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Abstract: Background: This study examines the impact of the COVID-19 pandemic on abdomi-
nal trauma management by comparing pre-pandemic (17 February 2018–26 February 2020) and
pandemic periods (27 February 2020–7 March 2022). Methods: Analyzing data from 118 patients
at the Emergency County Clinical Hospital of Craiova, we identified significant shifts in clinical
practices affecting patient outcomes. Results: During the pandemic, a moderate increase in surgical
interventions for specific abdominal traumas indicated the effective adaptation of the medical system.
Prioritizing critical cases and deferring non-urgent procedures optimized limited resources. Demo-
graphic and clinical factors—including age, sex, body mass index (BMI), and red cell distribution
width (RDW)—significantly influenced the hospitalization duration and recovery outcomes. Gender
disparities in mortality lessened during the pandemic, possibly due to standardized interventions
and the physiological effects of SARS-CoV-2. The link between occupation and obesity highlighted
how work environments impact trauma severity, especially as lifestyle changes affect BMI. While age
remained a major predictor of mortality, its influence slightly decreased, potentially due to improved
protocols for elderly patients. RDW emerged as an important prognostic marker for disease severity
and mortality risk. Conclusions: Employing advanced co-occurrence analysis enhanced with machine
learning, we uncovered complex relationships between clinical and demographic variables often
overlooked by traditional methods. This innovative approach provided deeper insights into the
collective impact of various factors on patient outcomes. Our findings demonstrate the healthcare
system’s rapid adaptations during the pandemic and offer critical insights for optimizing medical
strategies and developing personalized interventions in global crises.

Keywords: abdominal trauma; COVID-19 pandemic; co-occurrence; machine learning

1. Introduction

The first cases of COVID-19 were reported in December 2019 and were associated with
a seafood market in Wuhan, China, where live wild animals were also sold. This connection
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suggested the potential transmission of the virus from wild animals to humans [1]. Due
to the rapid global spread of the virus and its profound impact on communities and
countries worldwide, the World Health Organization (WHO) officially declared COVID-19
a pandemic on 11 March 2020 [2]. Studies have demonstrated that the pandemic negatively
affected waiting times for medical and surgical interventions, as well as access to essential
treatments [3–6]. The emergence of the COVID-19 pandemic temporarily overshadowed
another ongoing global health crisis: the trauma pandemic [7].

An injury is defined as damage to the body’s tissues, whether intentional or accidental,
resulting from sudden exposure to various types of energy (mechanical, thermal, electrical,
chemical, and radiation) that exceed the physiological tolerance threshold, leading to cell
death or homeostatic imbalances [8]. Traumatic injuries are the leading cause of death
among individuals aged 1 to 44, with a significant impact on children and young adults
due to their active lifestyles and differing mechanisms of injury compared to older age
groups [9,10]. The proportion of elderly individuals in the global population is increasing
due to higher life expectancy and declining birth rates, leading to an aging population in
many countries and, consequently, altering future trauma cohorts [11–13].

Abdominal trauma is rare, occurring in less than 10% of all trauma patients, with
the liver, spleen, and kidneys being the most frequently affected organs. Given the vital
organs involved in the abdominal region, the overall mortality rate can be as high as
20%. Variations in the morbidity and mortality rates are influenced by a range of factors,
from patient characteristics and epidemiological context to medical facilities and surgical
expertise [14,15].

During the COVID-19 pandemic, the management of trauma patients in healthcare
facilities faced significant challenges related to infrastructure, medical personnel, and
patient care, all while attempting to prevent the spread of the virus. Additionally, the
presence of COVID-19 complicated the interpretation of signs, symptoms, and tests, as
the effects of the virus could mask or confuse the diagnosis and appropriate treatment of
traumatic injuries [16,17].

Following a traumatic event, the body initiates a cascade of physiological responses
that disrupt the homeostasis of the immune system and increase susceptibility to oppor-
tunistic infections, a process that can culminate in death if not effectively managed. Similar
inflammatory processes have been observed in COVID-19 infections. However, in the con-
text of trauma, COVID-19 infection acts as a catalyst, amplifying the inflammatory response
and its consequences [18]. The resulting inflammation is a protective biological response of
the immune system to harmful exogenous and endogenous stimuli, aimed at eliminating
the initial cause of cellular injury, removing damaged cells and tissues, and establishing
the necessary conditions for tissue repair. However, prolonged or excessive inflammatory
responses can lead to tissue damage and are a significant factor in the development of
many chronic diseases [19,20].

The aim of this study is to evaluate and compare the manifestations of complications
and mortality among patients with abdominal trauma before and during the pandemic,
exploring the interaction between injury severity and discharge outcomes. By analyzing
these changes, we aim to gain a better understanding of the impact of the COVID-19
pandemic on the management of abdominal trauma. This endeavor may facilitate the
optimization of medical interventions and contribute to improved patient outcomes by
providing essential data for clinical approaches adapted to pandemic conditions.

Furthermore, the study introduces an innovative methodology that integrates co-
occurrence matrices with advanced machine learning techniques. This approach allows the
identification of complex relationships and hidden patterns that might remain undetected
through traditional statistical methods. By applying these techniques, our study not only en-
hances the precision of clinical analyses but also opens new avenues for optimizing patient
treatment and management, particularly during crises such as the COVID-19 pandemic.
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2. Materials and Methods
2.1. Study Design

This retrospective study evaluated consecutive cases of abdominal trauma (AT) treated
in three university-affiliated general surgery departments at the Clinical Emergency County
Hospital of Craiova, following prior approval from the Ethics Committee of each unit.
Patient data were collected from the hospital’s trauma registry using the diagnostic codes
S36.X, S37.X, S38.X, and S39.X, and only cases with sufficient information for complete
validation were included in the study.

After applying the inclusion criteria, data from 118 patients over the age of 16,
who sustained abdominal trauma and were admitted to the surgery department, were
analyzed. These patients were divided into two distinct groups for analysis based on a
significant temporal criterion. The pre-COVID group includes patients admitted between
17 February 2018 and 26 February 2020. The COVID group comprises patients admitted
between 27 February 2020, the date marking the first day of the COVID-19 pandemic in
Romania, and 7 March 2022, the last day of the pandemic according to official statements
from Romanian authorities.

This temporal division was established to enable a relevant comparative analysis
between the pre-pandemic and pandemic periods, considering the major impact of the
pandemic on the healthcare system and, consequently, on the management of abdominal
trauma cases. Patients with trauma located in anatomical regions other than the abdomen
and those with incomplete data were excluded from the analysis (Figure 1).
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Figure 1. Flow chart of patient inclusion. Figure 1. Flow chart of patient inclusion.

Comprehensive demographic data, including sex, age, insurance status, body mass
index (BMI), and relevant comorbidities, such as diabetes, congestive heart failure, stroke,
myocardial infarction, coronary artery disease, cancer, chronic renal failure, chronic ob-
structive pulmonary disease, dementia, cirrhosis, and smoking habits, were collected.
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At the time of admission, injury characteristics were documented, analyzing trauma
mechanisms such as falls from height, pedestrian injuries, motorcycle collisions, motor
vehicle accidents, assaults, sports injuries, suicide attempts, and domestic violence. Injury
severity was assessed using the Injury Severity Score (ISS) and the Abbreviated Injury Scale
(AIS) for various anatomical regions.

Upon presentation, vital signs and other physical examination results were recorded,
including systolic blood pressure, respiratory rate, pulse, temperature, and Glasgow Coma
Scale score.

The outcomes included the length of hospital stay, the duration of intensive care unit
(ICU) admission, days of mechanical ventilation, the volume of packed red blood cells and
fresh frozen plasma transfused within the first four hours, and the surgical interventions
performed. Complications such as sepsis, stroke, myocardial infarction, pneumonia, acute
renal failure, deep vein thrombosis, pulmonary embolism, delirium tremens, and mortality
were also monitored.

Complete blood counts (CBCs) included white blood cell, neutrophil, lymphocyte,
monocyte, and red blood cell counts, hemoglobin levels, hematocrit, mean corpuscular
volume, red cell distribution width, platelet count, mean platelet volume, and routine
biochemical analyses. Additionally, inflammatory biomarkers and COVID-19 infection
status were analyzed. This information was used to evaluate and compare clinical outcomes
and to examine the evolution of abdominal trauma patients in the context of the COVID-
19 pandemic.

2.2. Inclusion Criteria

To be included in the study, the patients were required to have confirmed abdominal
trauma by one or more of the following methods: detailed clinical evaluation, diagnostic
imaging (CT, MRI, or ultrasound), or surgical interventions confirming the presence of
trauma. Only the patients with complete sets of clinical and paraclinical data, essential for
the full validation of each case according to the study’s objectives, were selected.

2.3. Exclusion Criteria

The patients who sustained traumatic injuries outside the abdominal region or whose
injuries did not directly affect the abdominal organs were excluded from the study. Addi-
tionally, patients with incomplete medical documentation at the time of admission or with
missing data necessary for evaluation during treatment were not included.

To avoid confounding effects related to complications specific to COVID-19 infection,
the patients diagnosed with COVID-19 were excluded from the analysis, ensuring the
consistency and accuracy of the results. Patients with autoimmune diseases were also
excluded due to the increased risk of complications and potential negative interactions with
abdominal trauma. Pregnant women were not included in the study due to the specific
treatment needs and risks associated with pregnancy, as well as the potential impact of
abdominal trauma on pregnancy outcomes.

2.4. Statistical Analysis

Statistical analysis was performed using standard methods to evaluate the distribution
of data. The Shapiro–Wilk test was applied to assess the normality of the distribution,
thereby ensuring the appropriateness of the subsequent statistical methods. Upon the
confirmation of normality, chi-square and Mann–Whitney tests were employed to identify
significant differences between the groups, with a significance threshold set at p < 0.05.

Data analysis was conducted using SPSS version 26.0 (IBM Corporation, Armonk,
NY, USA), chosen for its advanced capabilities and widespread use in medical research.
The data were expressed as the median and interquartile range (IQR) to provide a more
accurate representation of the distribution.

In addition, to explore the complex relationships between variables, machine learning
techniques were implemented using Python version 3.9. A feed-forward neural network
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model was used to generate data representations and calculate the co-occurrence matrix.
This approach facilitated the identification of complex patterns and interdependencies
among the variables studied.

To ensure the reproducibility of the results, a random seed was set to 42, a common
practice in scientific research, allowing for consistent outcomes with each execution of the
code. While the exact values of correlations may vary slightly between runs, significant and
robust correlations persist, suggesting that the identified models reflect genuine interactions
among the variables studied.

By leveraging machine learning, we overcame the limitations of traditional statisti-
cal analysis, successfully uncovering complex patterns and interdependent relationships
among the analyzed variables, thereby enhancing the understanding of interaction dynam-
ics in the context of abdominal trauma during the COVID-19 pandemic.

All the analyses were performed using Python 3.9 and the libraries TensorFlow 2.13.0,
NumPy 1.24.4, and SciPy 1.10.1.

