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Abstract: Background: Identification of specific urine metabolic profiles for patients diagnosed
with papillary thyroid carcinoma (TC) vs. benign nodules (B) to identify specific biomarkers and
altered pathways compared to those of healthy controls (C). Methods: Patient urine samples were
collected, before surgery and after a histological confirmation of TC (n = 30) and B (n = 30), in
parallel with sample collection from healthy controls (n = 20). The untargeted and semi-targeted
metabolomic protocols were applied using UPLC-QTOF-ESI+-MS analysis, and the statistical analysis
was performed using the Metaboanalyst 6.0 platform. The results for the blood biomarkers, previously
published, were compared with the data obtained from urine sampling using the Venny algorithm
and multivariate statistics. Results: Partial least squares discrimination, including VIP values,
random forest graphs, and heatmaps (p < 0.05), together with biomarker analysis (AUROC ranking)
and pathway analysis, suggested a specific model for the urinary metabolic profile and pathway
alterations in TC and B vs. C, based on 190 identified metabolites in urine that were compared with
the serum metabolites. By semi-targeted metabolomics, 10 classes of metabolites, considered putative
biomarkers, were found to be responsible for specific alterations in the metabolic pathways, from
polar molecules to lipids. Specific biomarkers for discrimination were identified in each class of
metabolites that were either upregulated or downregulated when compared to those of the controls.
Conclusions: The lipidomic window was the most relevant for identifying biomarkers related to
thyroid cancer and benign conditions, since this study detected a stronger involvement of lipids and
selenium-related molecules for metabolic discrimination.

Keywords: papillary thyroid cancer; benign nodular goiter; urinary metabolites; metabolic pathways;
thyroid putative biomarkers

1. Introduction

Thyroid diseases significantly affect the entire metabolic balance, as well as the emo-
tional and social life of humans. Different pathologies can be distinguished, expressed by
inflammation (thyroiditis), hyperthyroidism, hypothyroidism associated with benign thy-
roid nodules, or thyroid carcinoma [1–4]. TC is a frequent endocrine tumor with a growing
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incidence worldwide, exhibiting a complex epidemiology, including different environmen-
tal and occupational risk factors and lifestyle influences. Benign nodules frequently induce
development of a goiter, an enlargement of the thyroid gland, mainly associated with
hypothyroidism or a normal hormone level (euthyroidism). Papillary thyroid carcinoma
(TC) is the most common of all thyroid carcinomas and accounts for more than 80% of
malignant endocrine tumors and about 65% of malignant thyroid cancers. According to the
new WHO classification of thyroid tumors and recently reviewed advances in the diagnosis
and therapy of thyroid cancer [5,6], thyroid cancer is ranked as the 9th leading cancer
in the GLOBOCAN 2020 database [7]. It is frequently diagnosed in adults (30–50 years
old), especially in women (three times more often than in men), with a good prognosis
for early diagnosis [8]. Despite research efforts, current knowledge of the etiology of TC
remains limited; up to 50% of the new cases in the thyroid carcinoma group are papillary
microcarcinomas, with nodules measuring less than 1 cm.

TC is typically detected via an ultrasound-guided fine-needle aspiration biopsy and
cytological examination of the specimen after surgery [9]. This approach has significant
limitations due to the small sample size and the inability to characterize follicular lesions
adequately. According to a recent review, emerging biomarkers, such as mRNA and
non-coding RNAs, can potentially detect thyroid neoplasms in clinical settings, e.g., the
miRNA, lncRNA, and circRNA dysregulation in several thyroid neoplasms, recommend-
ing their potential to act as diagnostic and prognostic biomarkers [10]. Also, different
protein biomarkers that are able to differentiate benign and malignant thyroid nodules
are currently used, as recently reviewed [11]. Although the use of needle aspiration can
reduce unnecessary thyroid surgery, the prevalence of non-diagnostic and indeterminate
histopathology is still high, and the costs of mutation tests, including nucleic acid and
protein-based diagnosis markers of differentiated thyroid carcinomas, are high [11].

Clinically, the diagnosis of thyroid hormone dysfunction is primarily based on bio-
chemical indicators, such as serum thyroid stimulating hormone (TSH) and serum free
thyroxine (FT4) levels, often used to diagnose thyroid disorders or to monitor treatment
response; however, whether or not these parameters fully capture TH status remains con-
troversial. The diagnostic criteria for hypothyroidism include serum TSH levels above the
upper reference limit and FT4 levels within or below the reference range. An emerging high-
throughput technology can aid in this diagnosis by correlating certain serum metabolomic
phenotypes with the metabolic status and outcomes of endocrine diseases [12,13]. It is
acknowledged that over time, as reviewed recently, TH affects many aspects of the lipid
metabolism, from synthesis, to mobilization, to degradation. It increases the activity
of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, cholesteryl ester transfer protein
hepatic lipase, and the lecithin–cholesterol ratio.

