in this paper. Figure 1 (b) and Fig. 2 (a) represent 3D and 2D band structure of 
the unperturbed PbBiI system, obtained from Eq. (1). This band structure comprises two valence and two 
conduction bands, where the valence band at the Γ  point is characterized by the states |j = 3/2, jz⟩, and the 
effective state for the conduction band is |j = 1/2, jz⟩. Consequently, the states include |1/2, 1/2⟩, |1/2,−1/2⟩
, |3/2, 1/2⟩, |3/2,−1/2⟩. Total density of states of the PbBiI confirms Band structure results as depicted in Fig. 
2 (b). The effect of the exchange fields on the band gap is shown if Fig. 2 (c). Applying the exchange field reduces 
the topological gap and finally for Rj2 = Rj1 = 0.32 eV (which is equal to the EΓ + ER) the topological gap 
is completely closed and a trivial gap reopens for higher values. This is the typical signature of the band gap in 
QSH insulators.

Density of states
By utilizing the Green’s function approach, the density of states (DOS) for the PbBiI can be computed. The DOS 
can be determined by adding up over the first Brillouin zone,

	
D (ϵ ) = − 1

Ncπ

∑
k

I
[
TrG

(−→
k , ϵ

)]
,� (5)
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where Nc indicates the number of atoms in each unit cell. The non-interacting Green’s function matrix is 

acquired through G
(−→
k , ϵ

)
=
[
ϵ + iη −H

(−→
k
)]−1

, where η  represents the broadening factor

	

G
−→
k , ϵ


=




G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44


 ,� (6)

Using Eqs. (5) and (6), the total DOS reads

	
D0 (ϵ ) = − 1

Ncπ

∑
k

I [G11 +G22 +G33 +G44] .� (7)

Optical properties
The optical conductivity tensor, σ (ω ), can be determined using Ohm’s law, which states that J = σ E, where 
J  is the current density, E is the electric field, and σ  is the optical conductivity tensor.

	
σ =

(
σ xx σ xy

σ yx σ yy

)
,� (8)

To calculate σ (ω ), direction-dependent velocities are required. The current operator definition along the ν  
direction is jν = e∂ H′ /∂ kµ

	

jν =




ζ 1/2
∂ k2

∂ kν
iα R,1/2

∂ k−
∂ kν

0 γ ∂ k−
∂ kν

−iα R,1/2
∂ k+
∂ kν

ζ 1/2
∂ k2

∂ kν
γ ∂ k+

∂ kν
0

0 γ ∂ k−
∂ kν

−ζ 3/2
∂ k2

∂ kν
0

γ ∂ k+
∂ kν

0 0 −ζ 3/2
∂ k2

∂ kν




� (9)

Also, the general form of the current operator is

	
j̄ν = −e

ℏ
∑
k

c†kckα
ν
k + i

e

ℏ
∑
k

c†kckβ
ν
k ,� (10)

Fig. 2.  (a) Band structure of the pristine PbBiI along the kx direction and ky = 0, and (b) the total density of 
states. (c) Band gap ( EΓ + ER) as a function of different amounts of exchange fields.
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that α ν
k  and β ν

k  are intraband and inter-band direction-depended velocities along the ν -direction.
By using linear response theory, the optical conductivity is given as

	
σ ν ν′ (ω ) =

gs
ℏ ω S

∫
dteiω t⟨

[
jν (t) , jν′ (0)

]
⟩,� (11)

where gs = 2 is the spin degeneracy, ω  is photon frequency and S is the 2D planar area.
Using Eq. (11), the interband optical conductivity is given as48–50:

	

σ inter
ν ν ′ (ω ) = −igse

2

ℏ 2S

∑
k

∑
j,j′

∑
jzjz′ β

jj′ ν
jzjz′

(−→
k
)
β jj′ ν ′

jzjz′

(−→
k
)

× 1

ϵ
j
−→
k ,jz

−ϵ
j′
−→
k ,jz ′

f
j
−→
k ,jz

−f
j′
−→
k ,jz ′

ℏ ω −ϵ
j
−→
k ,jz

+ϵ
j′
−→
k ,jz ′

+iη 1
.

� (12)

where fj
−→
k ,jz

= 1/(1 + exp
((

ϵ j
−→
k ,jz

− µ 0

)
/kBT

)
) is the Fermi-Dirac distribution at a constant 

temperature T  and chemical potential µ = 0, ϵ j
−→
k ,jz

 represents the eigenvalue of the energy, η 1 denotes 

the finite damping between the conduction and valence bands, and βjj′ν
jzjz′(

−→
k ) = ⟨

−→
k ; j, jz | jν |

−→
k ; j′, j′z⟩ and 

βjj′ν′
jzjz′(

−→
k ) = ⟨

−→
k ; j′, j′z | j′ν |

−→
k ; j, jz⟩ are velocities along the ν  and ν ′ -directions respectively.

