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Simple Summary: Red wolves are critically endangered, and the human-managed population is
crucial to the survival of the species. Gastrointestinal (GI) disease is one of the leading causes of death
for human-managed, adult red wolves, but the causal factors have not yet been clearly identified.
Using life history data, husbandry information, and veterinary records, we examined the relationship
between post-mortem, histological GI mucosal disease severity and management strategies. We
report that wolves fed a diet that regularly included whole prey or other meat items were less likely
to exhibit severe GI mucosal disease compared to those fed a diet composed of only kibble. We also
found that wolves treated with nonsteroidal anti-inflammatory drugs were more likely to exhibit
more severe GI mucosal disease compared to those that did not receive such treatment. Conversely,
we found no effect of housing and life history traits on GI health. This study highlights the importance
of evaluating diet and medication choices to enhance individual care in human-managed red wolves.

Abstract: Red wolves (Canis rufus) are the most critically endangered wolf globally, with over 95%
of individuals living under human care. Gastrointestinal (GI) disease is one of the leading causes
of death among adult red wolves under human care, yet links between management practices and
this condition remain unclear. By integrating studbook data, survey-based husbandry information,
veterinary records, and necropsy reports, our study explored the relationships between management
practices and post-mortem diagnoses of GI mucosal disease among 36 adult red wolves between
2004 and 2022. For final diets fed for a minimum of 4 months before death, we report that wolves
fed diets limited to only kibble were more likely to exhibit a greater severity of GI mucosal disease
than those fed diets that integrated whole prey or other meat items. In addition, while living at
their final facilities for a minimum of 9 months before death, wolves treated with a nonsteroidal
anti-inflammatory drug exhibited more severe GI issues than those who were not. Conversely, we
found no effect of housing and life history traits on GI health. This study highlights the importance
of evaluating management and veterinary protocols on red wolf GI health.

Keywords: red wolf; ex situ management; husbandry; gastrointestinal health; diet; kibble; nonsteroidal
anti-inflammatory drugs

1. Introduction

Red wolves (Canis rufus) are the most critically endangered wolf globally, with over
95% of the individuals living under human care [1,2]. Maintaining a healthy population
under human care is therefore paramount to the survival of the species. The U.S. Fish and
Wildlife Service manages this population for release in collaboration with the Association
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of Zoos and Aquariums (AZA) as partners in the Red Wolf Saving Animals from Extinc-
tion (SAFE) Program [2]. While AZA provides a standardized care manual for red wolf
husbandry [3], variation in management is probable within these guidelines, which may, in
turn, lead to differential health outcomes [4–6].

In human care, gastrointestinal (GI) disease is one of the leading causes of death for
adult red wolves. Acton et al. (2000) [7] identified causes of death for 38 captive red wolves
older than six months between 1992 and 1996. The authors found that 21% (8/38) of the
wolves died of gastrointestinal issues, representing the largest proportion of deaths for
this age group. In a later study, Seeley et al. (2016) [8] surveyed necropsy reports from
38 facilities for 175 human-managed red wolves older than six months between 1997 and
2012 and found gastrointestinal disease to be the second most common primary cause
of death in gross necropsy (38/175) and histology (24/143) reports for this age group,
following neoplasia. Finally, to assess primary causes of mortality, Lynch and Kendall
(2023) [5] quantified known causes of death from 33 facilities for 214 captive red wolves
born between 2000 and 2020 and reported that 29% of all adult (>=1 year old) deaths within
this sample could be attributed to some form of GI disease. Given the significant impact
of GI disease on the mortality of the red wolf population, it is critical to understand how
management practices and life history traits may influence GI health.

Diet and nutrition may play an important role in the incidence of GI disease within this
population. Red wolves in human care receive a variety of food items (e.g., dry extruded
kibble, whole prey items, and commercial meat products), provided in varying composi-
tions to create a whole diet that ultimately can impact red wolf health [4,6]. Dry extruded
kibble, for example, has been linked to a variety of GI health issues in canids. In domestic
dogs (Canis lupus familiaris), kibble diets increase the risk of chronic enteropathy [9–11] and
gastric dilatation volvulus [12]. In addition, kibble diets have been associated with a de-
pleted and imbalanced gut microbiome in domestic dogs [13], Mexican wolves (Canis lupus
baileyi) [14], and red wolves [4]. Drastic changes to the composition of the gut microbiota
can compromise the host’s health, making it prone to disease in general and gastrointestinal
health issues more specifically [15].