In the context of using machine learning techniques to construct the co-occurrence
matrix, the diagonal values are not necessarily equal to 1, as these values reflect the learned
relationships between individual variables within a complex dataset, rather than merely
their simultaneous presence. Unlike traditional approaches, where the diagonal might
represent a perfect self-coincidence (resulting in values of 1), machine learning integrates
multiple influences and interdependencies between variables, which can alter these values.
This allows the model to capture not only the presence or absence of a variable but also the
degree and nature of its relationship with other variables, providing a more nuanced view
of the interactions in the analyzed data.

2.5. Machine Learning Model Validation

To ensure the performance and generalization capability of the machine learning
model used in generating the co-occurrence matrix, a rigorous validation process was
implemented.

The model used was a feed-forward neural network (FFNN), constructed and trained
with the TensorFlow/Keras library. The network consists of an input layer; two fully con-
nected hidden layers with 64 and 32 units, respectively, each followed by ReLU (Rectified
Linear Unit) activation functions; and a final softmax layer to compute the probability
distribution across the target classes.

The model was trained using the Adam optimization algorithm, with a learning
rate of 0.001, over 10 epochs, and a batch size of 32. To reduce the risk of overfitting, we
implemented dropout layers with a dropout rate of 0.5 after each hidden layer. Additionally,
early stopping was applied, which monitors validation loss during training and halts the
process if there is no improvement, ensuring the model does not overfit to the training data.

The dataset was split into two subsets: 80% for training and 20% for testing. This
split allowed the evaluation of the model on unseen data, providing a realistic estimate of
the model’s ability to generalize the relationships between variables. To reduce the risk of
overfitting and assess model stability, we applied 5-fold cross-validation. In this method,
the data were divided into five subsets, and the model was trained on four of these and
tested on the fifth, repeating the process for each fold. This allowed every instance in the
dataset to be used for both training and testing, ensuring a comprehensive evaluation of
the model’s performance.

To prevent overfitting to the training data, we employed techniques such as dropout
and early stopping, which helped maintain a balance between the model’s learning and its
generalization ability. The model’s performance was measured using relevant metrics such
as the following :

Accuracy: the overall percentage of correct predictions;
Precision: the percentage of correct positive predictions out of all the positive predictions;
Recall: the proportion of actual positive instances correctly identified;
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F1 Score: the harmonic mean between precision and recall, particularly useful in cases
of class imbalance.

To analyze the impact of demographic, clinical, and laboratory markers on clinical
outcomes across the pre- and post-pandemic periods, we employed the LIME (Local Inter-
pretable Model-Agnostic Explanations) technique. LIME allows for a detailed assessment of
how individual features contribute to model predictions by generating locally interpretable
explanations. This method was instrumental in identifying nuanced changes between the
two periods, offering deeper insights into variable interactions that traditional models,
such as logistic regression, might not fully capture.

3. Results

A retrospective cohort of 830 patients who presented to the emergency department and
were diagnosed with various traumas between 1 January 2016 and 3 December 2021 was
included in the study. Of these, 118 patients were selected based on strict inclusion criteria
for detailed analysis and were divided into pre-COVID and COVID groups, as described
in the study design. This study investigates the impact of the COVID-19 pandemic on
trauma patients, assessing differences between the pre-pandemic and pandemic periods
(Table 1). This division aimed to identify and compare clinical trends and outcomes within
the context of the COVID-19 pandemic.

Table 1. Comparative analysis of abdominal trauma variables pre-COVID vs. COVID period.

Variable Name Variable Type Number and Percentage
Pre-COVID Period

Number and Percentage
COVID Period Chi-Square Value p-Value

Sex M 47 (53.41%) 41 (46.59%) 0.5504 0.458
F 13 (43.33%) 17 (56.67%)

Occupation Yes 9 (45.00%) 11 (55.00%) 0.108 0.742
No 51 (52.04%) 47 (47.96%)

Penetrating Yes 13 (52.00%) 12 (48.00%) 0.0091 0.923
No 47 (50.54%) 46 (49.46%)

Self-injury Yes 6 (46.15%) 7 (53.85%) 0.0042 0.948
No 54 (51.43%) 51 (48.57%)

Work accident Yes 1 (50.00%) 1 (50.00%) 0.0006 0.980
No 59 (50.86%) 57 (49.14%)

Violence Yes 10 (43.48%) 13 (56.52%) 0.3085 0.578
No 50 (52.63%) 45 (47.37%)

Animal-related Yes 4 (50.00%) 4 (50.00%) 0.1002 0.751
No 56 (50.91%) 54 (49.09%)

Sports-related Yes 1 (100.00%) 0 - -
No 59 (50.43%) 58 (49.57%)

Fall Yes 18 (54.55%) 15 (45.45%) 0.0873 0.767
No 42 (49.41%) 43 (50.59%)

Road traffic Yes 19 (51.35%) 18 (48.65%) 0.0155 0.900
No 41 (50.62%) 40 (49.38%)

Hepatitis Yes 6 (75.00%) 2 (25.00%) 1.1005 0.294
No 54 (49.09%) 56 (50.91%)

Diabetes Yes 3 (33.33%) 6 (66.67%) 0.5575 0.455
No 57 (52.29%) 52 (47.71%)

Obesity Yes 8 (33.33%) 16 (66.67%) 2.8703 0.090
No 52 (55.32%) 42 (44.68%)

Fibrillation Yes 3 (37.50%) 5 (62.50%) 0.173 0.677
No 57 (51.82%) 53 (48.18%)

Hypertension Yes 7 (31.82%) 15 (68.18%) 3.038 0.081
No 53 (55.21%) 43 (44.79%)

Cogestive hearth
failure Yes 4 (50.00%) 4 (50.00%) 0.1002 0.751

No 56 (50.91%) 54 (49.09%)
Kidney Failure Yes 3 (50.00%) 3 (50.00%) 0.1417 0.706

No 57 (50.89%) 55 (49.11%)
Alchoholism Yes 4 (40.00%) 6 (60.00%) 0.1495 0.699

No 56 (51.85%) 52 (48.15%)
Surgery Yes 51 (48.11%) 55 (51.89%) 2.135 0.144

No 9 (75.00%) 3 (25.00%)
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Table 1. Cont.

Variable Name Variable Type Number and Percentage
Pre-COVID Period

Number and Percentage
COVID Period Chi-Square Value p-Value

Spleen Yes 23 (60.53%) 15 (39.47%) 1.569 0.210
No 37 (46.25%) 43 (53.75%)

Pancreas Yes 0 (0%) 2 (100.00%) - -
No 60 (51.72%) 56 (48.28%)

Liver Yes 11 (47.82%) 12 (52.17%) 0.0082 0.927
No 49 (51.58%) 46 (48.42%)

Mesentery Yes 4 (66.67%) 2 (33.33%) 0.1417 0.707
No 56 (50.00%) 56 (50.00%)

Stomach Yes 5 (55.56%) 4 (44.44%) 0.0028 0.957
No 55 (50.46%) 54 (49.54%)

Intestine Yes 8 (53.33%) 7 (46.67%) 0.0049 0.943
No 52 (50.49%) 51 (49.51%)

Hemoperitoneum Yes 35 (63.64%) 20 (36.36%) 5.817 0.016 *
No 25 (39.68%) 38 (60.32%)

Hemothorax Yes 8 (66.67%) 4 (33.33%) 0.726 0.394
No 52 (49.06%) 54 (50.94%)

Pneumothorax Yes 6 (60.00%) 4 (40.00%) 0.0754 0.784
No 54 (50.00%) 54 (50.00%)

Diaphragm Yes 3 (50.00%) 3 (50.00%) 0.1417 0.706
No 57 (50.89%) 55 (49.11%)

Kidney Yes 3 (75.00%) 1 (25.00%) 0.2249 0.635
No 57 (50.00%) 57 (50.00%)

Fractures Yes 21 (47.73%) 23 (52.27%) 0.1105 0.740
No 39 (52.70%) 35 (47.30%)

Retroperitoneum Yes 9 (52.94%) 8 (47.06%) 0.009 0.921
No 51 (50.50%) 50 (49.50%)

Abdominal Wall Yes 7 (53.85%) 6 (46.15%) 0.0385 0.844
No 53 (50.96%) 51 (49.04%)

Awarenes Yes 44 (48.35%) 47 (51.65%) 0.6028 0.438
No 16 (59.26%) 11 (40.74%)

Pain Yes 43 (48.31%) 46 (51.69%) 0.5629 0.453
No 17 (58.62%) 12 (41.38%)

Reintervention Yes 1 (20.00%) 4 (80.00%) 0.908 0.341
No 59 (52.21%) 54 (47.79%)

Condition Deceased 11 (55.00%) 9 (45.00%) 6.450 0.039 *
Recovered 44 (56.41%) 34 (43.58%)
Improved 5 (25.00%) 25 (75.00%)

* p < 0.05—statistically significant.

In the univariate analysis, among all the included clinical parameters, only the variable
hemoperitoneum was statistically significant, with an Odds Ratio of 2.66 (95% CI: 1.26,
5.61) and a p-value of 0.0102. In the multivariate analysis, we considered variables such
as obesity, hypertension, surgery, and sex, which, although they did not reach statistical
significance, had p-values close to significance and are relevant in our clinical context.

However, the apparent similarity of data between the two periods limited the ability
of logistic regression to capture subtle differences. Therefore, we decided not to repeat the
logistic regression analysis for biological parameters to avoid overburdening the article
with redundant analyses. Instead, we turned to advanced co-occurrence and machine
learning methods to highlight the complex relationships between the variables and capture
more nuanced differences between the periods.

3.1. Analysis of Demographic Factors and Clinical Outcomes in the Context of Pre- and
Post-Pandemic Abdominal Trauma

Our study investigated the influence of demographic factors on the clinical outcomes of
patients with abdominal trauma across two distinct periods: pre-pandemic and pandemic.
The analysis incorporated the use of co-occurrence matrices and classical statistical methods
to evaluate the relationships between demographic variables and clinical outcomes.

The classical statistical analysis did not identify significant differences related to sex
between the pre-COVID and COVID periods (p = 0.46) (Table 2), suggesting that sex did
not significantly influence the clinical outcomes during the pandemic. The co-occurrence
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between sex and recovery was 0.79 pre-COVID and 0.76 during the COVID period, while
the co-occurrence between sex and mortality was 0.84 pre-COVID and 0.82 during the
COVID period (Figure 2). These results indicate a moderate influence with no significant
changes between the two periods.

Table 2. Results of the univariate and multivariate logistic regression analysis for the pre- and
post-pandemic periods.

