
Article https://doi.org/10.1038/s41467-024-54043-1

PACT-3D, a deep learning algorithm for
pneumoperitoneum detection in abdominal
CT scans

I-Min Chiu 1,2 , Teng-Yi Huang3, David Ouyang 1, Wei-Che Lin4,5,6,
Yi-Ju Pan7,8, Chia-Yin Lu4 & Kuei-Hong Kuo9,10

Delays or misdiagnoses in detecting pneumoperitoneum can significantly
increasemortality andmorbidity. We developed and validated a deep learning
model designed to identify pneumoperitoneum in computed tomography
images. The model is trained on abdominal scans from Far Eastern Memorial
Hospital (January 2012–December 2021) and evaluated using a simulated test
set (14,039 scans) and a prospective test set (6351 scans) collected from the
same center between December 2022 and May 2023. External validation
included 480 scans from Cedars-Sinai Medical Center. Overall, the model
achieves a sensitivity of 0.81–0.83 and a specificity of 0.97–0.99 across ret-
rospective, prospective, and external validation; sensitivity improves to
0.92–0.98when cases with a small amount of free air (total volume <10ml) are
excluded. These findings suggest that the model can deliver accurate and
consistent predictions for pneumoperitoneum in computed tomography
scans with segmented masks, potentially accelerating diagnostic and treat-
ment workflows in emergency care.

Pneumoperitoneum, which refers to the presence of extraluminal free
air in the peritoneal space, is a potentially life-threatening condition
that represents a differential diagnosis when managing acute abdom-
inal pain in the Emergency Department (ED). In adults, perforated
viscus is the leading cause of pneumoperitoneum, representing
85–95% of cases, and among these, surgical pneumoperitoneum
comprises 85–90%1,2. Diagnostic tools for identifying pneumoper-
itoneum include plain radiographs, ultrasound, and Computed
Tomography (CT) scan, with the latter remaining the gold standard,
exhibiting reported sensitivity levels of approximately 96–100%3.
Timely diagnosis of pneumoperitoneum is crucial, as delayed recog-
nition can lead to sepsis and result in increased mortality and

morbidity4,5. However, prolonged CT interpretation times are fre-
quently observed in crowded EDs, with previous reports indicating an
average delay of approximately 2 h6. Moreover, the use of CT scans
during ED visits has dramatically increased in the past decade, with a
330% rise reported in the US from 3.2% of encounters (95% confidence
interval [CI] 2.9% to 3.6%) in 1996 to 13.9%7.

Diagnosing pneumoperitoneum from a CT scan is highly depen-
dent on the reader’s expertise and the amount of free air present.
According to previous research, only 62.8% of postgraduate year
resident feel confident about diagnosing acute pathological findings
from CT scans, such as pneumoperitoneum or bowel obstruction8.
Moreover, studies have shown that discrepancy rates in the
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interpretation of emergency CT scans between residents and attend-
ing radiologists vary significantly based on the level of training, ran-
ging from 13.5% to 30.0%9,10. Misinterpretations can have a direct
negative impact on patientmanagement, with adverse effects noted in
7.2% of patients11. These factorsmay contribute to considerable delays
in the recognition of critical pathologies like pneumoperitoneum,
potentially leading to poorer patient outcomes.

Artificial Intelligence (AI) has greatly advanced healthcare in
recent years, particularly in medical imaging technologies such as
computed tomography (CT) scans, X-rays, and ultrasonography12–18. AI
has also contributed to increased speed and efficiency in medical
image analysis, reducing the workload of healthcare professionals and
improving patient outcomes. Recent studies have investigated the
potential of deep learning algorithms in assisting the detection of
pneumoperitoneum on CT scans19,20. However, the performance of
these AI models varies and is dependent on the selection of datasets.
For assessment of the AI model, it is critical to use a dataset that
mirrors the actual incidence rate of pneumoperitoneum. Moreover, a
prospective evaluation is necessary, along with ongoing enhance-
ments to improve model performance.