Housing conditions that may elicit a stress response, such as small enclosure sizes,
guest access to an animal’s enclosure, high animal densities, and transfers between facilities,
may also significantly impact gastrointestinal (GI) health. Stress-related hormones can bind
to receptors in the gut, and chronic stress-induced overactivation of these receptors can
result in reduced nutrient absorption, increased mucosal permeability, and immunosup-
pression [16]. These conditions elevate the risk of gut microbiome destabilization, infection,
and inflammation [16]. In certain species of carnivores under human care, enclosure size,
guest access, and transfer frequency have been shown to affect both gut health [17,18]
and behavioral or hormonal indicators of welfare [19–22]. High enclosure densities can
also adversely affect the gut health of mammals, likely because of interactions between
stress-related hormones and the GI immune system [23–25].

Life history traits, including age, sex, and genetic profile, could play a role in GI health
as well. For example, GI disease or dysbiosis severity has been associated with advanced
age [26,27] and inbreeding levels [28] in domestic dogs. Additionally, in some carnivores,
severe GI disease while under human care is more common in one sex than the other
(i.e., female red pandas [29] and male cheetahs [17]), suggesting possible linkages between
sex and GI health.

Finally, veterinary treatment should be considered when examining trends in GI
health. Nonsteroidal anti-inflammatory drugs (NSAIDs), while commonly used for pain
management and symptoms associated with osteoarthritis [30], can cause adverse effects on
GI health [31,32]. In response to gut health issues arising from NSAID use, COX-2 selective
inhibitors (e.g., meloxicam and carprofen) were developed to achieve anti-inflammatory
benefits while decreasing the risk for GI toxicity [33]. Though successfully utilized in
veterinary care, the effects of COX-2 selective inhibitors may still be linked to gut health
issues [31,34].
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To effectively assess the impact of management practices on red wolf GI health, we
completed a retrospective analysis of different diets, housing, veterinary management, and
life history traits as potential predictors of the severity of GI mucosal disease in red wolves
under human care. Specifically, we aimed to address the following research questions: does
the amount of kibble in the diet affect GI mucosal disease severity; do housing conditions
(enclosure size, wolf density, guest access, and transfer frequency) affect GI mucosal disease
severity; do life history traits (age, sex, and inbreeding coefficient) affect GI mucosal disease
severity; and do NSAID prescriptions affect GI mucosal disease severity. Such information
could improve the health and welfare of red wolves housed under human management.

2. Materials and Methods
2.1. Study Subjects and Surveys

Using studbook data [35], we identified wolves that met the following criteria: (1) died
at facilities that were likely to maintain thorough necropsy records and submit tissues for
analysis (following recommendations from KW, head veterinarian for the Red Wolf SAFE
Program), (2) were likely to have maintained a consistent diet of either whole prey, hybrid
food items (kibble with whole prey and/or processed meat), or only kibble for more than
50% of their lifetimes (relying on survey data collected from [5]), and (3) were adult wolves
(1 year or older) born after 1999, when survivorship stabilizes [5]. This process yielded a
candidate pool of 96 wolves from 12 facilities.

A survey (Supplementary File S1) was then emailed to institutional representatives
at the 12 facilities, containing questions on diet, housing, and the veterinary histories of
the selected wolves. Since we sought to obtain complete nutritional data for each wolf, we
also emailed the diet-based questions to an additional facility where 1 of the 96 wolves
had spent more than 50% of its lifetime. After a thorough review of records (average
response rate across all record requests = 85%, Table 1), we limited our study to wolves
with available necropsy results—specifically histopathologic reports that included gastric
and/or intestinal tissues that were not too autolyzed to preclude diagnosis—and complete
nutritional data. These refined criteria produced a filtered group of 38 wolves.

Table 1. Response rates for information requested for our study.