Another important optical property is the electron energy loss spectroscopy (EELS). The energy electron 
loss spectrum is a type of spectroscopy technique used to study the electronic properties of materials. It involves 
measuring the energy lost by electrons as they interact with a sample, which can provide information about 
the electronic structure and bonding of the material. The spectrum is generated by bombarding the sample 
with high-energy electrons and then measuring the energy distribution of the scattered electrons. The resulting 
spectrum can reveal details about the valence and conduction bands of the material, as well as the presence of 
impurities or defects. To calculate EELS, we need the dielectric function which is given by:

	
ϵ ν ν ′ (ω )− ϵ r =

iσ inter
ν ν ′ (ω )

ω ϵ 0dBP
,� (13)

where ϵ r is the relative permittivity and dBP  is the PbBiI thickness. One can calculate the EELS as

	
Lν ν ′ (ω ) = −I

[
1

ϵ ν ν ′ (ω )

]
=

ϵ ν ν ′
2 (ω )

(ϵ ν ν ′
1 (ω ))2 + (ϵ ν ν ′

2 (ω ))2
� (14)

We can determine the reflectivity by using the refractive index n and extinction coefficient κ  and dielectric 
function. We have

	
nν ν (ω ) =

1√
2

√
|ϵ ν ν (ω )| + ϵ ν ν ′

1 (ω )� (15)

and

	
κ ν ν ′ (ω ) =

1√
2

√
|ϵ ν ν ′ (ω )| − ϵ ν ν ′

1 (ω )� (16)

that we have write ϵ ν ν ′ = ϵ ν ν ′
1 + iϵ ν ν ′

2 . Reflectivity can be calculated as

	
Rν ν ′ (ω ) =

(1− nν ν ′ (ω ))2 + κ 2
ν ν ′ (ω )

(1 + nν ν ′ (ω ))2 + κ 2
ν ν ′ (ω )

� (17)

Spin Hall conductivity
We calculate both static ( ω = 0) and dynamic ( ω ̸= 0) SHC using the Kubo formula and Berry curvatures. The 
component σ z

xy of the SHC tensor represents a spin current flowing along the x-direction, polarized along the 
z and an electric field applied along the y-axis. The Kubo formula for the SHC is51,52:

	
σ SH (ω ) =

e

ℏ
∑
k

∑
j,jz

fJ−→
k ,jz

Ω z
j′ ,j′ z � (18)

where dynamic spin Berry curvature, velocity, and spin-current operators are defined as

	

Ω z
j′ ,j′ z

(−→
k , ω

)
=

∑
j′ ,j′ z

ζ j,j′ ,x
jz,j′ z,z

(−→
k
)
β j,j′ ,y

jz,j′ z

(−→
k
)

(
ϵ j
−→
k ,jz

− ϵ j′
−→
k ,j′ z

)2

− (ℏ ω + iη )2
.� (19)

and the static spin Berry curvature definition is
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Ω z
j′ ,j′ z

(−→
k
)
=

∑
j′ ,j′ z

2Im
ζ j,j′ ,x

jz,j′ z,z

(−→
k
)
β j,j′ ,y

jz,j′ z

(−→
k
)

(
ϵ j
−→
k ,jz

− ϵ j′
−→
k ,j′ z

)2 .� (20)

and

	
β j,j,y

jz,jz′

(−→
k
)
= ⟨

−→
k ; j, jz |jy|

−→
k ; j′ , jz′ ⟩� (21)

	
ζ j,j,x

jz,jz,z

(−→
k
)
= ⟨

−→
k ; j, jz |Sz

x|
−→
k ; j′ , jz′ ⟩� (22)

where Sz
x =

ℏ
4 [β Σ z, jx] while β  and Σ z are the 4× 4Dirac matrices52.

Results and discussion
The main results of the paper are discussed in this Section. In our computational calculations we considered a 
500 ×  500 mesh points in the momentum space and η 1 = 80 meV. Figure 3 displays the EELS results under 
the influence of a staggered exchange field for varying values of Rj1 and Rj2. The range considered for Rj1 is 
between 0 and 0.5 eV, while we have considered two ratios for Rj2/Rj1=1 or 1/3. In the case where Rj2 = Rj1 
(as shown in Fig. 3(a)), distinct peaks are observed, and as the strength of the field increases, the peaks shift 
towards higher energies. Conversely, for Rj2 = Rj1/3 (depicted in Fig. 3 (b)), an opposite shift is observed for 
Rj1 = 0.5 eV. To explore the entire spectrum of staggered and electric fields, contour plots of the EELS have 
been calculated within a specific energy and external field range (refer to Fig. 4). Notably, the majority of EELS 
behavior is associated with Rj2 = Rj1/3 and Rj1 > 0.1 eV. Comparing Fig. 4 (a) and 4 (c) reveals a similarity in 
the EELS response to positive values when both a staggered exchange field ( Rj2 = Rj1) and an external electric 
field is applied.