In this study, we introduced PACT-3D, a 3-dimensional U-
Net algorithm specifically tailored for 3Dmedical image segmentation.
This convolutional neural networkexcels at capturing spatial hierarchy
and information across both the transverse and vertical axes of bio-
medical images. The PACT-3D model is designed to automatically
segment areas of pneumoperitoneum from CT scans, providing pre-
dictions at the patient level and visualizations at the pixel level. It is
engineered to detect pneumoperitoneum with high accuracy, and its
performance has been thoroughly evaluated using both a simulated
test dataset and in a prospective observational setting.

Result
Demographic characteristics
In this study, we retrospectively analyzed 140,339 abdominal CT scans
from 2012 to 2021. After exclusions, 139,781 were eligible for analysis.
Pneumoperitoneumwas identified in 973 of these and the studies were
randomly allocated to training, validation, and test datasets in a 5:1:1
ratio (Fig. 1). The training set comprised 695 scans with pneumoper-
itoneum, alongside a randomly selected equivalent number of negative

scans. The validation set included 139 scans with pneumoperitoneum,
matched with an equal number of negative cases. To evaluate the
performance of the PACT-3D model, the test set was designed to
mirror a real-world prevalence ratio of approximately 1:100, consisting
of 139 scans with pneumoperitoneum and a larger pool of 13,900
negative scans. Additionally, we conducted a prospective clinical eva-
luation using abdominal CT scans fromDecember 2022 toMay 2023 at
the same hospital, resulting in a prospective test set of 6351 CT scans.
This approach aims to thoroughly evaluate the model’s performance
under conditions that closely resemble those of clinical settings.

The mean age of patients in the simulated test set was 54 years
with a standard deviation (SD) of 13.1, while the prospective test set
had a slightly higher mean age of 59 years (SD = 16.9). Females repre-
sented 48.2% (n = 6767) of the simulated test set and 47.2% (n = 3000)
of the prospective test set. The incidence of pneumoperitoneum
detected was set to 1.0% in the simulated test set. Analyzing all CT
scans in ER, the incidence of pneumoperitoneum was 1.3% (n = 82) in
the prospective test set (Table 1).

Distribution of CT vendors
Regarding the distribution of CT vendors, there were noticeable dif-
ferences between the simulated and prospective test sets. In the
simulated test set, Philips Brilliance 64 scanners were used in 8.0% of
cases, while Siemens Somatom Definition and Definition Flash scan-
ners were used in 10.7% and 5.5% of cases, respectively. GE LightSpeed
VCT scanners accounted for 15.7% of the scans. A significant portion,
60.1%, involved Siemens Somatom Definition AS scanners (Table 1).

In contrast, the prospective test set exhibited a varied distribu-
tion. Siemens Somatom Definition AS scanners were used less fre-
quently, constituting 43.6% of the scans. The GE Revolution Frontier
became more prevalent, representing 24.8% of scans in this set. This
shift in vendor distribution indicates a temporal change in scanner
preference or availability between the two test sets. The image
acquisition setting of different CT vendors was shown in Supplemen-
tary Table 1.

Model performance
The trained 3D U-Net model demonstrated satisfactory performance in
detecting pneumoperitoneum on the validation set. The Dice score for

Fig. 1 | The inclusion flowchart of this study. ‘N’ represents the number of CT studies in each step.
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pneumoperitoneum segmentationwas 0.81, indicating a high degree of
overlap between the predicted and ground truth regions. Throughout
the training process, we meticulously balanced the number of negative
CT scans against positive ones at varying ratios to refine the model’s
sensitivity and positive predictive value (PPV). Our objective was to
optimize the F1-score, which harmonizes sensitivity and PPV, as
reflected in Supplementary Table 2. The data revealed that a balanced
ratio of positive to negative cases (1:1) yielded the highest F1-score.

In the simulated test set, our model achieved a F1-score of 0.54
(95% CI: 0.47–0.61), with a sensitivity of 0.81 (95% CI: 0.75–0.86), a
specificity of 0.99 (95% CI: 0.98–1.0), and a PPV of 0.41 (95% CI:
0.34–0.38). Of the 139 CT scans positive for pneumoperitoneum, the
model identified 112 andmissed 27. Among the 13,900 negative scans,
167 were incorrectly classified as pneumoperitoneum. In the pro-
spective test set at ER, the model’s performance yielded F1-score of
0.58 (95% CI: 0.51–0.65), with a sensitivity of 0.83 (95% CI: 0.77–0.90),
specificity of 0.99 (95% CI: 0.98–0.99), and a PPV of 0.44 (95% CI:
0.37–0.52). Out of the 69 CT scans with confirmed pneumoper-
itoneum, the model detected 54 and misclassified 88 out of 8,451
negative scans (Table 2).