Item Number Requested Number Received Response Rate (%)

Husbandry Surveys 13 12 92
Necropsy Reports 96 82 85
Routine Medical Records 96 75 78

2.2. GI Assessment and Comorbidities

Following previous foundational studies [7,8], we assessed post-mortem histopatho-
logical evaluation of the GI tract, as GI biopsies conducted ante-mortem were unavailable.
We focused on histological diagnoses specific to the stomach and/or intestinal tract, ex-
cluding systemic (whole-body) diagnoses. For each wolf, we recorded the highest disease
severity grade assigned by a pathologist to the examined GI tissue(s). Histopathologic
severity grades are semiquantitative scores of the relative extent of a particular form of
tissue damage (such as ulceration or inflammation) that typically range on a 4- or 5-point
scale from normal or minimal to marked or severe [36]. Because the pathologists in our
study relied on similar grading terminology across institutions, we created a multi-level
term based directly on the GI severity grading used by the pathologists, which included
four categories extracted directly from the reports: none, mild, moderate, and marked to
severe. Using histopathologic severity grades from different pathologists for statistical
analysis can be unreliable due to the potential for subjective grading differences [36]. How-
ever, previous research that also used necropsy reports from across institutions has proven
valuable to our understanding of GI mucosal disease in red wolves [8]. GI diagnoses
that were graded according to severity in this study included inflammatory conditions
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(i.e., enteritis/gastritis/colitis/inflammatory bowel disease/crypt abscesses), erosion or
ulceration, hemorrhage, leiomyositis, and hyperplasia. Wolves that only had GI conditions
that could not be graded according to severity (i.e., intestinal lymphoma) were excluded
from our analysis, since we were unable to compare the relative severity of these conditions
across wolves. This process excluded two wolves, narrowing our sample from 38 wolves to
a final group of 36 wolves from 5 facilities.

In addition to GI diseases, we also recorded the other body systems for which his-
tological diagnoses were reported in the final 36 wolves, with the goal of identifying
comorbidities. We considered the upper digestive (i.e., the buccal cavity and esophagus)
and urinary systems as separate systems from our categorization of GI disease as described
above, as our analysis focused on the stomach, small intestine, and large intestine, the most
frequent sites of GI pathologies in red wolves [37]. These sites are commonly evaluated
during red wolf necropsies and can also be biopsied ante-mortem, making them useful
areas to examine for GI disease.

2.3. Diet

Three categories were created to describe different diet types. The first category, hybrid
diet, consisted primarily of dry kibble, with whole rats or mice offered at least weekly
and/or processed meat offered four to six times per week. Since these diet variants all
consisted mostly of kibble, but with meat regularly incorporated into the diet (as self-
reported by the facilities), we regarded them as a single category based on expected dry
matter content. The dry kibble brands and labels used within the hybrid diet category
included Hill’s Science Diet Canine Active Adult Chicken, Hill’s Science Diet Canine
Maintenance Original Dry, Infinia Turkey and Sweet Potato, Mazuri Exotic Canine, Hill’s
Science Diet Active dog food (unspecified label), and one unknown brand. The brands
and labels of processed meat used within the hybrid diet included Nebraska Classic
Canine, Natural Balance (unspecified label), and Nebraska Canine (unspecified label). The
second category, the kibble-only diet, was dry kibble-exclusive, with deer carcasses or parts
provided occasionally (on a seasonal basis) or not at all. The dry kibble brands and labels
used within the kibble-only diet included Hill’s Science Diet Canine Active Adult Chicken
and Mazuri Exotic Canine. The third and final category, the meat-only diet, consisted
primarily of meat: whole prey carcasses and parts (elk, deer, salmon, turkey, rabbits, and
rodents), with kibble offered on a supplementary basis or not at all. Whole prey items were
frozen briefly to kill parasites and then fed either frozen or thawed without added vitamins
or supplements, as little to no nutritional value is lost during this process if strict guidelines
are followed [38]. The dry kibble brand(s) and label(s) offered supplementarily in this final
group were not available. Due to the retrospective nature of our study, we were unable to
perform a detailed nutrient analysis comparing the dry kibble and processed meat labels
used across facilities based on primary ingredients, as, in multiple cases, the specific labels
and nutrient profiles of food items used in previous years were not known.

Using the studbook to track time spent over a lifetime across different institutions, we
created three diet predictor terms to test the relationship between diet and GI health: the
percentage of the wolf’s lifetime spent at kibble-only facilities, the first diet provided, and
the final diet type before death.

2.4. Housing

We examined housing conditions at a wolf’s final facility to assess their suitability as
predictors of GI disease severity at death. Because extreme stress has been shown to affect
gut health in canids within five days [39], it is likely that if housing conditions incur stress,
changes to the gut will be apparent in our study group.

