Skip to main content
. 2024 Oct 31;13(21):3501. doi: 10.3390/foods13213501

Table 13.

Overview of NIR Results for Pome Fruits (Maloideae).

Sample Investigated Parameter Concentration Range Chemometrics Data Ref.
Pre-Processing, Regression R2 Root Mean Square Error
Apple Soluble solid content—SSC, % 11.0–14.0 GA 0.911 0.251 [310]
7.63–18.60 SNV, MSC, CARS-PLS 0.971 0.429 [313]
8.00–13.60 SGS, 2nd der., CARS-SPA-PLS 0.850 0.443 [318]
11.0–17.0 SGS, 1st der., SPA, MNLR 0.953 0.754 [323]
7.8–24.1 SNV, LS-SVM 0.73 0.7 [328]
9.13–15.66 CARS/PLS 0.9402 0.5079 [329]
Complex model with pear 11.1–15.2 2nd der., PLS 0.88 0.43 [332]
Complex model with pear and peach 10.20–15.60 SPA-MWPLS 0.96 0.46 [333]
MLR 0.96 0.46
Titratable acidity—TA, % 0.9–28.4 SNV, LS-SVM 0.68 0.89 [328]
Firmness, kg/cm2 1.5–12.7 SNV, LS-SVM 0.74 0.99
Starch-Iodine Index 2–10 SNV, LS-SVM 0.73 0.84
Visual ripeness index, VRPI n.i. LS-SVR 0.925 0.168 [324]
RPI n.i. PLS 0.777 0.191
IQI n.i. PLS 0.951 0.291
Streif index n.i. PLS 0.768 0.082
α-farnese, μmol/m2 15–1816 NCL, PLS 0.81–0.92 139 [327]
CTols CT258 14–502 1st der. BCAP, PLS 0.90; 0.94 59–60
CT281 1–450 0.91; 0.78
Maturity estimation SSC, TA, firmness, anthocyanin SGS, SNV, MSC, SLS, 1st der. 2nd der.
PLS, PCR, SMLR, GA-PLS
0.22–0.97 n.i. [319]
Internal flesh browning 93 good, 203 defect PLS 0.83 0.63 [314]
Sunscald 161 shaded and sun-exposed
100 mild sun damaged
MSC, 2nd der., PLS, iPLS-DA 0.454
0.594-
0.211
0.317
[317]
Classification Internal flesh browning LDA accuracy >95% [314]
Damage Bruise, Mouldy core
Sunburn
Internal browning
PLS-DA, SPA-PLS, SELFS, iPLS-DA
LDA
accuracy > 90%; 92%
R2cv = 0.59
accuracy 90%
[336]
Maturation level—colour ANN/SA accuracy 100% [331]
Variety; Freshness; Variety, freshness PCA, VIP, PLS-DA misclassification 0%; 5.8%; 2.0–3.9% [335]
Bitter bit (BP) 269 BP
719 non BP
PLS-DA accuracy 60–80% [337]
Origin TCA, LS-SVM accuracy 90.91% [339]
Fungal infection SNV, CARS, SPA, KNN, LDA, LS/SVM, RF accuracy 98.75% [138]
Pear Soluble solid content—SSC, % 8.6–13.8 PLS 0.912 0.662 [311]
8.6–11.3 SGS, SNV, 1st der., var.sel. PLS 0.58 0.65 [312]
10.8–14.6 SGS, PLS 0.92 0.41 [315]
8.6–13.6- aver. spectra, FWs PLS 0.8611 0.6314 [316]
9.8–16.8 SGS, MSC, siPLS 0.9657 0.2265 [320]
13.4–16.9 PCA, Si-GA-PLS, 0.9406 0.165 [321]
7.20–19.5 SpectraNet–32 0.58 1.08 [322]
8.2–16.5 SNV, 2nd der., SVM 0.71 0.7 [338]
11.3–18.5 OSC-PLS 0.85 0.46 [374]
11.3–18.5 OSC-MLR 0.86 0.46
6 cultivars 10.2–25.0 Grad-CAM, SVR, CNN n.i. 0.33–1.64 [326]
Complex model with apple 9.2–13.8 2nd der., PLS 0.88 0.43 [332]
Complex model with apple and peach 10.90–16.90 SPA-MWPLS, MLR 0.96
0.96
0.46
0.46
[333]
Dry matter 11.4–21.8 SGS, SNV, 1st der., var.sel. PLS 0.65 1.06 [312]
Firmness 4.2–11.3 PLS 0.854 1.232 [311]
28.4–127.1 PCA, Si-GA-PLS, 0.9119 5.5003 [321]
5.0–71.0 SNV, SVM 0.68 7.66 [338]
15.00–35.86 PLS 0.58–0.845 2.65–3.98 [325]
1.9–71.2 OSC-PLS 0.68 8.18 [374]
1.9–71.2 OSC-MLR 0.56 9.28
Maturity estimation SSC, firmness, lignin cont. SGS, SNV, MSC, OSC, 1st der., 2nd der., siPLS, UVE, MS-UVE-SPA, PLS, MLR, LSSVM, NIPALS 0.61–0.96 n.i. [319]
Classification internal browning PLS-DA sensitivity 76% [338]
Insect-affect SGS
CBAM-CNN
accuracy 92.71% [340]