External validation
At CSMC, a total of 14,076 abdominal CT scans were identified in 2023.
Among these, 80 scans were documented as positive for pneumo-
peritoneum in the reports. We included 400 negative control scans,
matched for age and sex. In this external validation cohort, the mean
age was 57 years (SD = 19.0), and 204 (42.5%) of the participants were
female. There were notable differences in the distribution of CT ven-
dors within the CSMC cohort, with most scans performed using GE
Revolution (40.2%), GE Discovery (20.6%), and Toshiba Aqui-
lion (28.3%).

In the CSMC test set, PACT-3D achieved an F1-score of 0.80 (95%
CI: 0.74–0.86), with a sensitivity of 0.81 (95% CI: 0.71–0.88), specificity
of 0.97 (95% CI: 0.94–0.98), and a positive predictive value (PPV) of
0.79 (95% CI: 0.69–0.87). Of the 80 CT scans positive for pneumo-
peritoneum, the model correctly identified 65.

Subgroup analysis
When analyzing performance by etiological subgroup, the PACT-3D
model displayed high accuracy for gastroduodenal and small bowel

perforations, as well as trauma-related cases, achieving sensitivities of
0.93 (0.82–0.98), 1.0 (0.87–1.0), and 1.0 (0.57–1.0), respectively. In
contrast, the model demonstrated relatively lower sensitivities for
large intestine perforation and post-operative changes, recording
values of 0.64 (0.41–0.77), 0.59 (0.33–0.84). During the prospective
observational period, a consistent pattern was observed. The sensi-
tivities for gastroduodenal, small bowel, and trauma-related perfora-
tions were 0.87 (0.73–0.94), 0.88 (0.63–0.98), and 0.83 (0.45–0.97),
while those for large intestine perforation and post-operative changes
were 0.73 (0.50–0.89) and 0.8 (0.55–0.93), respectively (Table 2).

In subgroup analyses evaluating performance across various total
volumes of free air, we observed improvement in the sensitivity of
PACT-3D. Specifically, sensitivity increased to 0.89 (95% CI:
0.84–0.93), 0.91 (95% CI: 0.86–0.95), and 0.86 (95% CI: 0.75–0.93) on
the simulated test set, prospective test sets, and external test set
respectively, when scans with a total free air volume of less than 1ml
were excluded. This sensitivity further escalated to 0.95 (95% CI:
0.90–0.98), 0.98 (95% CI: 0.93–1.0), and 0.92 (95% CI: 0.80–0.97)
among three test sets upon excluding scans with less than 10ml of
total free air volume, indicating a correlation between detection cap-
ability and the quantity of free air present (Table 2).

From another point of view, an association was found between
scans predicted as positive by the model and a heightened rate of
urgent surgeries, defined as surgeries conducted within 24 h following
theCT scan. After excluding post operation scans, in the simulated test
set, urgent surgeries were performed on 84 (85.8%) of the patients out
of 99 whose pneumoperitoneum was identified by the model. In
contrast, among the patients with missed pneumoperitoneum diag-
noses by the model, 10 (55.6%) out of 18 underwent urgent surgeries
(p < 0.001). Within the prospective test set, 40 (75.5%) of the 53
patients diagnosed with pneumoperitoneum by the model received
urgent surgeries, as opposed to 8 (57.1%) of the 14 patients with
pneumoperitoneum that the model failed to detect (p < 0.001).