First, we established a binary variable to indicate whether a wolf spent more than 50%
of its time at the final facility in public view, or “on guest access”, defined as habitats visible
to visitors throughout the day or those included in scheduled tours. Next, to examine the
effects of wolf density, we created two binary variables representing whether other wolves
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were within (1) visual proximity or (2) auditory proximity to the subject wolf’s primary
enclosure while housed in the final facility. Lastly, we considered the effect of transfers
over a lifetime, creating a binary term of never transferred versus 1 or more transfers
between facilities.

2.5. NSAID Prescriptions and Life History Variables

Prescription of an NSAID at any point in time at a wolf’s final facility was included as
a binary term. One wolf was excluded from this analysis due to lack of records. We counted
both parenteral and oral prescriptions of NSAIDs, as both administration routes have been
correlated with adverse GI effects despite their mechanistic differences [40]. Because both
NSAID medications observed in the records (meloxicam and carprofen) are considered
selective for COX-2 [41], wolves that received either were combined in our analysis, as their
selectivity ratios differ only slightly [42]. As the veterinary record we obtained for each
wolf came from its facility of mortality, we were only able to assess the wolves’ prescription
histories while housed at these facilities.

The influence of life history variables on GI health was also tested. We explored the
inbreeding coefficient for each wolf, as generated by PMx [43], and age at death, following
categories included in the most recent population viability analysis for this species [44]. We
also included wolf sex as a predictor term.

2.6. Analyses

RStudio (version 4.3.3) [45] was used for all analyses. The association() function of the
package greybox [46] was used to test correlations across all predictor terms before model-
ing. Predictors with correlation coefficients of 0.7 or higher were tested separately [47]. In
model selection processes using information criteria to assess fit, high correlation coeffi-
cients do not affect comparisons of fitness across models if the correlated predictors are
included in separate models [48].

Our response variable of GI disease severity was treated as an ordered factor with four
levels (none, mild, moderate, and marked to severe), necessitating the use of cumulative
link models (CLMs) with a logit link for ordinal logistic regression, using the function clm()
from the ordinal package [49].

To test our large number of predictor terms (n = 11), we first compared models within
each of three categories (diet, housing, and life history/NSAID prescription), including
interactions, additive, and single-term models as well as the null model. The Corrected
Akaike Information Criterion (AICc) was used to conduct our model selection process,
where models with the lowest AICc scores were considered to indicate better-fitting mod-
els [50]. Relying on the AICc score to interpret model fit is particularly useful when working
with smaller sample sizes with low heterogeneity [51]. When two models with AICc scores
within 2 units (the standard penalty of the AICc for adding a term to the model; [52,53]) of
each other were competing for the best fit model, the significance of the terms within the
model was considered. If the removal of an insignificant predictor did not affect the AICc
by more than 2 units, then that predictor was deemed unnecessary for the fit of the model
and removed to maintain parsimony [54]. Models with the lowest AICc, after accounting
for the significance of the predictors, from each of the three categories were then moved
forward into “global models” and, again, we explored the terms as single-term, interactive,
and additive. The model from this group of testing with the lowest AICc was considered
the best fit.

3. Results
3.1. GI Assessment and Comorbidities

Our dependent variable categorized the highest GI disease severity score noted for
each wolf into the following four levels: none (n = 8), mild (n = 9), moderate (n = 8), and
marked to severe (n = 11). Thus, over 70% of the sampled wolves (28 of 36) exhibited
some degree of GI disease. For these 28 wolves, the diagnoses represented by their highest
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severity grades were enteritis (n = 11), gastritis (n = 5), gastroenteritis (n = 2), gastroen-
terocolitis (n =1), enterocolitis (n = 1), inflammatory bowel disease (n = 1), enteric crypt
abscesses (n = 1), fundic erosion (n = 1), gastric hemorrhage (n = 1), rectal hemorrhage
(n = 1), duodenal ulceration (n = 1), intestinal leiomyositis (n = 1), and ileal hyperplasia
(n = 1).