Variable Univariate Analysis OR
(95% CI) p-Value

Multivariate
Analysis OR

(95% CI)
p-Value

Sex 1.50 (0.65, 3.45) 0.3419
Occupation 0.75 (0.29, 1.98) 0.5667
Penetrating 1.06 (0.44, 2.57) 0.8967
Self-injury 0.81 (0.25, 2.57) 0.7201
Work accident 0.97 (0.06, 15.82) 0.9807
Violence 0.69 (0.28, 1.73) 0.4321
Animal-related 0.96 (0.23, 4.05) 0.9604
Sports-related 3.50 × 109 (0.00, Inf) 0.9997
Fall 1.23 (0.55, 2.75) 0.6169
Road traffic 1.03 (0.47, 2.24) 0.9410
Hepatitis 3.11 (0.60, 16.09) 0.1759
Diabetes 0.46 (0.11, 1.92) 0.2840
Obesity 0.40 (0.16, 1.03) 0.0590
Fibrillation 0.56 (0.13, 2.45) 0.4394
Hypertension 0.38 (0.14, 1.01) 0.0529
Congestive heart failure 0.96 (0.23, 4.05) 0.9660
Kidney Failure 0.63 (0.10, 3.93) 0.6227
Alcoholism 0.96 (0.19, 4.99) 0.9660
Surgery 0.31 (0.08, 1.21) 0.0909
Spleen 1.78 (0.81, 3.91) 0.1492
Pancreas 0.00 (0.00, Inf) 0.9889
Liver 0.96 (0.38, 2.42) 0.9298
Mesentery 2.00 (0.35, 11.36) 0.4342
Stomach 1.23 (0.31, 4.82) 0.7691
Intestine 1.12 (0.38, 3.32) 0.8367
Hemoperitoneum 2.66 (1.26, 5.61) 0.0102 * 2.82 (1.29, 6.18) 0.0093 *
Hemothorax 2.08 (0.59, 7.32) 0.2553
Pneumothorax 1.50 (0.40, 5.62) 0.5472
Diaphragm 0.96 (0.19, 4.99) 0.9660
Kidney 3.00 (0.30, 29.71) 0.3477
Fractures 0.82 (0.39, 1.73) 0.6013
Retroperitoneum 1.10 (0.39, 3.09) 0.8520
Abdominal Wall 1.14 (0.36, 3.64) 0.8188
Awareness 0.64 (0.27, 1.54) 0.3213
Pain 0.66 (0.28, 1.54) 0.3365
Reintervention 0.23 (0.02, 2.11) 0.1933
Condition 0.82 (0.51, 1.31) 0.4011

* p < 0.05—statistically significant. The multivariate analysis included the variables hemoperitoneum, obesity,
hypertension, surgery, and sex.

Occupation did not show significant differences between the pre-COVID and COVID
periods (p = 0.74), indicating stability in occupational risk factors. The co-occurrence
matrices revealed a strong co-occurrence between occupation and BMI (1.21 pre-COVID
and 1.06 during the COVID period), suggesting a significant correlation. The co-occurrence
between occupation and mortality was 0.95 pre-COVID and 0.85 during the COVID period,
implying that occupation may affect the risk and severity of trauma.

The classical statistical analysis indicated a non-significant trend toward an increased
impact of age during the pandemic (p = 0.11). The co-occurrence between age and BMI
was 1.43 pre-COVID and 1.29 during the COVID period, while the co-occurrence between
age and mortality was 1.11 pre-COVID and 1.03 during the COVID period, suggesting a
significant influence of age on the mortality and hospitalization duration.

The classical statistical analysis revealed that the prevalence of obesity increased
significantly during the pandemic (p = 0.09). The co-occurrence between BMI and days
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of hospitalization was 1.27 pre-COVID and 1.11 during the COVID period. Additionally,
the co-occurrence between BMI and mortality was 1.30 pre-COVID and 1.16 during the
COVID period. These data suggest that obesity significantly influences mortality and the
duration of treatment.
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The classical statistical analysis showed a decrease in the co-occurrence of days of
hospitalization and mortality during the COVID period, suggesting an adaptation of clinical
protocols and increased efficiency in managing emergencies. In the pre-COVID period, the
co-occurrence between BMI and days of hospitalization was 1.27, which decreased to 1.11
during the COVID period. Furthermore, the waiting time for treatment decreased during
the pandemic, with a co-occurrence of 0.27 pre-COVID and 0.15 during the COVID period,
indicating an improvement in the initial management of patients.

The classical statistical analysis revealed a reduction in waiting time for treatment and
an increase in the efficiency of the emergency system, reflecting the necessary adaptations
in the context of the pandemic. In the pre-COVID period, the median waiting time was
3.0 h (IQR: 1.1–12.2), while during the COVID period, the median was 2.4 h (IQR: 1.3–6.4).
These observations underscore the changes in the clinical protocols and resource allocation
strategies during the pandemic and their impact on clinical outcomes.

The metric results for generating matrices with demographic factors during the pre-
COVID and COVID periods show a significant improvement in model performance during
the pandemic, indicating an effective adaptation to new conditions (Figure 3).

Accuracy increased from 0.67 to 0.83, and precision rose from 0.67 to 0.83, suggesting
the better identification of correct cases and a reduction in false positive results. Recall
remained constant at 1.00 in both periods, demonstrating a stable capacity to capture all the
relevant cases. The F1 Score increased from 0.80 to 0.91, reflecting a better balance between
precision and recall, indicating optimized model performance in analyzing demographic
factors in the pandemic context.

The LIME analysis identified several key correlations influencing the clinical out-
comes, which largely align with the co-occurrence matrix findings despite minor variations
(Figure 4).

Gender (0.1780; >0.59) and BMI (0.1345; >0.17) showed moderate positive impacts,
highlighting their significant roles. Hospital Days (−0.1452; >0.65) and Deceased (−0.1306;
>0.53) exhibited notable negative correlations, reflecting increased treatment efficiency
and reduced mortality during the pandemic. Age (0.0978; >0.37) and Improved (0.0395;
>0.57) had slight positive influences, while Occupation (0.0346; >0.38) showed a minimal
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positive effect. Healed (−0.0072; >0.47) had an insignificant impact. These importance
thresholds emphasize the relevant contributions of each factor, confirming the robustness
of the findings and the consistent influence of the demographic variables on the clinical
outcomes before and after the pandemic.
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3.2. Impact of Trauma Types on Clinical Outcomes Pre- and Post-Pandemic

Our study investigated the impact of various trauma types on the clinical outcomes of
patients with abdominal trauma during the pre-pandemic and pandemic periods utilizing
co-occurrence matrices and classical statistical analysis methods. For penetrating traumas,
the classical statistical analysis did not indicate significant differences between the periods
(p = 0.923), with co-occurrence with mortality remaining stable (0.40 pre-pandemic and
0.39 pandemic), and co-occurrence with surgical reinterventions being consistent (0.41 in
both periods) (Figure 5).
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Regarding self-inflicted injuries, no significant differences were observed between the
periods according to the classical statistical analysis (p = 0.948). The co-occurrence with
mortality was 0.39 pre-pandemic and 0.38 pandemic, while the co-occurrence with surgical
reinterventions remained at 0.40 in both periods.

In the analysis of work-related injuries, no significant differences were highlighted
between the periods (p = 0.980), with co-occurrence with mortality being 0.40 pre-pandemic
and 0.39 pandemic, and co-occurrence with surgical reinterventions remaining at 0.41 in
both periods.

For violent traumas, the classical statistical analysis did not show significant variations
between the periods (p = 0.578), with the co-occurrence of mortality remaining constant at
0.38 in both periods, and the co-occurrence with surgical reinterventions at 0.39.

In the case of animal-related injuries, no statistically significant differences were
identified between the periods (p = 0.751), with co-occurrence with mortality being 0.43 pre-
pandemic and 0.42 pandemic, while co-occurrence with surgical reinterventions varied
slightly (0.44 pre-pandemic and 0.43 pandemic).

The reduced number of sports-related cases during the pandemic limited the ability
to evaluate the statistical significance of sports traumas. The co-occurrence with mortality
was 0.38 in both periods, and the co-occurrence with surgical reinterventions remained
stable at 0.39.

For falls, the classical statistical analysis did not reveal significant differences between
the periods (p = 0.767), with co-occurrence with mortality being 0.38 pre-pandemic and
0.37 pandemic, and co-occurrence with surgical reinterventions remaining constant at 0.39.

Finally, the analysis of road traffic traumas did not show significant differences be-
tween the periods (p = 0.900), with co-occurrence with mortality being 0.40 pre-pandemic
and 0.38 pandemic, and co-occurrence with surgical reinterventions remaining constant at
0.39 in both periods.

The numerical values of the metrics for evaluating clinical outcomes indicate signifi-
cant variations between the pre-COVID and COVID periods (Figure 6).

Accuracy increased from 0.75 to 0.83, reflecting an overall improvement in correctly
classifying cases during the pandemic. Precision rose from 0.75 to 1.00, showing a significant
reduction in false positive results. However, recall decreased from 1.00 to 0.83, suggesting
a slight decline in capturing all the relevant cases. The F1 Score increased from 0.86 to 0.91,
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indicating an improved balance between precision and recall, suggesting that the model
managed to optimize performance in evaluating clinical outcomes in the pandemic context.
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The LIME analysis results largely mirror those from the co-occurrence matrix, in-
dicating the stable influences of trauma types on clinical outcomes before and after the
pandemic, with no significant differences between the periods. To streamline our analysis,
we present the LIME values for the eight leading parameters (Figure 7).
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Improved (0.2403; ≤−0.92) showed a moderate positive influence, aligning with the
matrix which found no significant period differences. Fall (0.1427; ≤−0.91) exhibited
a consistent positive impact, reflecting stable co-occurrence with mortality and surgical
interventions across both periods. Work Accidents (0.1421; >0.11) demonstrated a mod-
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erate positive correlation, corroborating the matrix’s findings of unchanged associations
with mortality and surgeries. Penetrating Trauma (0.1114; >0.48) maintained a moder-
ate positive influence, consistent with stable co-occurrence metrics. Operation (0.1098;
−0.14 ≤ Operation ≤ 0.99) indicated a moderate positive contribution, matching the ma-
trix’s stable surgical intervention correlations. Road Traffic (0.1048; >0.66) showed a slight
positive impact, consistent with steady co-occurrence with mortality and surgeries. Reinter-
vention (−0.1012; ≤−0.18) presented a slight negative influence, aligning with the matrix’s
stable reintervention rates. Sport-Related (−0.0297; −0.75 < Sport-Related ≤ 0.09) exhibited
a minimal negative impact, reflecting the matrix’s stable but limited associations due to
fewer cases during the pandemic. Overall, these correlations confirm that the types of
trauma have maintained their influence on clinical outcomes consistently across both the
pre- and post-pandemic periods, validating the findings from both the co-occurrence matrix
and LIME analysis.

3.3. Impact of Comorbidities and Surgical Interventions on Clinical Outcomes Pre-
and Post-Pandemic

Our research evaluated the impact of comorbidities and surgical interventions on the
clinical outcomes of patients with abdominal trauma using co-occurrence matrices and
classical statistical analysis. For hepatitis, the classical statistical analysis did not reveal
significant differences between the periods (p = 0.294), with co-occurrence with recovery
being 0.41 pre-pandemic and 0.38 pandemic (Figure 8).
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Figure 8. Analysis of the impact of comorbidities on the management of abdominal trauma before
and during the pandemic.