Discussion
In this study, we introduced PACT-3D, a 3D U-Net-based deep learning
model, designed for detecting pneumoperitoneum on abdominal CT
scans. The robustness of PACT-3D is demonstrated by its training on
scans from a wide array of CT scanner models, its prospective and
external testing, ensuring consistent performance despite geographic
differences and the evolving landscape of medical imaging technol-
ogy. PACT-3D demonstrated robust performance, characterized by

Table 1 | Demographics and CT vendor distributions in simu-
lated and prospective test sets

Simulated Test
SetMean (SD) /
N (%)

Prospective Test
Set Mean (SD) /
N (%)

External Test
Set Mean
(SD) / N (%)

Total CT scans 14,039 6351 480

Age 54 (13.1) 59 (16.9) 57 (19.0)

Female 6767 (48.2%) 3000 (47.2%) 204 (42.5%)

CT Vendors

Philips Brilliance 64 1123 (8.0%)

Siemens Somatom
definition

1502 (10.7%)

Siemens Somatom
definition Flash

772 (5.5%) 524 (8.3%) 8 (1.7%)

Siemens Somatom
definition AS

624 (60.1%) 2772 (43.6%)

GE LightSpeed VCT 2204 (15.7%) 1479 (23.3%) 33 (6.9%)

GERevolution Frontier 1576 (24.8%) 193 (40.2%)

GE Discovery 99 (20.6%)

Toshiba Aquilion ONE 136 (28.3%)

Pneumoperitoneum 139 (1.0%) 82 (1.3%) 80 (16.7%)

CT Computed Tomography, PPV Positive Predictive Value.

Table 2 | Performance of PACT-3D in test set

Performance
Metrics

Simulated Test
Set value
(95% CI)

Prospective Test
Set value (95%CI)

External Test
Set value
(95% CI)

Sensitivity 0.81 (0.75–0.86) 0.83 (0.77–0.90) 0.81 (0.71–0.88)

Specificity 0.99 (0.98–1.0) 0.99 (0.98–0.99) 0.97 (0.94–0.98)

PPV 0.41 (0.34–0.48) 0.44 (0.37–0.52) 0.79 (0.69–0.87)

F1-score 0.54 (0.47–0.61) 0.58 (0.51–0.65) 0.80 (0.74–0.86)

Sensitivity in etiology

Gastro-
duodenal

0.93 (0.82–0.98) 0.87 (0.73–0.94)

Small Bowel 1.0 (0.87–1.0) 0.88 (0.63–0.98)

Large Intestine 0.64 (0.41–0.77) 0.73 (0.50–0.89)

Trauma 1.0 (0.57–1.0) 0.83 (0.45–0.97)

Post-operative 0.59 (0.33–0.84) 0.8 (0.55–0.93)

Sensitivity in total volume of free air

Total volume
> 1ml

0.89 (0.84–0.93) 0.91 (0.86–0.95) 0.86 (0.75–0.93)

Total volume
> 10ml

0.95 (0.90–0.98) 0.98 (0.93–1.0) 0.92 (0.80–0.97)
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high sensitivity and specificity. The model’s high specificity and satis-
factory PPV are particularly noteworthy given the rarity of pneumo-
peritoneum in routine settings, which is crucial for minimizing false
positives and thus reducing the risk of alarm fatigue. The consistent
performance of PACT-3D, observed in a prospective test set that
included newer CT scanner models, and its external validation across
an international dataset, further supports its generalizability. By pro-
viding a prediction mask in addition to binary classification for pneu-
moperitoneum, themodel enhances its trustworthiness and reliability,
offering significant potential to accelerate clinical decision-making
across various scenarios and timeframes.

Historically, AI algorithms have encountered challenges when
attempting to detect free air in CT scans. They often exhibit reduced
sensitivity, even if their specificity is commendable19,20. Previous stu-
dies, focusing on the utilization of 2D segmentation models for
pneumoperitoneum detection, have highlighted challenges in differ-
entiating free air from the commonplace bowel gas20. While 2Dmodels
have been a cornerstone in healthcare deep learning applications, this
is largely because many medical imaging modalities, such as X-rays,
ultrasound, and specific MRI or CT slices, intrinsically generate 2D
images, making these models a natural choice21–24. Additionally, 2D
models tend to be computationally less demanding than 3D models,
suiting institutions with restricted computational capabilities. The
extensive availability of pretrained 2Dmodels, which have been trained
on diverse and vast datasets, further contributes to their dominance25.
By fine-tuning these models for specific medical tasks, performance
can often be enhanced, benefiting from features learned across various
domains. However, despite the prevalence of 2D architectures in
healthcare, the detection of pneumoperitoneum, with its inherent risk
of confusion with bowel air, greatly benefits from the depth of
understanding offered by 3D morphology. The use of a 3D segmen-
tation model allows better recognition of free air morphological pat-
terns, distinguishing them from bowel gas with enhanced accuracy.
This adaptation, coupled with the model’s rapid inference capability,
heightens its potential to augment diagnostic precision and efficiency.