For the 11 wolves with marked to severe GI diagnoses, comorbid diagnoses included
hepatopancreatobiliary (n = 6), integumentary (n = 5), endocrine (n = 4), renal (n = 3),
cardiovascular (n = 3), respiratory (n = 3), lymphatic (n = 2), musculoskeletal (n = 2),
nervous (n = 1), urinary (n = 1), auditory (n = 1), and esophageal (n = 1) issues, with
only one wolf in this group exhibiting no comorbidities. For reported non-GI histological
diagnoses across the other 25 wolves, the primary body systems affected were respiratory
(n = 14), renal (n = 10), reproductive (n = 9), hepatopancreatobiliary (n = 8), lymphatic
(n = 8), cardiovascular (n = 6), endocrine (n = 6), musculoskeletal (n = 4), nervous (n = 4),
integumentary (n = 2), urinary (n = 1), and salivary (n = 1). Only one wolf had no histological
diagnoses noted for any body system (GI or otherwise).

3.2. Diet

Our additive and interactive diet models included the following fixed effects: final
diet (hybrid, n =16; kibble-only, n =20) and first diet (hybrid, n = 9; kibble-only, n = 27). The
percentage of the lifetime spent at kibble-only facilities (mean = 0.71, min = 0, max = 1.0)
was correlated with both final diet (r = 0.79) and first diet (r = 0.87), so these terms were
tested separately. From the single-term, additive, and interactive models generated with
the three diet predictors, the three best fit models based on lowest computed AICc values
were identified (Table 2). The single-term model with only final diet and the additive and
interactive models with both final diet and first diet were found to be within two AICc
units of each other. Relying then on significance [54], our final model for diet predictors
only included final diet as a fixed term (Estimate = 1.5, Std. Error = 0.64, p = 0.02).

Table 2. Diet model selection. The top 3 models are presented (K = number of estimated parameters,
AICc = corrected Aikake Information Criterion, ∆AICc = AICc difference from the top model,
w = AICc weight, and LL = log likelihood. Asterisks indicate significant terms at α = 0.05).

Model Predictors K AICc ∆AICc w LL

1 First Diet + Final Diet * 5 101.94 0.00 0.35 −44.97

2 First Diet × Final Diet * 5 101.94 0.00 0.35 −44.97

3 Final Diet * 4 102.86 0.92 0.22 −46.79

3.3. Housing

The minimum time spent at the final facility was 291 days, approximating 9 months
(mean = 2835 days, max = 5981 days). Our full housing model included the following fixed
effects: guest access (wolves on guest access, n = 5; wolves not on guest access, n = 31),
transfer history (never transferred, n = 29; transferred 1 or more times, n = 7), auditory
proximity to wolves in other enclosures (yes, n = 33; no, n = 3), and visual proximity to
wolves in other enclosures (yes, n = 31; no, n = 5). From the single-term, additive, and
interactive models generated with those housing predictors, the three best fit models based
on the lowest computed AICc values were found (Table 3). Our final housing model
only included guest access as the fixed effect, but this term did not yield significance
(Estimate = −1.4, Std. Error = 0.86, p = 0.1).
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Table 3. Housing model selection. The top 3 models are presented (K = number of estimated
parameters, AICc = corrected Aikake Information Criterion, ∆AICc = AICc difference from the top
model, w = AICc weight, and LL = log likelihood).

Model Predictors K AICc ∆AICc w LL

1 Guest
Access 4 105.65 0.00 0.15 −48.18

2 Null 3 105.92 0.27 0.13 −49.58

3 Visual
Access 4 106.99 1.34 0.08 −48.85

3.4. NSAID Prescriptions and Life History Variables

Our full life history model included the following fixed effects: age class at death, with
ordinal categories of subadult (1–2 years; n = 3), adult (2–7 years; n = 11), senior (7–10 years;
n = 8), or geriatric (>10 years; n = 14); sex (male, n = 15; female, n = 21); inbreeding coefficient
(min = 0.05, max = 0.1, mean = 0.07); and NSAID prescription at facility of mortality (yes,
n = 25; no, n =10). Wolves who received an NSAID at their final facilities were prescribed
either meloxicam only (n = 21), carprofen only (n = 2), or both at separate points in time
(n = 2). The average time window between death and the last NSAID prescription received
at a wolf’s final facility was 642 days, or 21 months (min = 0 days, the same day as death;
max = 2399 days, or about 6 years). For the 24 wolves for which the total number of NSAID
prescription events could be determined from the records, the number of prescription
events ranged from 1 to 16, with an average of 4 events. For the 94 prescription events
(oral prescription events, n = 27; parenteral prescription events, n = 67) for which treatment
durations could be determined from the records, the average treatment duration was 3 days
(min = 1 day, max = 14 days).