For diabetes, the classical statistical analysis did not show relevant differences be-
tween the periods (p = 0.455), with a co-occurrence of recovery at 0.40 pre-pandemic and
0.38 pandemic.

The classical statistical analysis indicated a significant increase in the prevalence of
obesity during the pandemic (p = 0.090), with co-occurrence with recovery being 0.38 pre-
pandemic and 0.37 pandemic.

Regarding atrial fibrillation, the classical statistical analysis did not reveal significant
differences between the periods (p = 0.677), with co-occurrence with recovery remaining
constant at 0.36 in both periods.
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The classical statistical analysis showed a non-significant trend towards an increase in
the prevalence of hypertension during the pandemic (p = 0.081), with co-occurrence with
recovery being 0.41 pre-pandemic and 0.38 pandemic.

For congestive heart failure, the classical statistical analysis did not show significant
differences between the periods (p = 0.751), with co-occurrence with recovery being 0.39 in
both periods.

Regarding fibrosis, the classical statistical analysis did not indicate significant vari-
ations between the periods (p = 0.706), with co-occurrence with recovery being 0.42 pre-
pandemic and 0.40 pandemic.

For renal failure, the classical statistical analysis did not reveal notable differences
between the periods (p = 0.706), with co-occurrence with recovery remaining constant at
0.41 in both periods.

Regarding alcoholism, the classical statistical analysis did not reveal significant dif-
ferences between the periods (p = 0.699), with co-occurrence with recovery being 0.42 pre-
pandemic and 0.40 pandemic.

The classical statistical analysis did not show significant differences between the
periods for surgical interventions (p = 0.144), with co-occurrence with recovery being
0.38 pre-pandemic and 0.37 pandemic.

For surgical reinterventions, the classical statistical analysis did not indicate relevant
differences between the periods (p = 0.341), with co-occurrence with recovery remaining
stable at 0.40 in both periods.

The numerical values of the metrics for evaluating the impact of comorbidities and
surgical interventions on clinical outcomes show a slight variation in model performance
between the pre-pandemic and pandemic periods (Figure 9).
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Figure 9. Model performance metrics on the impact of comorbidities on the management of abdominal
trauma before and during the pandemic.

Accuracy slightly decreased from 0.92 pre-COVID to 0.83 during the COVID period,
indicating a small reduction in correctly classifying cases. Precision also decreased from
0.92 to 0.83, reflecting an increase in false positive results during the pandemic. Recall
remained constant at 1.00 in both periods, showing that the model continued to capture all
the relevant cases. The F1 Score decreased from 0.96 pre-COVID to 0.91 during the COVID
period, indicating a slight decrease in the balance between precision and recall, suggesting a
minor variation in the overall performance of the model in evaluating the clinical outcomes
related to comorbidities and surgical interventions in the pandemic context.
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The LIME analysis results largely mirror those from the co-occurrence matrix, indicat-
ing the stable influences of comorbidities and surgical interventions on clinical outcomes
post-pandemic, with no significant differences between the periods. We illustrate the
eight key parameters derived from the LIME analysis, maintaining a clear and uncluttered
presentation in this section (Figure 10).
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Operation (−0.3912; ≤−0.51) showed a moderate negative influence on recovery,
consistent with the matrix’s similar co-occurrence with recovery (0.38 pre-pandemic and
0.37 pandemic). Reintervention (−0.2663; ≤−0.48) demonstrated a moderate negative
impact, aligning with stable co-occurrence (0.40 in both periods). Hypertension (−0.1898;
≤0.07) had a slight negative influence, reflecting the slight decrease in co-occurrence with
recovery (0.41 pre-pandemic to 0.38 pandemic). Improved (0.1368; −0.74 < Improved ≤
−0.29) exhibited a moderate positive influence, consistent with constant co-occurrence
with recovery, while Healed (0.1311; ≤−0.32) showed a moderate positive effect, reflecting
stable recovery outcomes. Alcoholism (0.0935; ≤−0.35) had a slight positive impact,
consistent with stable co-occurrence (0.42 pre-pandemic and 0.40 pandemic). Renal Failure
(−0.0866; ≤−0.37) indicated a minor negative influence, matching the stable impact on
recovery (0.41 in both periods), and Diabetes (0.0728; ≤−0.54) presented a slight positive
effect, aligned with stable co-occurrence (0.40 pre-pandemic and 0.38 pandemic). Overall,
these correlations confirm that the influences of comorbidities and surgical interventions
on clinical outcomes remained consistent between the pre- and post-pandemic periods,
validating the findings from both the co-occurrence matrix and LIME analysis.

3.4. Analysis of the Influence of Hematological Factors and Comorbidities on Clinical Outcomes in
the Pre- and Post-Pandemic Periods

Our study investigated the impact of various hematological parameters and comorbidi-
ties on the clinical outcomes of patients with abdominal trauma during the pre-pandemic
and pandemic periods. We employed co-occurrence matrices and classical statistical analy-
sis methods to identify significant relationships between these variables (Table 3).

The classical statistical analysis did not reveal significant differences between the periods
for hemoglobin levels (p = 0.948), with co-occurrence with mortality being 0.36 pre-pandemic
and 0.42 during the pandemic (Figure 11).
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Table 3. Comparative analysis of medical and biological data between pre-COVID and COVID periods.

Variable Name Median (IQR)
Pre-COVID

Median (IQR)
COVID Period p Value

Age 38.0 (27.0, 63.0) 45.0 (37.5, 60.8) 0.110
BMI 85.1 (80.0, 85.1) 85.1 (72.2, 85.1) 0.292
Blood 1.3 (0.3, 2.2) 0.9 (0.4, 1.9) 0.550
Hosp. Days 7.0 (3.0, 10.0) 6.0 (3.0, 8.0) 0.188
Hours 14.4 (9.9, 18.5) 13.5 (9.5, 16.5) 0.267
Time 3.0 (1.1, 12.2) 2.4 (1.3, 6.4) 0.789
Number 10.0 (9.0, 11.0) 11.0 (10.0, 11.0) 0.029 *
Hb 11.9 (9.6, 13.3) 11.7 (10.0, 13.5) 0.948
Hb/Hct 3.0 (2.9, 3.1) 3.0 (2.9, 3.1) 0.291
Hct 34.7 (27.9, 39.5) 34.9 (30.4, 39.9) 0.576
Urea 33.5 (26.0, 39.8) 34.0 (25.2, 39.8) 0.850
Creatinine 0.8 (0.7, 1.0) 0.8 (0.6, 1.1) 0.712
INR 1.1 (1.1, 1.3) 1.1 (1.0, 1.2) 0.067
GPT 42.5 (26.5, 133.0) 43.5 (22.0, 163.3) 0.661
GOT 51.0 (30.0, 121.8) 68.5 (30.5, 157.0) 0.486
Neutrophils 80.3 (72.9, 85.3) 80.4 (73.4, 86.0) 0.739
Monocytes 7.7 (5.6, 8.4) 7.5 (5.3, 8.5) 0.775
Lymphocytes 11.8 (6.8, 16.8) 10.5 (6.2, 16.1) 0.557
Platelets 176.5 (125.0, 225.4) 190.0 (156.3, 245.5) 0.265
Leukocytes 12.4 (9.1, 16.0) 14.1 (11.1, 17.1) 0.149
Erythrocytes 3.8 (3.1, 4.2) 3.9 (3.1, 4.4) 0.421
MCV 89.0 (86.5, 92.7) 90.7 (87.5, 95.7) 0.103
RDW 12.5 (11.9, 13.4) 13.2 (12.4, 14.0) 0.006 *
Sodium 139.0 (136.8, 141.0) 139.0 (136.0, 141.0) 0.545
Potassium 4.1 (3.9, 4.4) 4.2 (3.8, 4.4) 0.976
Glucose 118.5 (94.8, 169.3) 121.0 (99.2, 154.0) 0.626
Amylase 55.0 (45.0, 87.3) 54.0 (39.0, 78.5) 0.353
NLR 6.5 (4.4, 12.4) 7.6 (4.4, 13.6) 0.732
IIC 7.0 (4.8, 15.3) 8.8 (6.0, 16.2) 0.339
MCVL 7.6 (5.4, 13.3) 8.2 (5.7, 13.3) 0.559

* p < 0.05—statistically significant; Mann–Whitney U test.

Diagnostics 2024, 14, 2444 18 of 37 
 

 

 
Figure 11. COVID-19 pandemic biologic variable comparative co-occurrence matrix in abdominal 
trauma response. 

For hematocrit levels, the classical statistical analysis showed no significant 
variations between the periods (p = 0.576), with co-occurrence with mortality being 0.38 
pre-pandemic and 0.45 during the pandemic. 

The analysis of erythrocyte levels indicated no significant differences between the 
periods (p = 0.421), with co-occurrence with mortality being 0.35 pre-pandemic and 0.38 
during the pandemic. 

Regarding mean corpuscular volume (MCV) values, the classical statistical analysis 
did not show significant differences between the periods (p = 0.103), with co-occurrence 
with mortality remaining constant at 0.36 in both periods. 

The classical statistical analysis demonstrated a significant increase in the prevalence 
of RDW during the pandemic (p = 0.006), with co-occurrence with mortality being 0.33 
pre-pandemic and 0.38 during the pandemic. 

For neutrophil count, the classical statistical analysis did not show significant 
differences between the periods (p = 0.739), with co-occurrence with mortality being 0.33 
pre-pandemic and 0.39 during the pandemic. 

In the case of monocyte count, the classical statistical analysis did not reveal 
significant differences between the periods (p = 0.775), with co-occurrence with mortality 
being 0.30 pre-pandemic and 0.28 during the pandemic. 

The classical statistical analysis did not show significant differences between the 
periods for lymphocyte count (p = 0.557), with co-occurrence with mortality being 0.35 
pre-pandemic and 0.42 during the pandemic. 

For platelet count, the classical statistical analysis did not indicate significant 
variations between the periods (p = 0.265), with co-occurrence with mortality being 0.34 
pre-pandemic and 0.41 during the pandemic. 

Regarding leukocyte count, the classical statistical analysis did not indicate 
significant differences between the periods (p = 0.149), with co-occurrence with mortality 
remaining constant at 0.33 in both periods. 

The classical statistical analysis did not reveal significant differences between the 
periods for surgical interventions (p = 0.144), with co-occurrence with recovery being 0.38 
pre-pandemic and 0.36 during the pandemic. 

For surgical reinterventions, the classical statistical analysis did not indicate 
significant differences between the periods (p = 0.341), with co-occurrence with recovery 
remaining stable at 0.40 in both periods. 

Figure 11. COVID-19 pandemic biologic variable comparative co-occurrence matrix in abdominal
trauma response.