In the subgroup analysis, PACT-3D particularly excelled in
detecting gastroduodenal and small bowel origin pneumoperitoneum,
with sensitivities exceeding 0.9 in both test sets. For large intestine
origin cases, sensitivity ranged between0.64 and0.73.We surmise this
disparity arises from the inherently larger air bubble sizes in the upper
gastrointestinal tract, facilitating differentiation from standard bowel
gas. In contrast, large intestine perforations, frequently linked with
inflammatory processes, present greater interpretative challenges,
even for seasoned radiologists26,27. Consistent with this, the model
demonstrated improved sensitivity when CT scans with minimal free
air volume were excluded, showing an increase to 0.89–0.91 for total
free air volumes greater than 1ml, and further to 0.95–0.98 for
volumes greater than 10ml (Table 2).

The missed cases in both the simulated and prospective test sets
highlight an important aspect of the model’s performance in real-
world settings. Upon reviewing the cases that PACT-3D failed to pre-
dict, we found that most missed instances involved free air that was
scattered and appeared in retroperitoneal areas, which can easily be
mistaken for other bowel gas at first glance. Specifically, the model
may miss cases with smaller air bubbles, but it reliably identifies cases
with larger, cumulated volumes of free air, which typically require
urgent intervention. On the other hand, the model’s high specificity
demonstrates that it won’t easily trigger false alarms, reducing the risk
of clinician fatigue. In cases where PACT-3D incorrectly identified
pneumoperitoneum, a review of the prediction masks revealed that
most errors were due to the model mistakenly identifying air-
containing abscesses, subcutaneous emphysema, air within fluid col-
lections, distended bowel gas, or air density artifacts related to artifi-
cial implants (Supplementary Table 3). Although these cases were not
correctly diagnosed, many still required medical intervention. This

selective performance could make PACT-3D a valuable triage tool in
emergency and critical care, where the primary goal is to quickly
identify and prioritize cases that necessitate immediate surgical
intervention.

When assessing the model’s predictions in relation to clinical
outcomes, specifically the necessity for urgent surgery, we observed a
significant correlation. Patients with pneumoperitoneum detected by
the PACT-3D model underwent urgent surgery at a higher rate
(75.5–85.8%) compared to those where pneumoperitoneum was not
detected (55.6–57.1%). This suggests that the model is more adept at
identifying larger volumes of free air, particularly those originating
from the upper gastrointestinal tract, where emergency surgical
intervention is often imperative. Conversely, smaller volumes of free
air, typically resulting from inflammatory conditions like acute diver-
ticulitis, are usually managed with conservative treatment or elective
surgery in patients who are hemodynamically stable28. These findings
indicate that the PACT-3D model can serve as a valuable tool for risk
stratification by illustrating the perforated area alongside the volume
of free air. This makes the model particularly useful in emergency
settings, where timely diagnosis is critical. However, to fully harness
the potential of AI in this domain, ongoing efforts should focus on
improving themodel’s sensitivity to smaller pneumoperitoneum cases.

Comparatively, our model’s performance exceeds prior deep
learning endeavors in detecting pneumoperitoneum or related
abdominal pathologies on CT scans. This corroborates the robustness
and superiority of our 3D U-Net-based approach. The sensitivity and
specificity position PACT-3D as a valuable tool for radiologists, espe-
cially in urgent situations where prompt and accurate detection is
critical. Notably, the model maintained consistent performance in
both sensitivity and specificity in the external test cohort, reinforcing
its reliability across geographically diverse datasets. Several factors
contribute to PACT-3D’s performance, including the implementation
of the 3D U-Net architecture, renowned for its efficacy in diverse
medical image segmentation tasks, and the amalgamation of Dice loss
and focal loss to counteract training set imbalances.