From the single-term, additive, and interactive models generated with the four life
history predictors, we extracted the three best fit models based on the lowest computed
AICc values (Table 4). Our final model for life history variables and NSAID use only
included NSAID prescription as a single term, though this term did not yield significance
in its single-term model (Estimate = 1.35, Std. Error = 0.72, p = 0.06).

Table 4. Life history/NSAID prescription use model selection. The top 3 ranked models presented
(K = number of estimated parameters, AICc = corrected Aikake Information Criterion, ∆AICc = AICc
difference from the top model, w = AICc weight, and LL = log likelihood. Asterisks indicate significant
terms at α = 0.05).

Model Predictors K AICc ∆AICc w LL

1 NSAID 4 101.75 0.00 0.44 −46.21

2 NSAID * + Inbreeding Coefficient 5 103.84 2.08 0.16 −45.89

3 NSAID + Sex 5 104.42 2.66 0.12 −46.17

3.5. Global Models

Our full global model included the best-fitting fixed effects identified in our categorical
model selection process: final diet, NSAID prescription, and guest access. From the single-
term, additive, and interactive models generated with those predictors, we determined
the three best-fit models based on the lowest computed AICc values (Table 5). We report
our best-fit model for the prediction of GI disease severity scores to be the additive model
containing NSAID prescription and final diet.

In the best-fit model, kibble-only final diets significantly predicted greater severity of
GI disease (Estimate = 2.1, Std. Error = 0.70, p = 0.003; Figure 1). For example, for consistent
diets prior to death, wolves restricted to a diet of only kibble were 41.30% likely to present
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a marked to severe GI disease severity score. In contrast, wolves on a hybrid diet were only
10.13% likely to present a marked to severe GI disease severity score.

Table 5. Global model selection. The top 3 ranked models presented (K = number of estimated
parameters, AICc = corrected Aikake Information Criterion, ∆AICc = AICc difference from the top
model, w = AICc weight, and LL = log likelihood. Asterisks indicate significant terms at α = 0.05).

Model Predictors K AICc ∆AICc w LL

1 Final Diet * + NSAID * 5 94.69 0.00 0.49 −41.31

2 Final Diet * × NSAID * 6 97.01 2.32 0.15 −41.00

3 Final Diet * + Guest Access + NSAID * 6 97.45 2.77 0.12 −41.23
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Figure 1. Model results for diet and GI disease. Red wolves fed a hybrid diet were less likely to
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We also report that, while housed at their final facilities for an average of 7 years
before death, wolves that received at least one NSAID prescription were significantly more
likely to exhibit more severe GI disease (Estimate = 1.8, Std. Error = 0.77, p = 0.02). For
example, wolves administered one or more NSAIDs in this time frame were 27.78% more
likely to present a marked to severe GI diagnosis compared to wolves who did not receive
the treatment (Figure 2).
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4. Discussion

This retrospective study investigates the impact of management practices on gastroin-
testinal (GI) mucosal health in the managed red wolf population. We found that diet and
nonsteroidal anti-inflammatory drug (NSAID) use were the strongest predictors of GI
mucosal disease severity scores. Given that most red wolves currently live under human
care and that GI disease is a leading cause of adult mortality, evaluating management
practices that may influence red wolf gut health is crucial for the survival of the species.

We report that kibble-only final diets better predict high severity scores of GI mucosal
disease compared to hybrid diets. This finding contributes to the growing literature linking
highly processed diets to GI disease among canids (domestic dogs, [9–11]; coyotes, [55]).
These findings may be rooted in several complications well-known to be associated with kib-
ble diets in canids. First, the processing of kibble can impact gut health. Processing requires
heat treatments that aim to improve digestibility while extending shelf life and eliminating
pathogens. This process, though, alters the availability of key nutrients [56], modifies levels
of microstructure [57], and increases the presence of harmful byproducts [58,59]. In particu-
lar, the advanced glycation end products (AGEs) produced during heat processing may
instigate pro-inflammatory responses in the GI tract by binding to receptors responsible
for upregulating inflammation [60,61]. Dietary AGEs can also increase the permeability of
the intestinal epithelium [62], making the gut more vulnerable to ulceration and erosion. It
is likely that these effects of heat processing lead to higher GI mucosal disease severity in
red wolves on kibble-only diets. Such health outcomes may also be due in part to kibble
providing high amounts of carbohydrates while lacking anti-inflammatory micronutrients,
leading to greater mucosal permeability and inflammation [63,64]. Highly processed pet
foods like kibble are also low in dietary fibers, which are essential to promoting digestive
health [65].