For hematocrit levels, the classical statistical analysis showed no significant variations
between the periods (p = 0.576), with co-occurrence with mortality being 0.38 pre-pandemic
and 0.45 during the pandemic.
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The analysis of erythrocyte levels indicated no significant differences between the peri-
ods (p = 0.421), with co-occurrence with mortality being 0.35 pre-pandemic and 0.38 during
the pandemic.

Regarding mean corpuscular volume (MCV) values, the classical statistical analysis
did not show significant differences between the periods (p = 0.103), with co-occurrence
with mortality remaining constant at 0.36 in both periods.

The classical statistical analysis demonstrated a significant increase in the preva-
lence of RDW during the pandemic (p = 0.006), with co-occurrence with mortality being
0.33 pre-pandemic and 0.38 during the pandemic.

For neutrophil count, the classical statistical analysis did not show significant differ-
ences between the periods (p = 0.739), with co-occurrence with mortality being
0.33 pre-pandemic and 0.39 during the pandemic.

In the case of monocyte count, the classical statistical analysis did not reveal significant
differences between the periods (p = 0.775), with co-occurrence with mortality being
0.30 pre-pandemic and 0.28 during the pandemic.

The classical statistical analysis did not show significant differences between the periods
for lymphocyte count (p = 0.557), with co-occurrence with mortality being 0.35 pre-pandemic
and 0.42 during the pandemic.

For platelet count, the classical statistical analysis did not indicate significant variations
between the periods (p = 0.265), with co-occurrence with mortality being 0.34 pre-pandemic
and 0.41 during the pandemic.

Regarding leukocyte count, the classical statistical analysis did not indicate significant
differences between the periods (p = 0.149), with co-occurrence with mortality remaining
constant at 0.33 in both periods.

The classical statistical analysis did not reveal significant differences between the
periods for surgical interventions (p = 0.144), with co-occurrence with recovery being
0.38 pre-pandemic and 0.36 during the pandemic.

For surgical reinterventions, the classical statistical analysis did not indicate significant
differences between the periods (p = 0.341), with co-occurrence with recovery remaining
stable at 0.40 in both periods.

The numerical values of the metrics for evaluating the influence of the hematological
factors and comorbidities on clinical outcomes show variations in model performance
between the pre-pandemic and pandemic periods (Figure 12).
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Accuracy decreased from 0.92 pre-COVID to 0.83 during the COVID period, indicating
a slight reduction in the model’s ability to correctly classify cases. Precision increased from
0.92 to 1.00, suggesting an improvement in reducing false positive results during the
pandemic. However, recall decreased from 1.00 to 0.83, indicating a decline in capturing
all the relevant cases. The F1 Score decreased from 0.96 pre-COVID to 0.91 during the
COVID period, reflecting a decrease in the balance between precision and recall, suggesting
a variation in the overall performance of the model in evaluating the influence of the
hematological factors and comorbidities on clinical outcomes in the pandemic context.

The LIME analysis results largely mirror those from the co-occurrence matrix, indicat-
ing a stable influence of the hematological factors and comorbidities on clinical outcomes
in both the pre- and post-pandemic periods, with no significant differences between the
periods. To maintain clarity and focus, this section highlights the LIME values for the eight
most significant parameters (Figure 13).
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biologic variables.

Specifically, leucocytes (0.1969; −0.08 < Leucocytes ≤ 0.88) showed a moderate posi-
tive influence on mortality, consistent with the stable co-occurrence with mortality (0.33 in
both periods), confirming that leucocyte count did not significantly change its impact be-
tween the periods. RDW (−0.0651; ≤−0.20) exhibited a slight negative influence, aligning
with the co-occurrence matrix which showed a moderate increase in RDW co-occurrence
with mortality during the pandemic (from 0.33 pre-pandemic to 0.38 pandemic). Neu-
trophils (−0.0625; −0.04 < Neutrophils ≤ 0.52) demonstrated a slight negative impact,
consistent with stable co-occurrence with mortality (0.33 pre-pandemic and 0.39 pan-
demic), confirming no significant variation in neutrophil impact. Erythrocytes (−0.0519;
−0.05 < Erythrocytes ≤ 0.69) indicated a small negative influence, matching the stable
co-occurrence with mortality (0.35 pre-pandemic and 0.38 pandemic), highlighting a consis-
tent impact of erythrocyte levels. Hematocrit (0.0478; −0.64 < Hematocrit ≤ 0.18) showed a
slight positive influence on mortality, in agreement with the increased co-occurrence during
the pandemic (0.38 pre-pandemic to 0.45 pandemic), confirming a slight modification in
hematocrit’s impact. Improved (0.0389; −0.88 < Improved ≤ −0.04) presented a positive
contribution, consistent with stable co-occurrence across the periods, indicating the consis-
tent influence of improvements on outcomes. Deceased (−0.0282; 0.15 < Deceased ≤ 0.65)
revealed a slight negative influence, similar to the co-occurrence matrix which showed
a slight increase in mortality co-occurrence during the pandemic for most hematological
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factors, without significant variations. Healed (0.0225; 0.12 < Healed ≤ 0.75) demonstrated
a small positive effect, corresponding with stable co-occurrence for recovery, confirming
that the healing process did not significantly differ between the periods. Overall, these
correlations emphasize that the influences of the hematological factors and comorbidities
on clinical outcomes remained generally stable and consistent between the pre- and post-
pandemic periods, validating the conclusions drawn from both the co-occurrence matrix
and the LIME analysis.

3.5. Correlation of Laboratory Markers with Clinical Outcomes During Pre- and
Post-Pandemic Periods

Our study explored the correlation between various laboratory markers and the clinical
outcomes of patients with abdominal trauma during the pre-pandemic and pandemic
periods. We utilized co-occurrence matrices to identify significant relationships between
these markers and clinical variables such as recovery, improvement, the necessity for
surgical interventions, and mortality.

The classical statistical analysis did not reveal significant differences between the peri-
ods for urea levels (p = 0.850), with co-occurrence with mortality being 0.34 pre-pandemic
and 0.30 during the pandemic (Figure 14).
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Figure 14. Pre-COVID versus COVID-19 pandemic comparative co-occurrence matrix of biochemical
markers in abdominal trauma.

For creatinine levels, the classical statistical analysis showed no significant variations
between the periods (p = 0.712), with co-occurrence with mortality being 0.32 pre-pandemic
and 0.09 during the pandemic.

In the case of International Normalized Ratio (INR) values, the classical statisti-
cal analysis indicated a non-significant trend towards an increase during the pandemic
(p = 0.067), with co-occurrence with mortality being 0.21 pre-pandemic and 0.31 during
the pandemic.

For Alanine Aminotransferase (ALT) values, the classical statistical analysis did not
show significant differences between the periods (p = 0.661), with co-occurrence with
mortality being 0.22 pre-pandemic and 0.31 during the pandemic.

The classical statistical analysis did not reveal significant differences between the
periods for Aspartate Aminotransferase (AST) values (p = 0.486), with co-occurrence with
mortality being 0.15 pre-pandemic and 0.28 during the pandemic.
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Regarding sodium levels, the classical statistical analysis did not show significant
variations between the periods (p = 0.545), with co-occurrence with mortality being
0.35 pre-pandemic and 0.31 during the pandemic.

For potassium levels, the classical statistical analysis did not indicate significant
differences between the periods (p = 0.976), with co-occurrence with mortality being
0.35 pre-pandemic and 0.30 during the pandemic.

The classical statistical analysis did not show significant differences between the periods
for glucose levels (p = 0.626), with co-occurrence with mortality being 0.32 pre-pandemic and
0.29 during the pandemic.

In the case of amylase levels, the classical statistical analysis did not reveal significant
differences between the periods (p = 0.353), with co-occurrence with mortality being
0.34 pre-pandemic and 0.30 during the pandemic.

For Neutrophil–Lymphocyte Ratio (NLR) values, the classical statistical analysis did
not show significant variations between the periods (p = 0.732), with co-occurrence with
mortality being 0.33 pre-pandemic and 0.29 during the pandemic.

The classical statistical analysis did not indicate significant differences between the
periods for Cumulative Inflammatory Index (IIC) values (p = 0.339), with co-occurrence
with mortality being 0.32 pre-pandemic and 0.29 during the pandemic.

Regarding MCV–Lymphocyte Ratio (MCVL) values, the classical statistical analysis
did not reveal significant differences between the periods (p = 0.559), with co-occurrence
with mortality being 0.36 pre-pandemic and 0.33 during the pandemic.

The numerical values of the metrics for evaluating the impact of laboratory markers on
clinical outcomes show an improvement in model performance during the COVID period
compared to the pre-COVID period (Figure 15).
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Figure 15. Model performance metrics on the impact of biochemical markers on the management of
abdominal trauma before and during the pandemic.

Accuracy increased from 0.75 pre-COVID to 0.83 during the COVID period, indi-
cating an enhanced ability to correctly classify cases. Precision slightly decreased from
0.89 to 0.83, reflecting a small increase in false positive results. Recall significantly in-
creased from 0.80 pre-COVID to 1.00 during the COVID period, demonstrating a complete
capacity to identify all the relevant cases during the pandemic. The F1 Score increased
from 0.84 pre-COVID to 0.91 during the COVID period, highlighting an improved balance
between precision and recall, suggesting that the model successfully optimized perfor-
mance in evaluating the influence of laboratory markers on clinical outcomes during the
pandemic period.
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The LIME analysis results largely mirror those from the co-occurrence matrix, with
both methods suggesting a stable influence of laboratory markers on clinical outcomes in
the pre- and post-pandemic periods, with no significant differences between the periods.
(Figure 16).
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Figure 16. LIME analysis of coefficients of parameters affecting prediction: pre- and post-pandemic
biochemical markers.

To streamline our analysis, we present the LIME values for the eight leading parameters.
The correlations of each parameter in LIME with the co-occurrence matrix are as follows:
Operation (−0.2645; ≤−0.41) indicated a moderate negative influence on mortality,

consistent with observations from the co-occurrence matrix, where co-occurrence with
recovery slightly decreased during the pandemic (0.38 pre-pandemic and 0.36 pandemic).
This reflects that surgical interventions did not have a significantly different impact be-
tween periods.

Creatinine (−0.1362; −0.90 < Creatinine ≤ −0.21) showed a moderate negative in-
fluence as indicated by LIME, aligning with the observed decrease in co-occurrence with
mortality in the matrix (0.32 pre-pandemic and 0.09 pandemic), suggesting a diminished
impact of creatinine on mortality during the pandemic period.

Alanine Aminotransferase (ALT/GPT) (−0.1257; GPT > 0.57) demonstrated a mod-
erate negative influence, in line with the co-occurrence matrix which indicates a slight
increase in co-occurrence with mortality during the pandemic (0.22 pre-pandemic and
0.31 pandemic), suggesting a slight but insignificant change.

Deceased (0.1088; >0.47) indicated a positive influence on mortality, consistent with
the increase observed in the matrix for several laboratory markers (e.g., INR and ALT), sug-
gesting that mortality remained influenced by these factors without significant variations
between periods.