Several limitations are inherent to our study. Firstly, while our
model demonstrated robust performance in detecting pneumoper-
itoneum overall, its efficacy in discerning smaller or more subtle
instances was found to be lower compared to larger pneumoper-
itoneum cases. Given that these nuanced cases often present a sig-
nificant diagnostic challenge, this limitation underscores the need for
further refinement of the model. Future research should focus on
enhancing the model’s capability to accurately detect smaller instan-
ces, therebymaximizing its potential as a reliable diagnostic aid across
all presentations. Secondly, although PACT-3D has undergone valida-
tion across multiple institutions, its potential impact on clinical prac-
tice—such as optimizing diagnostic workflows or improving patient
outcomes—has yet to be thoroughly evaluated. Future studies should
explore how integrating PACT-3D into clinical settingsmight influence
decision-making processes, workflow efficiency, and overall patient
care, ensuring that its benefits are fully realized in real-world
applications.

In conclusion, this study highlighted the feasibility of developing a
deep learning model that accurately identify pneumoperitoneum in
abdominal CT scans. As a 3-dimensional model in medical image seg-
mentation, PACT-3D maintained consistent performance across dif-
ferent testing periods. Its high specificity helps to avoid clinician
fatigue due to false alarms, while its high sensitivity is particularly
noteworthy in cases with larger volumes of free air. The model holds
significant potential to aid rapid decision-making in emergency care,
which could lead to improved patient outcomes.

Methods
The study follows the STARD protocol and has been approved by the
Institutional Review Boards of Far Eastern Memorial Hospital (IRB
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number: 111086-F) and Cedars-Sinai Medical Center (IRB number:
STUDY00003494). All participant records were de-identified and
anonymized before analysis. Informed consent waswaived by the IRBs
due to the retrospective nature of the study and that the dataset was
de-identified before access. During the prospective phase, the model
was deployed without any clinical interventions or changes to stan-
dard care. After the prospective period, data were retrieved from the
research database, along with our model’s predictions, for down-
stream analysis.

Study setting
In our research, we employed a dataset of post contrast abdominal CT
scans from a single medical center, collected over a period spanning
from January 2012 to December 2021. This dataset was enriched with
CT scans indicating the presence or absence of pneumoperitoneum, a
condition diagnosed using formal radiologist reports. For scans iden-
tified as positive for pneumoperitoneum, verification was performed
by two radiologists who confirmed the presence of free air during the
annotation process. To assess its applicability in a clinical setting, the
model was prospectively validated from December 2022 to May 2023
in the same hospital for its performance in real-world data.

Image data acquisition
Abdominal CT scans during the study period were collected, and so
does the corresponding reports. We included only the CT scans with
contrast injection, axial plane scan, and reformatting slice thickness of
5mm, with the field of view including the abdomen. CT scans with
image acquisition and processing error, and CT scan without reports
were excluded from this study. Figure 1 illustrates the recruitment and
analysis flowchart.

Dataset collection and splitting
We employed natural language processing (NLP) methods to retrieve
reports with and without a positive description of pneumoperitoneum
from the image database (Supplementary 1). Initially, we utilized the
NLP results as CT labeling and subsequently made minor revisions
based on a random check of 1/5 of the CTs. We enrolled all CT scans
that displayed pneumoperitoneum. The datawasdivided into training,
validation, and test sets in a 5:1:1 ratio. To ensure no data leakage, CT
scans from the same patient were exclusively allocated to the training
set. For CT scans without pneumoperitoneum, we randomly selected
non-duplicated patient scans, ensuring a 1:1 match with the pneumo-
peritoneum scans for both the training and validation sets. To mimic
real-world conditions, our test set was formulated with a clinical ratio
of 1:100 for positive to negative cases, reflecting an annual prevalence.

Image annotation
Two senior radiologists with both 13 years of experience radiologist
manually segmented the free gas bubble on the axial section with a
window width and center of 600 HU and 40 HU, respectively. Con-
touring of bowel gas was strictly prohibited. Later, the labeled pixels
with CT number of corresponding image higher than −150HU were
removed. Finally, another radiologist checked and revised all pneu-
moperitoneum annotations. Prior to using the data for training, we
standardized all CT images by removing the windowwidth settings and
applying pixel normalization based on themaximal andminimal values.