Second, an alteration in the structure of the gut microbiome is an emerging pat-
tern linked to GI disease in canids [13,15,66]. Disruptions to the GI microbiome can
affect an array of physiological and immunological functions, directly or indirectly [67],
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and nutrition has the potential to both affect disease conditions and directly change the
microbiome [13,68]. Compared to meat-based diets, kibble diets have been directly linked
to altered microbiota diversity in the gut in red wolves [6], Mexican wolves [14], and
domestic dogs [13,69].

Our findings also suggest a relatively acute onset of diet-based GI symptoms, as the
consistent diet given over a minimum of 4 months leading up to death predicted severity
of GI issues. Domestic dogs experiencing chronic enteropathy have been shown to respond
to dietary changes within 14 days [70], and because the minimum time a wolf was fed a
consistent diet before death was 143 days, or approximately 4 months (mean = 2285 days,
max = 5854 days), it is probable that the post-mortem histopathology report reflects the last
diet type consumed. Red wolves may therefore experience positive outcomes from dietary
interventions targeting GI symptoms. In domestic dogs, those with chronic enteropathy and
other GI diseases were shown to respond favorably to dietary interventions in about 50%
of the cases reviewed by Simpson and Jergens (2011) [71]. Current management techniques
already include providing meat to wolves who exhibit symptoms associated with poor
gut health (e.g., worsening of body condition, fecal scoring). Certainly, then, gradually
increasing the meat content in the diets of red wolves housed in zoological facilities may
help mitigate GI health issues. Due to the limitations of the sample size and our reliance on
historical records, future work would benefit from incorporating a broader range of wolves,
spanning all diet types, to provide additional insights into the predictors and GI health.

Our study revealed that NSAID use predicted GI disease severity. We report that
wolves given at least one prescription of NSAIDs within an average of 7 years before
death (the time frame for which wolves were housed at their final facilities) exhibited
more severe GI mucosal disease upon necropsy than those without NSAID treatment.
NSAIDs play a critical role in animal health management due to their anti-inflammatory
and analgesic properties and are a powerful tool in promoting animal welfare. It should
be noted, though, that these medications generally exert their pharmacological effects by
inhibiting cyclooxygenase enzymes involved with prostaglandin production, which can
obstruct homeostatic functions, such as gastric epithelial cytoprotection, platelet function
homeostasis, and renal blood flow regulation, as well as the inflammatory response, all
of which can affect gut health [72,73]. The medications assessed in this study, however,
were categorized as selective COX-2 inhibitors, which, generally, have significantly fewer
side effects on upper GI health, as they subvert these processes [74]. Therefore, if these
medications are affecting gut health in red wolves, the underlying mechanism may not be
related to the inhibition of prostaglandin.

Instead, because medications, like nutrition, can influence the composition and activity
of the gut microbiota [75], our results could indicate disruptions within the microbiome.
Selective NSAIDs, while not directly impacting mucosal gut health as often as traditional
NSAIDs, have been demonstrated to adversely affect the gut microbial community [76–78].
As previously described, disruptions to the gut microbiome can incite a suite of health
issues, including GI disease [15]. Therefore, the increased severity of GI health issues
linked with NSAID use in our study may be driven by disturbances in the gut microbiome,
especially given that some NSAIDs have been shown to exhibit antibacterial properties [79].

The wolves who received NSAIDs in our study group were prescribed NSAIDs an
average of 4 separate times for an average of 3 days at their final facilities, with the last
prescription event occurring an average of 21 months before death. This time window
between the last prescription event and death, combined with the short average treatment
duration, may be interpreted as too wide a gap to directly link NSAID use with gut health
issues, as the canid gut can heal as early as 10 days after treatment if mucosal damage
occurs [80]. Our finding may then implicate a cascade effect, where at-risk individuals
may be more vulnerable to the effects of this medication. Among red wolves, there is
evidence suggesting a genetic predisposition within the managed population for IBD [81].
If vulnerable individuals with this predisposition receive NSAID treatment while also
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exposed to various other environmental factors that can affect gut health, it is then possible
that physiological processes responsible for GI disease are exacerbated.