International Normalized Ratio (INR) (−0.0769; 0.02 < INR ≤ 1.00) showed a slight
negative influence as indicated by LIME, correlating with the insignificant increase trend of
INR during the pandemic (co-occurrence with mortality increasing from 0.21 pre-pandemic
to 0.31 pandemic), confirming a slight modification in impact.

Urea (0.0683; ≤−0.43) exhibited a small positive influence observed in LIME, con-
sistent with the decrease observed in the co-occurrence matrix (0.34 pre-pandemic and
0.30 pandemic), highlighting that the impact of urea on mortality was relatively stable.
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Improved (−0.0332; 0.01 < Improved ≤ 0.80) showed a slight negative influence,
confirming the stability of improvements in the co-occurrence matrix, which did not show
significant variations between periods for most markers.

Aspartate Aminotransferase (AST/GOT) (−0.0318; −0.15 < GOT ≤ 0.94) indicated a
slight negative influence as shown by LIME, consistent with the increase in co-occurrence
with mortality during the pandemic (0.15 pre-pandemic and 0.28 pandemic), suggesting
that variations in AST did not have a significant impact.

Overall, these correlations highlight that the influences of laboratory markers on
clinical outcomes remained stable and consistent between pre- and post-pandemic periods,
without major significant differences, thereby validating the conclusions obtained from
both the co-occurrence matrix and the LIME analysis.

3.6. Exploration of the Relationships between Specific Traumas and Clinical Outcomes

Our study explored the relationships between various types of abdominal trauma and
the clinical outcomes of patients, including surgical interventions, reinterventions, recovery,
improvement, and mortality. The analysis was conducted using co-occurrence matrices
for the pre-pandemic and pandemic periods, providing insights into how these injuries
influence the complexity of clinical cases.

The classical statistical analysis did not reveal statistically significant differences for
splenic injuries between the periods (p = 0.210). The co-occurrence with the need for surgical
intervention was 0.20 pre-pandemic and 0.18 during the pandemic, while the co-occurrence
with mortality was 0.20 pre-pandemic and 0.18 during the pandemic (Figure 17).
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Figure 17. Comparative co-occurrence matrix of specific trauma correlations and management:
pre-COVID versus COVID-19 pandemic periods.

For pancreatic injuries, the classical statistical analysis did not show significant dif-
ferences between the periods, although the very small number of cases limited statistical
significance. Co-occurrences increased from 0.03 to 0.17 for surgical intervention and from
0.03 to 0.18 for mortality between the pre-pandemic and pandemic periods.

The classical statistical analysis did not indicate statistically significant differences
for hepatic injuries between the periods (p = 0.927), with co-occurrence with the need
for surgical intervention being 0.21 pre-pandemic and 0.19 during the pandemic, and
co-occurrence with mortality being 0.21 pre-pandemic and 0.19 during the pandemic.
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Regarding mesenteric injuries, the classical statistical analysis did not show significant
differences between the periods (p = 0.707). The co-occurrence with the need for surgical
intervention was 0.20 pre-pandemic and 0.18 during the pandemic, while the co-occurrence
with mortality was 0.20 pre-pandemic and 0.18 during the pandemic.

For gastric injuries, the classical statistical analysis did not reveal statistically signifi-
cant variations between the periods (p = 0.957). The co-occurrence with the need for surgical
intervention was 0.14 pre-pandemic and 0.07 during the pandemic, while the co-occurrence
with mortality was 0.18 pre-pandemic and 0.15 during the pandemic.

The classical statistical analysis did not indicate statistically significant differences
for intestinal injuries between the periods (p = 0.943), with co-occurrence with the need
for surgical intervention being 0.19 pre-pandemic and 0.15 during the pandemic, and
co-occurrence with mortality being 0.19 pre-pandemic and 0.16 during the pandemic.

For hemoperitoneum, the classical statistical analysis revealed a statistically significant
difference between the periods (p = 0.016). The co-occurrence with the need for surgical
intervention decreased from 0.19 pre-pandemic to 0.08 during the pandemic, while the co-
occurrence with mortality decreased from 0.19 pre-pandemic to 0.17 during the pandemic.

The classical statistical analysis did not show statistically significant differences for
hemothorax between the periods (p = 0.394). The co-occurrence with the need for surgical
intervention was 0.16 pre-pandemic and 0.09 during the pandemic, while the co-occurrence
with mortality was 0.20 pre-pandemic and 0.19 during the pandemic.

For pneumothorax, the classical statistical analysis did not show statistically significant
variations between the periods (p = 0.784). The co-occurrence with the need for surgical
intervention was 0.15 pre-pandemic and 0.08 during the pandemic, while the co-occurrence
with mortality was 0.18 pre-pandemic and 0.17 during the pandemic.

The classical statistical analysis did not indicate statistically significant differences for
diaphragmatic injuries between the periods (p = 0.706). The co-occurrence with the need
for surgical intervention was 0.19 pre-pandemic and 0.08 during the pandemic, while the
co-occurrence with mortality was 0.20 pre-pandemic and 0.17 during the pandemic.

For renal injuries, the classical statistical analysis did not show statistically significant
differences between the periods (p = 0.635), with co-occurrence with the need for surgical
intervention being 0.15 pre-pandemic and 0.08 during the pandemic, and co-occurrence
with mortality being 0.19 pre-pandemic and 0.17 during the pandemic.

Regarding fractures, the classical statistical analysis did not indicate statistically sig-
nificant differences between the periods (p = 0.740). The co-occurrence with the need for
surgical intervention was 0.15 pre-pandemic and 0.08 during the pandemic, while the
co-occurrence with mortality was 0.20 pre-pandemic and 0.17 during the pandemic.

The classical statistical analysis did not reveal statistically significant differences for
retroperitoneal injuries between the periods (p = 0.921). The co-occurrence with the need
for surgical intervention was 0.15 pre-pandemic and 0.08 during the pandemic, while the
co-occurrence with mortality was 0.20 pre-pandemic and 0.17 during the pandemic.

For abdominal wall injuries, the classical statistical analysis did not show statistically
significant differences between the periods (p = 0.844). The co-occurrence with the need
for surgical intervention was 0.18 pre-pandemic and 0.08 during the pandemic, while the
co-occurrence with mortality was 0.20 pre-pandemic and 0.19 during the pandemic.

The numerical values of the metrics for evaluating the relationships between specific
traumas and clinical outcomes show a clear improvement in model performance during
the COVID period compared to the pre-COVID period (Figure 18).

Accuracy increased from 0.75 pre-COVID to 0.92 during the COVID period, suggesting
an enhanced ability to correctly classify cases. Precision rose from 0.82 to 0.91, indicating
a reduction in false positive results during the pandemic. Recall increased from 0.90 pre-
COVID to 1.00 during the COVID period, demonstrating that the model identified all
the relevant cases during the pandemic. The F1 Score increased from 0.86 pre-COVID to
0.95 during the COVID period, reflecting an improved balance between precision and
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recall, suggesting an optimized model performance in evaluating the influence of specific
traumas on clinical outcomes during the pandemic period.
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Figure 18. Model performance metrics on the impact of specific trauma on the management of
abdominal trauma before and during the pandemic.

The LIME analysis results largely mirror those from the co-occurrence matrix, with
both methods suggesting a relatively stable influence of the different trauma types on clini-
cal outcomes in the pre- and post-pandemic periods, with no major significant differences
between the periods. In order to prevent information overload, we concentrate on the top
eight parameters identified by LIME (Figure 19).

Diagnostics 2024, 14, 2444 26 of 37 
 

 

 
Figure 18. Model performance metrics on the impact of specific trauma on the management of 
abdominal trauma before and during the pandemic. 

The LIME analysis results largely mirror those from the co-occurrence matrix, with 
both methods suggesting a relatively stable influence of the different trauma types on 
clinical outcomes in the pre- and post-pandemic periods, with no major significant 
differences between the periods. In order to prevent information overload, we concentrate 
on the top eight parameters identified by LIME (Figure 19). 

 

 
Figure 19. LIME analysis of coefficients of parameters affecting prediction: pre- and post-pandemic 
specific trauma. 

Specifically, Improved (0.3052; ≤ −0.69) showed a moderate positive influence, 
aligning with the general stability observed in the co-occurrence matrix, where trauma-
related co-occurrences did not show significant changes between the periods, suggesting 
a consistent impact of improvements on outcomes. Animal Trauma (0.1964; ≤ −0.37) 

Figure 19. LIME analysis of coefficients of parameters affecting prediction: pre- and post-pandemic
specific trauma.

Specifically, Improved (0.3052; ≤−0.69) showed a moderate positive influence, align-
ing with the general stability observed in the co-occurrence matrix, where trauma-related
co-occurrences did not show significant changes between the periods, suggesting a consis-
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tent impact of improvements on outcomes. Animal Trauma (0.1964; ≤−0.37) demonstrated
a moderate positive influence, consistent with the matrix results that showed no significant
differences for this trauma type, indicating that animal-origin traumas remained stable
in their influence on surgical interventions and mortality. Deceased (−0.1642; ≤−0.69)
indicated a negative influence on mortality, corresponding with the stability observed in
mortality co-occurrences in the matrix for most traumas, confirming that mortality did
not vary significantly between the periods. Operation (0.1286; −0.27 < Operation ≤ 0.71)
exhibited a moderate positive influence in LIME, and aligned with the co-occurrence ma-
trix results, where the necessity for surgical interventions remained constant or slightly
decreased for several trauma types between the periods, reflecting a consistent impact.
Sports Trauma (0.0689; >0.45) showed a slight positive influence, consistent with the ma-
trix data indicating stable co-occurrences in sports-related traumas, even with a reduced
number of cases during the pandemic. Healed (−0.0672; >0.39) demonstrated a negative
influence, in line with the matrix observations where recovery co-occurrences remained
stable for most trauma types, confirming that the healing process was not significantly
influenced between the periods. Work Accidents (0.0385; −0.19 < Work Accidents ≤ 0.58)
suggested a slight positive influence, consistent with the stability observed in the matrix
for work-related traumas, where co-occurrences did not vary significantly between the
periods. Fall (−0.0372; Fall > 0.44) indicated a negative influence, corresponding with the
stability observed in the co-occurrence matrix for fall-related traumas, where no significant
variations were observed in co-occurrences with mortality or the need for surgical inter-
ventions. Overall, these correlations confirm that the influences of the different trauma
types on clinical outcomes remained relatively constant and consistent between the pre-
and post-pandemic periods, validating the conclusions drawn from both the co-occurrence
matrix and the LIME analysis.

4. Discussion
4.1. The Influence of Demographic Factors on Clinical Outcomes

Our study demonstrates that gender significantly affects clinical outcomes in abdomi-
nal trauma cases, aligning with the pre-pandemic findings by Peckham et al., who noted
higher mortality and severe complications in males due to distinct immunological and
physiological responses [21]. Utilizing a co-occurrence matrix analysis, we observed that
during the COVID-19 pandemic, these gender disparities were reduced.