Deep learning model and training
For pneumoperitoneum segmentation, we developed a 3D U-Net
based neural network to predict the segmented mask of bowel gas
(Fig. 2)29. Its design incorporates a contracting path to capture context,

Fig. 2 | This figure illustrates three distinct outcomes of themodel inference in
the simulated test set, namely, “True Positive”, “False Negative”, and “False
Positive”. For each scenario: (A) represents the original CT scan image, (B) denotes

the ground truth labeling, and (C) illustrates the mask generated by the trained
segmentation model.
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juxtaposed with a symmetric expanding path, which facilitates precise
localization. In enhancing the network, successive layers replace tra-
ditional pooling operations with up-sampling operators, thereby
refining the output resolution.

To augment the data, we normalized all CTs to 512 × 512 × z-axis
and randomly cubed them to 384 × 384 × z-axis using the ‘albu-
mentations’ library for each image in the training set30. The loss func-
tion we employed for the model combined Dice loss and Focal loss,
each weighted at 50%. This approach aided in addressing class
imbalance and enhanced accuracy for hard-to-classify examples31. We
used an adaptive moment estimation (Adam) optimizer with para-
meter settings of β1 = 0.9 and β2 =0.999, and a CosineAnnealingLR
scheduler with parameter settings of T_max=8 and eta_min=3 × 10−6.
The model was trained with the Nvidia RTX A6000 GPU, with mini-
batches of size 1 and an initial learning rate of 3 × 10−4.

External validation
To ensure the generalizability and robustness of the PACT-3D model,
we conducted an external validation using an international dataset of
CT scans from Cedars-Sinai Medical Center (CSMC). This dataset
included abdominal CTs with intravenous contrast injections per-
formed between January and December 2023. We first identified
positive CT scans for pneumoperitoneum using the sameNLPmethod
employed in the development dataset, which involved searching for
positive descriptions of pneumoperitoneum in the CT reports. Nega-
tive control scans were then randomly selected in a 1:5 ratio and
matched for age and gender. For each study, we analyzed post-con-
trast, axial plane scans. All CT scans were standardized by removing
window width settings and applying pixel normalization based on the
maximum and minimum values before model inference to generate
prediction masks.

Performance evaluation and statistical analysis
The study aimed to evaluate the performance of the PACT-3Dmodel in
diagnosing pneumoperitoneum from abdominal CT scans, with con-
tinuous variables reported as means and SD, and categorical variables
as counts and percentages. The model was trained to minimize loss
within the validation dataset, and the optimized model weights were
preserved for subsequent inference.

To assess the model’s efficacy, we evaluated its predictive per-
formance on both a simulated test set and a prospective test set. Our
primary metrics for evaluation included F1-score, sensitivity, specifi-
city, and PPV,were calculated alongside their 95%confidence intervals.
Additionally, we conducted a subgroup analysis to explore how the
model’s performance varied across different etiologies such as gas-
troduodenal, small bowel, large intestine perforations, trauma, and
post-operative cases. The modeling pipeline was implemented using
Python (3.9) with PyTorch (2.0) andMONAI (1.3.0) as the deep learning
framework. Image processing and data analysis were facilitated by
Python libraries such as SimpleITK (2.2.1), scikit-image (0.20.0), pan-
das (2.0.2), and matplotlib (3.7.1), while SPSS was utilized for all sub-
sequent statistical analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Given the sensitive nature of patient data and privacy regulations, we
maintain strict control over data access to ensure compliance with
institutional policies and legal requirements. To request access to the
data, researchers must provide a detailed research proposal outlining
the intended use of the data. Access requests can be directed to
goman178@gmail.com, and we aim to respond within 30 days.
Approval will be contingent upon ethical review and the establishment

of a data use agreement to safeguard patient privacy. Data usage will
be restricted to non-commercial research purposes, and no attempts
to re-identify individuals will be permitted.

Code availability
The code developed to support the findings of this study is available
online at https://github.com/IMinChiu/pact-3d.
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