The optical conductivity of the PbBiI with external perturbations is computed using the Kubo formula. Due 
to the PbBiI’s isotropic nature, we focused on the optical conductivity along the x-axis and omitted the y-axis. 
In the pristine case, a peak in the real part of the optical conductivity aligns with the band gap energy (see Fig. 5 
(a) and 5 (c)). Adjusting the Rj1 and Rj2 parameters alter the optical conductivity and shift peak energies. It is 
evident that regardless of the Rj1 and Rj2 ratio, introducing a staggered exchange field leads to new peaks in the 
real parts, with only their positions changing based on different ratios. Furthermore, due to the Kramers-Kronig 
relation, a dip in the imaginary parts occurs at the peak’s energy in the real parts (Fig. 5 (b) and 5 (d)).

Figure 6 showcases a contour plot illustrating the optical conductivity as a function of frequency, staggered 
exchange field (Fig. 6 (a)), and electric field (Fig. 6 (b)). It is evident from Fig. 6 (a) that the peak of the optical 
conductivity appears at an energy of 0.3 eV. When Rj1=0.3 eV, it causes a shift towards lower energies however, 

Fig. 3.  EELS obtained from Eq. (14) in presence of the staggered exchange field with (a) Rj2 = Rj1 and (b) 
Rj1 = Rj2/3.
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for Rj1 > 0.3 eV this trend is reversed. The external electric field also has a similar effect except in negative 
magnitudes.

The reflectivity is defined as the ratio of the intensity of reflected light to the intensity of incident light, 
typically expressed as a percentage. It is a key parameter in numerous applications, including optics, coatings, 
architecture, and solar energy technologies, where controlling and optimizing the reflective properties of 
materials is essential for achieving desired performance characteristics. Figure 7 is related to the reflectivity in 
the presence of the staggered exchange field. As we can see by increasing the photon’s frequency, we have an 
increase in the reflectivity and the peaks appear. In addition, by comparing Fig. 7 (a) and 7 (b) we found that 
reflectivity is greater in case Rj2 = Rj1.

Fig. 5.  Real and imaginary parts of the optical conductivity for polarized light along the x-axis by introducing 
staggered exchange field (a), (b) Rj2 = Rj1 and (c), (d) Rj2 = Rj1/3.

 

Fig. 4.  Color density of the EELS in the presence of (a) the staggered exchange field with Rj2 = Rj1, (b) 
Rj2 = Rj1/3 and (c) external electric field.
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The 3D plot and color density of the spin Berry curvature of the PbBiI in the Brillouin zone are shown in Fig. 
8 (a) and 8 (b) respectively. The Berry curvature is enhanced in locations where the energy difference between 
the bands gets reduced as in the anticrossing points. According to the figures, the Berry curvature is maximum 
around the Γ  point and decreases when moving away from this point. This is due to the existence of the band 
crossing near the Γ  point.

The SHC can be expressed in terms of the spin Berry curvature (see Eq. (20)). Figure 9 (a) represents the 
dynamical SHC of the PbBiI versus frequency. Both the real and imaginary parts of the ac SHC are small. This 
suggests that to generate an ac spin current, one needs to use a magnetic field or magnetic materials.

Fig. 7.  Reflectivity of the perturbed PbBiI in the presence of staggered exchange field (a) Rj2 = Rj1 and (b) 
Rj2 = Rj1/3.

 

Fig. 6.  Color density of the real part of the optical conductivity in subject to the external perturbation (a) 
staggered exchange field ( Rj2 = Rj1) and (b) electric field.
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The dependence of the dc SHC on temperature is illustrated in Fig. 9 (b), however, a critical temperature of 
kBT = 0.016 eV is identified, beyond which the SHC decreases sharply towards room temperature, reaching a 
minimum for kBT > 0.025 eV. The Spin Hall conductivity of the PbBiI as a function of Fermi energy is plotted 
in Fig. 9 (c). The SHC has a quantized value within the topological band gap. Our calculations reveal that the 
SHC is minimal at EF = 0 and extremum at EF = ± 0.2 eV. This is because there are band crossings induced 
by spin-orbit interactions at these specific energies.

Conclusions
In summary, we have investigated the noncentrosymmetric system PbBiI where quantized spin Hall conductivity 
and Rashba spin-splitting coexist. Our analysis involved the computation of the Berry curvature and spin Hall 
conductivity, along with investigating the electronic and optical characteristics under external influences. By 
introducing staggered exchange and electric fields, we were able to manipulate the optical conductivity and EELS 
of the PbBiI. The peak of the real part of the optical conductivity is observed at 0.3 eV, with perturbations causing 

Fig. 9.  Calculated (a) real and imaginary parts of the dynamical SHC, (b) statical SHC as a function of 
temperature, and (c) statical SHC versus Fermi energy.

 

Fig. 8.  Spin Berry curvature in the Brillouin zone around the Γ  point in the form of (a) color density and (b) 
surface plot.
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a shift towards lower energies. The Berry curvature reaches its maximum near the Γ  point where band crossing 
occurs, diminishing significantly further away from this region. Given the low dynamical spin Hall conductivity, 
a magnetic field is necessary to induce an a.c. spin current. Furthermore, the dc spin Hall conductivity exhibits 
critical behavior around kBT = 0.016 eV. Also the spin-resolved optical conductivity could be one of the future 
research directions.

Data availability
The data that support the findings of this study areavailable from the corresponding author upon reasonablere-
quest.
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