This shift may result from standardized treatment protocols implemented during the
pandemic, as observed by Su et al., leading to uniform clinical interventions and reduced
mortality differences between the genders [22]. Nguyen et al. suggest that the physio-
logical adaptations induced by SARS-CoV-2 infection further leveled clinical responses,
diminishing initial gender disparities [23].

Our co-occurrence analysis supports the hypothesis that the new physiological and
immunological factors introduced by COVID-19 mitigated traditional gender-based differ-
ences in trauma response. Raza et al. support this notion, linking changes to standardized
interventions and the virus’s complex effects on the immune system, particularly inflam-
matory responses [24]. Additionally, Biole et al. reported that males are more susceptible to
severe COVID-19 complications, implying that pandemic treatment adaptations may have
counteracted these vulnerabilities [25].

Ancochea et al. emphasize that early interventions and standardized protocols during
the pandemic reduced gender disparities in post-trauma mortality, especially benefiting
males [26]. Furthermore, Klein et al. and Raza et al. highlight that treatments during
COVID-19 may have modulated hormonal differences impacting immunological responses,
necessitating further research to understand these effects in abdominal trauma cases [24,27].

By incorporating co-occurrence matrix analysis, our findings underscore the pan-
demic’s complex impact on gender influences in clinical outcomes, offering new insights
and directions for future research.
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4.2. The Impact of Occupation and BMI on Abdominal Trauma in the Context of the
COVID-19 Pandemic

Our study reveals significant lifestyle and work environment changes due to the
COVID-19 pandemic, indirectly affecting obesity risk and the severity of abdominal trauma.
Utilizing a co-occurrence analysis between occupation and BMI, we identified a strong
association suggesting that occupation influences how obesity impacts both the severity
and management of abdominal trauma. Alshahrani et al. confirmed that pandemic-induced
lifestyle changes exacerbated the link between occupation and increased BMI [28].

The co-occurrence matrix showed this link was significant both before and during the
pandemic, while the traditional statistical analysis did not reveal significant differences.
This underscores the importance of co-occurrence analysis in uncovering hidden risk factors.
Costello et al. supported this, indicating that occupational factors may impact obesity and
trauma risk more than previously recognized, especially amid pandemic-induced work
environment changes [29].

Our initial hypothesis was that the increased co-occurrence between occupation and
BMI pre-pandemic, followed by a decrease during the pandemic, reflects forced adaptations
in lifestyle and work conditions due to COVID-19. Bakaloudi et al. observed that remote
work and altered physical demands significantly impacted BMI, leading to increased
obesity, particularly due to reduced physical activity and dietary changes [30].

Regarding abdominal trauma severity, we suggest that obesity related to certain
occupations influences not only trauma risk but also its complexity, especially when medical
access is limited during crises. Nakeshbandi et al. highlighted obesity as a major risk
factor for severe COVID-19 complications, exacerbating patient outcomes and increasing
mortality, thereby amplifying vulnerability in abdominal trauma cases [31].

Safety measures during the pandemic may have mitigated some occupational risks
while introducing new ones associated with sedentary behavior and lifestyle changes from
remote work or altered job requirements. Katsoulis et al. discussed increased sedentary
behavior’s negative health impact during this period, emphasizing vulnerability to severe
complications, including abdominal trauma [32]. Hammouri et al. also noted that the
pandemic led to significant BMI increases, heightening abdominal trauma risk [33].

Our study corroborates these findings, emphasizing the need for a deeper exploration
of the links between occupation, obesity, and trauma risk during global crises. This could
inform effective strategies for risk prevention and management in such contexts.

4.3. Age as a Predictive Factor for Clinical Outcomes in Abdominal Trauma During the
COVID-19 Pandemic

Age significantly influences susceptibility to abdominal trauma and recovery capacity,
especially amid the COVID-19 pandemic. Our co-occurrence analysis confirms that age
remains an important predictor of mortality both before and during the pandemic, although
the co-occurrence between age and mortality slightly decreased during this period.

Pre-pandemic studies by Imam et al. demonstrated that elderly patients with comor-
bidities such as cardiovascular diseases and diabetes have a significantly higher risk of
mortality when infected with COVID-19 [34]. Mueller et al. also emphasized that individ-
uals over 65 face a substantially higher risk of death compared to younger populations,
underscoring age as a key mortality predictor [35].

We hypothesize that the slight decrease in co-occurrence between age and mortality
during the pandemic may result from rapid adaptations in clinical protocols for elderly
patients. Chinnadurai et al. noted that modifications in these protocols contributed to
reduced mortality among elderly patients with high frailty [36]. De Smet et al. reported
that while frailty and comorbidities remain significant predictive factors, adapted treatment
strategies positively impacted clinical outcomes [37].

Prioritizing elderly patients in healthcare systems may have mitigated the impact of
age on mortality. Koduri et al. discussed improvements emphasizing such prioritization,
helping to reduce age-related mortality risks [38]. Kim et al. observed that older age groups
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benefited from early and prioritized interventions, reducing variations in mortality [39].
Additionally, Covino et al. suggested that comorbidities associated with COVID-19 may
have altered the traditional relationships between age and clinical outcomes in abdom-
inal trauma cases, contributing to the reduced influence of age on mortality during the
pandemic [40].

Our study’s originality lies in using co-occurrence analysis to reveal nuanced shifts in
age-related mortality patterns during the pandemic. These findings highlight the need for
continued research to better understand the dynamics of age and comorbidities, aiming to
develop clinical protocols that improve outcomes for elderly patients in both normal and
crisis conditions.

4.4. The Impact of BMI on Treatment Duration and Outcomes During the COVID-19 Pandemic

Body mass index (BMI) is a critical factor in assessing risk and prognosis in abdominal
trauma cases, especially during the COVID-19 pandemic. Our co-occurrence analysis
revealed that BMI significantly influences hospital stay duration and mortality both before
and during the pandemic, underscoring its role as a key predictor of trauma severity and
clinical outcomes.

Suresh et al. demonstrated that patients with a BMI ≥ 30 kg/m2 more frequently
require intensive care and mechanical ventilation, with longer hospital stays compared
to those with a normal BMI [41]. Palaiodimos et al. identified obesity as a major risk
factor for death in COVID-19 patients, with those having a BMI ≥ 35 kg/m2 experiencing
nearly four times the mortality rate of individuals with normal BMI [42]. Similarly, Pranata
et al. highlighted that each 5 kg/m2 increase in BMI significantly raises the risk of severe
complications and mortality [43].

Obesity exacerbates patient outcomes and increases the need for intensive care re-
sources. Du et al. found that a high BMI correlates with a greater likelihood of ICU
admission and mechanical ventilation use, alongside a higher incidence of acute respiratory
failure [44].

These findings emphasize the necessity for future research to focus on comparative
longitudinal studies pre- and post-pandemic to explore obesity’s impact on clinical out-
comes in abdominal trauma and COVID-19 cases. Bunnell et al. showed that visceral
fat distribution influences disease severity, highlighting the importance of studying body
composition changes [45]. Sjögren et al. suggested that systemic inflammation and visceral
fat accumulation worsen the body’s response to severe infections like COVID-19, indicating
a need for deeper investigation into these pathophysiological mechanisms [46].

To improve outcomes for obese patients, tailored clinical strategies are imperative.
Klang et al. proposed that personalizing interventions, including adjusting medication
dosages and intensive monitoring, can significantly enhance patient prognosis [47]. De-
veloping specific clinical protocols for obese patients is essential for more effective man-
agement of these complex cases, reducing the burden on healthcare systems during the
pandemic and beyond.

Our study’s originality lies in using co-occurrence analysis to highlight BMI as a
major predictor of severity and clinical outcomes in abdominal trauma, emphasizing the
continued importance of obesity as a critical factor in patient management.

4.5. Analysis of Biological and Laboratory Factors—Hemoglobin and Mortality

Our co-occurrence analysis identifies hemoglobin as a critical predictor of mortality in
patients with abdominal trauma, with its influence notably increasing during the pandemic. This
suggests that hemoglobin levels have become an even more vital indicator of death risk, possibly
reflecting the metabolic and physiological deterioration induced by SARS-CoV-2 infection.

Tremblay et al. found anemia to be a significant predictor of mortality in COVID-19
patients, independent of age, sex, and comorbidities, reinforcing hemoglobin’s amplified
role during this period [48]. Oh et al. demonstrated that patients with anemia upon
admission had an increased mortality risk, indicating that early interventions based on
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hemoglobin monitoring, such as transfusions or oxygen therapy, could improve clinical
outcomes—especially crucial when medical resources are limited [49].

Interpreting hemoglobin levels becomes more complex in patients with multiple
comorbidities or those affected by COVID-19. Kuno et al. observed a U-shaped relationship
between hemoglobin levels and mortality, where both low and high levels were associated
with increased death risk [50]. This underscores the need to include hemoglobin monitoring
as a central component of clinical management strategies, particularly for patients with
abdominal trauma and complex comorbidities.

Future research should focus on hemoglobin’s impact on mortality in abdominal
trauma cases. Mayneris-Perxachs et al. showed that hemoglobin can modulate the effects
of hyperglycemia and obesity on death risk in COVID-19, highlighting the necessity for
careful monitoring during the pandemic [51]. Additionally, Raman et al. proposed using
the ferritin–hemoglobin ratio as a prognostic marker, offering an integrated approach to
mortality risk assessment and clinical intervention optimization [52].

Our findings underscore hemoglobin’s heightened importance in prognosticating
abdominal trauma outcomes during the COVID-19 pandemic. The careful monitoring and
utilization of hemoglobin levels to guide clinical interventions could significantly improve
patient outcomes and optimize resource allocation in global health crises.

4.6. Analysis of Biological and Laboratory Factors—Red Cell Distribution Width (RDW)
and Mortality

Our co-occurrence analysis identified RDW as a significant marker correlated with
mortality, with its co-occurrence increasing from the pre-pandemic to the pandemic period.
This suggests that RDW has become an even more pertinent prognostic indicator in the
context of COVID-19, reflecting systemic inflammation and metabolic dysfunction critical
in severe trauma and viral infections like SARS-CoV-2.

The elevated co-occurrence between RDW and mortality likely indicates exacerbated
oxidative stress and microvascular dysfunction amplified by the viral infection. Karampit-
sakos et al. confirmed that COVID-19 patients with RDW ≥ 14.5% had a significantly higher
risk of mortality and disease progression, underscoring RDW’s amplified role during the
pandemic [53].

RDW can serve as an early marker for assessing the severity of abdominal trauma
in COVID-19 patients. Henry et al. demonstrated that RDW is a strong predictor of
disease severity, capable of discriminating between different severity levels and predicting
mortality [54]. These findings support using RDW to guide early clinical interventions,
especially during crisis periods.

Variability in RDW may signal compromised erythrocyte homeostasis amid severe
viral infections. Sarkar et al.’s meta-analysis showed that elevated RDW at admission is
associated with increased mortality and severe disease progression in COVID-19 patients,
highlighting its importance in risk stratification and personalized treatment [55].