Due to our small sample size, we were unable to distinguish in our analysis between
areas within the GI tract that exhibited lesions. NSAIDs are most likely to affect the stomach,
so lesions outside of this area would suggest other causes for GI disease [33]. However,
if a cascade effect is indeed occurring, we might not expect lesions to be restricted to the
stomach following NSAID use. It is also possible that symptoms leading to prescription of
NSAIDs may be correlated with GI issues, which could be causing a confounding effect.
For example, some studies have shown an association between canine arthritis and gut
microbiome composition [82,83], suggesting a potential pre-existing relationship between
joint inflammation and gut health. Finally, since histological diagnoses in body systems
other than the GI tract were reported for most wolves in this study, comorbidities could
be affecting our results. For example, chronic renal disease may adversely impact the
composition and functions of the gut microbiota [84]. If a wolf treated with an NSAID
at some point in time develops renal disease later in life, it may be difficult to determine
whether the presentation of GI disease reflects renal issues, NSAID administration, or both.
Thus, further research is needed to illuminate these relationships.

Housing conditions did not predict GI health in our study. Free-ranging red wolves
are known to disperse from their natal groups after reaching sexual maturity, at around
2 years old [85]; thus, transfers between institutions may mimic a natural part of the life
cycle. Indeed, previous research has not found a correlation between transfer number and
survival [5], suggesting this management practice may not induce chronic stress. Wolf
density at the facility was also not found to have an impact on GI disease severity. In
the wild, reproduction in red wolves declines as population density increases, suggesting
that densities and related territorial conflicts are regulated by resource availability [86].
Thus, the presence of additional neighboring individuals in human care may not induce
stress because resource availability is not a limiting factor for human-managed animals.
Further, while habitats available for public viewing have been found to benefit overall
survivorship of red wolves [5], the mechanisms behind this correlation are less clear.
Improved monitoring of animals on guest view or more nuanced physiological effects
of visitor presence across individuals could explain this relationship [87], which may not
directly affect gut health.

Our study found no significant effects of life history variables on GI mucosal disease
severity. As previous work did not find sex-biased survival rates or causes of death [5], it is
likely that sex does not play a role in GI health in red wolves either. We did not find the
inbreeding coefficient to significantly predict the likelihood of GI mucosal disease severity,
but it is important to note that this value only reflects the probability of overall relatedness
between the sire and dam, rather than similarities at various genomic levels. Further
research into the genetic component may be better suited to examine this connection, as
some forms of genetic variation have already been shown to predispose wolves to GI
disease [81]. Finally, while advanced age and GI mucosal disease severity have been linked
in domestic dogs [26,27], we did not find age at death of the individual to be a significant
predictor. It may be possible that the lack of association in our study is due to our small
sample size, as compared to larger studies in domestic dogs. Another explanation may lie
in the significance of diet within this population: perhaps those animals fed a kibble-only
diet are more likely to develop severe GI mucosal disease, regardless of age.

5. Conclusions

Maintaining the health of the red wolf population under human care is of paramount
importance to the survival of the species. With GI disease as one of the primary causes
of adult mortality, it is imperative to deepen our understanding of contributing factors to
mitigate and improve the health of red wolves. Based on our findings, we can provide
several recommendations for the management of red wolves. First, as kibble-only diets
predicted GI mucosal disease severity, we encourage the inclusion of more meat-based
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items in diet planning. Small prey items (rabbit, mouse) to larger carcass feeds (deer)
may improve gut health, in addition to retaining more natural foraging and mastication
behaviors associated with consumption. Second, careful evaluation of individual health
status is encouraged prior to administration of NSAIDs. Assessing stomach condition and
considering gastroprotective measures, in particular, may be useful. While the singular
causative agent generating GI mucosal disease among red wolves is unknown, it is most
likely rooted in complex interactions between the gut microbiome, environmental factors,
such as diet, and genetic predisposition [81,88]. Further study of red wolf gut health will
continue to improve their management and welfare.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani14213121/s1, Supplementary File S1: Management Survey.
Questions from this survey were completed by 12 facilities to provide data on diet, housing, and the
veterinary histories of the selected wolves.
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