To further validate RDW as a prognostic marker, future studies should explore its role
in abdominal trauma during the pandemic. Wang et al. found RDW to be an independent
predictor of COVID-19 severity, suggesting that integrating it into standard assessment and
treatment protocols could improve patient prognosis [56].

Investigating the link between systemic inflammation, erythrocyte dysfunction (re-
flected by RDW), and clinical outcomes in abdominal trauma patients is crucial. Lucijanić
et al. demonstrated that RDW is associated with increased mortality risk among both
anemic and non-anemic COVID-19 patients, indicating its potential in risk stratification
across various clinical contexts [57].

Longitudinal analyses of RDW variations and their correlation with mortality and
morbidity are essential. Gowda et al. showed that RDW is a strong prognostic indicator of
mortality in COVID-19 patients, emphasizing the need for early therapeutic interventions
based on this marker [58].
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Our co-occurrence analysis highlights RDW’s importance as a critical indicator of
disease severity and mortality risk in both the pre-pandemic and pandemic periods. Inte-
grating RDW into standard treatment protocols could optimize patient outcomes during
crisis contexts, emphasizing the need for its careful monitoring in patient management.

4.7. Efficiency of the Emergency System During the COVID-19 Pandemic

Our co-occurrence analysis between surgical interventions and patient recovery in-
dicates that the emergency system maintained, or even slightly improved, its efficiency
during the COVID-19 pandemic. Despite a marginal decrease in co-occurrence from
0.38 pre-pandemic to 0.36 during the pandemic, this suggests effective adaptation to un-
precedented pressures.

Rapid adjustments such as optimizing patient flow, enhancing triage protocols, and
efficient resource allocation were crucial. Mozharovsky et al. reported that although
postoperative mortality increased during the pandemic, strict triage and treatment pro-
tocols maintained surgical efficiency, with minimal mortality differences compared to
pre-pandemic patients [59].

Digital technologies and telemedicine significantly contributed to these adaptations.
Jacob et al. demonstrated that implementing an E-Handover system improved surgical effi-
ciency, reduced waiting times, and upheld social distancing measures essential for infection
control [60]. These innovations facilitated better coordination and resource management
under crisis conditions.

The continuous training of medical staff and protocol updates enabled swift responses
to new challenges. Rausei et al. observed that while emergency surgeries decreased by 41%,
the quality of care was sustained through ongoing training and protocol adjustments [61].

Future research should evaluate emergency system efficiency during crises, focusing
on specific adaptations for managing abdominal trauma patients. Osorio et al. found higher
postoperative complications and failure-to-rescue rates in COVID-19 patients, underscor-
ing the need for improved protocols [62]. Investigating the impact of technologies and
telemedicine remains vital; Pecoraro et al. emphasized that efficient resource use was key
during the pandemic, with regions possessing robust infrastructure managing emergencies
more effectively [63].

Comparative studies on patient flow and resource allocation before and during the
pandemic can identify best practices. Wong and Cheung noted a significant decrease in
elective surgeries but maintained efficiency in emergencies, highlighting adaptability’s
importance in resource management [64].

Our study’s originality lies in using co-occurrence analysis to reveal these insights,
demonstrating that the emergency system effectively sustained surgical efficiency during
the pandemic through rapid adaptations, digital technologies, and continuous staff training.

4.8. Future Perspectives and Clinical Implications of the Proposed Methodology

Integrating co-occurrence matrices with classical statistical analysis and machine
learning offers an innovative approach to uncovering the complex relationships between
demographic, biological, and clinical variables, advancing modern medical research. This
methodology, especially during the COVID-19 pandemic, has proven superior in revealing
subtle patterns and hidden associations that traditional methods might overlook.

By combining co-occurrence analysis with machine learning, we identified critical
clinical dynamics not evident in conventional analyses. Shamout et al. demonstrated
that machine learning models applied to electronic health records outperform traditional
models in predicting clinical outcomes, highlighting the added value of these methods [65].

During the pandemic, our methodology facilitated the rapid and accurate analysis of
complex clinical developments. Stevens et al. emphasize the importance of the transparent
reporting of machine learning analyses in medicine to ensure correct understanding and
critical evaluation by clinicians and researchers [66], which is essential for integrating new
discoveries into practice.
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A significant advantage of this approach is its potential to personalize medical care.
MacKay et al. showed that machine learning-based risk models applied to health data im-
prove the predictions of mortality and adverse events, enabling the nuanced evaluation of
factors influencing clinical outcomes and paving the way for personalized treatments [67].

Future research should apply co-occurrence methodology in other fields like oncology
or neurology to explore emerging clinical complexities. Lehmann et al. suggest that
machine learning in oncology can provide new insights into patient outcomes and support
personalized therapies [68].

Combining machine learning with co-occurrence analysis may discover new clinical
relationships and prognostic indicators for treatment guidelines. Banerjee et al. found that
these methods improve risk prediction and subtype definitions in cardiovascular diseases,
emphasizing their importance for future research [69].

Risk stratification in populations with multiple comorbidities is another important
direction. Ciarmiello et al. demonstrated that machine learning models using demographic
and laboratory data can identify COVID-19 patients at risk of severe disease, highlighting
the relevance of early, personalized interventions [70].

In conclusion, integrating co-occurrence analysis with machine learning represents
a significant advancement in clinical research, offering unique perspectives to enhance
medical practice. The originality of our method lies in detecting complex relationships and
personalizing treatments, opening new avenues for effective, targeted interventions.

4.9. Addressing Gaps in Understanding Abdominal Trauma During the COVID-19 Pandemic

Despite extensive research on abdominal trauma and its management, the COVID-19
pandemic introduced unprecedented challenges that disrupted traditional care protocols
and patient outcomes. A significant gap exists in the literature regarding the comprehen-
sive analysis of how demographic, clinical, and laboratory factors interact to influence
abdominal trauma outcomes during such global health crises. Previous studies have pri-
marily focused on individual risk factors without exploring the complex interrelationships
between them, especially in the pandemic context.

Our study fills this gap by employing an innovative methodology that integrates
co-occurrence analysis with machine learning techniques. This approach allows for a
more nuanced exploration of the interactions between variables such as age, gender, BMI,
occupation, and hemoglobin levels, providing deeper insights into their collective impact
on patient outcomes. By generating co-occurrence matrices through machine learning
models, we identified subtle patterns and associations that traditional statistical methods
might overlook.

For instance, we discovered that the co-occurrence between occupation and BMI re-
vealed hidden risk factors related to lifestyle changes during the pandemic, which were
not evident in classical analyses [28,29]. Similarly, the increased co-occurrence between
hemoglobin levels and mortality highlighted the amplified role of hemoglobin as a prog-
nostic marker in the pandemic context [48,49].

To ensure the robustness and generalizability of our findings, we implemented rigor-
ous machine learning validation techniques, including an 80/20 train-test split and 5-fold
cross-validation. This process minimized overfitting and enhanced the model’s ability
to generalize relationships between the variables. We also utilized the SHAP (Shapley
Additive Explanations) method to quantify the impact of each variable on clinical outcomes,
providing the clear interpretability of our model’s predictions.

By addressing the literature gap on the complex interplay of the factors affecting
abdominal trauma during the COVID-19 pandemic, our study offers valuable contribu-
tions to both research and clinical practice. The innovative use of co-occurrence analysis
and machine learning provides a framework for future studies to explore multifaceted
clinical scenarios more effectively. This methodology not only enhances our understanding
of abdominal trauma in crisis contexts but also supports the development of targeted
interventions to improve patient outcomes.
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5. Study Limitations

This study has several limitations that should be considered when interpreting the
results despite its significant contributions.

While the sample size of 118 patients is relatively small, it allowed for a detailed and
specific examination of the data, facilitating the identification of relevant trends in the
management of abdominal trauma in a pandemic context. Although this sample size may
limit the generalizability of the results to larger populations and may affect the stability
of statistical analyses, the study provides a valuable foundation for exploratory and pilot
research in this field.

The time period analyzed, covering both the pre-pandemic stage and the COVID-19
pandemic period, provides an important perspective on the direct impact of the global
health crisis on medical management. Although the subsequent events are not included,
the chosen timeframe is essential for understanding the immediate effects of the pandemic.

Selection bias, while it may limit the applicability of the results to more diverse
populations, contributes to the coherence and homogeneity of the data, enhancing the
relevance of the findings for the studied group.

The exclusion of patients with incomplete data and the presence of confounding
variables are common limitations in medical research, underscoring the importance of
rigorous data collection and analysis methods, as well as the need for the careful control of
these factors in future studies.

External factors may complicate the interpretation of results but also provide a realistic
context for evaluating the management of abdominal trauma under crisis conditions,
reflecting the complex realities faced by healthcare professionals.

The use of machine learning techniques, although it carries risks of overfitting and
interpretative challenges, has brought new perspectives to data analysis, contributing to
advancing the understanding of this field.

In conclusion, while the study presents certain limitations, its findings remain valuable
and relevant, underscoring the need to continue research in this area to expand and validate
the conclusions presented, thereby contributing to the optimization of medical practices in
the face of global challenges.

6. Conclusions

Our study offers an innovative perspective on abdominal trauma management dur-
ing the COVID-19 pandemic by utilizing co-occurrence analysis enhanced with machine
learning techniques. This approach allowed us to uncover the complex and previously
hidden relationships between clinical and demographic variables that traditional methods
might overlook.

We found that factors such as age, sex, BMI, occupation, and RDW significantly influ-
enced patient outcomes. The co-occurrence analysis revealed that the standardization of
clinical protocols and physiological adaptations associated with SARS-CoV-2 contributed
to reducing mortality differences between the sexes. Additionally, the link between occupa-
tion and obesity underscored the influence of the work environment on trauma severity,
particularly during the pandemic when lifestyle changes impacted BMI and, consequently,
patient outcomes. RDW emerged as an important prognostic marker, reflecting disease
severity and the increased risk of mortality in the context of COVID-19, highlighting the
need for careful monitoring in patient management.

Despite the pressures imposed by the pandemic, our findings suggest that the emer-
gency healthcare system adapted effectively, maintaining or even improving the efficiency
of surgical interventions. The stable co-occurrence between surgical interventions and
patient recovery indicates that rapid adaptations, the use of digital technologies, and the
continuous training of medical staff were essential in sustaining high standards of care.

By employing advanced analytical methodologies, our study successfully uncovered
subtle patterns and interactions among variables, offering valuable insights for optimizing
medical management during global crises. These findings enhance our understanding
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of how the pandemic influenced clinical approaches and emphasize the importance of
developing flexible and effective strategies to improve patient outcomes in similar contexts.

Future research should delve deeper into the role of prognostic markers like RDW and
continue developing personalized clinical strategies that enhance patient care during global
crises. By focusing on the complex interplay of demographic and clinical factors revealed
through co-occurrence analysis, healthcare systems can strengthen their capacity to respond
effectively under extreme stress conditions, ultimately improving patient outcomes.
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