Circulating biomarkers help in understanding the TC metabolism and may provide
an early diagnosis via a minimally invasive technique, since tumor cells are metabolically
overactive and undergo significant metabolic reprogramming to sustain their proliferation.
The tumor tissue consumes large amounts of glucose through glycolysis (Warburg effect);
therefore, the glucose-related metabolites are substantially altered in TC. Amino acids, as a
resource for protein synthesis, are involved in metabolic reprogramming and can promote
tumor proliferation and metastasis; therefore, disturbances in the metabolism of some
amino acids have also been observed in TC, although the effects remain unclear. Lipids
and their metabolites involved in cell membrane formation, signaling, and energy storage
are associated with carcinogenic pathways. Lipid metabolism is reprogrammed in tumors,
and the perturbation of blood lipids has been identified as a risk factor for tumorigenesis;
therefore, they represent an important feature of TC and provide diagnostic biomarkers [14].
Both subclinical and overt hypothyroidism were also associated with alterations in the lipid
profile, particularly proportional to TSH upregulation, correlated with the increase in LDL
cholesterol and an increased risk of adverse metabolic and cardiovascular outcomes [15].

Until now, as reviewed recently, no reliable specific molecular markers for the detection
and staging of TC have been standardized, the assessment of metabolic changes in the
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development of thyroid benign (B) nodules vs. TC being limited to the measurement of
individual hormones (mainly TSH) and some metabolite levels using standard clinical
laboratory tests.

In this context, new, reliable, and affordable biomarkers for early detection of dif-
ferent thyroid pathologies are needed to complete and improve current methods. The
“omics” technologies address distinct directions of diagnosis and investigation, from ge-
nomics to proteomics and metabolomics. Diverse techniques applied for an accurate
molecular diagnosis includes genomic and proteomic analyses, as well as tissue imaging
by MALDI/Fourier transform/mass spectrometry or by AFADESI-MSI (mass spectrometry
imaging), presenting a spatially resolved metabolic profiling of endogenous metabolites
in thyroid tumors by the identification of metabolites in situ on a tissue slice obtained
by fine-needle aspiration biopsy [16]. The serum/urine metabolic fingerprint and profile
can identify the potential biomarkers using advanced techniques like high-performance
gas- or liquid chromatography coupled with mass spectrometry (GC/UPLC-MS) or NMR.
Metabolomics is an emerging technology which can separate, identify, and classify different
classes of small molecules (<5000 Da), including intracellular or extracellular metabolites,
signaling mediators, nutrients, that reflect the “downstream” of altered metabolic path-
ways responsible for benign or malignant transformation, having an important impact in
clinical and translational research [17–19]. Some metabolic alterations in TC were identified
by techniques based on GC-MS and UPLC-MS or NMR, which are increasingly used for
metabolite separation and identification [6,7,20–27].

In the last decade, a growing interest in finding specific metabolite alterations in tissue
samples in PTC patients and discriminating the profiles against those for benign nodules has
been reported. Tissue oncometabolites, e.g., higher lactate and choline levels and low levels
of citrate, together with glutamine and glutamate, were considered putative biomarkers for
nodules, while cholesterol, choline, and phosphocholines displayed significantly different
values in TC patients than in healthy subjects. Through MS imaging analysis of seven TC
cases, the distribution of phosphatidylcholines (16:0/18:1 16:0/18:2) and sphingomyelin
(d18:0/16:1) compared to that in normal tissues was significantly higher in TC [22]. The
results for three tissue metabolites involved in the galactose metabolism pathway were
defined as a combinatorial biomarker affecting the energetic metabolism, assisting in the
needle biopsy for TC diagnosis, as demonstrated by the receiver operating characteristic
(ROC curve and AUC value of 0.96). Therefore, Alpha-galactosidase (GLA) is a potential
target for TC therapy [28]

As mentioned previously, in recent years, relevant progress has been made in thyroid
pathology using tissue and blood metabolomics. Very few data regarding urine metabolites
are available [29] except for those from a recent review concerning the general status of urine
sampling used as a liquid biopsy for noninvasive cancer research, including its preanalytical
parameters and protocols from health sciences databases [30]. Our previous research
reviewed the updated literature regarding TC diagnostics related to occupational and
environmental risk factors [31] and published original data regarding the serum metabolic
biomarkers which may discriminate between TC and B patients [32]. Herein, this study
aimed to perform a metabolomic analysis of urine samples collected simultaneously with
blood samples from the same patients diagnosed with TC and B in order to identify specific
biomarkers in each of these samples (1), as well as to compare the specific metabolic profiles
in serum vs. urine, identifying the common vs. specific biomarkers of discrimination when
compared to those of healthy subjects (2). The advanced metabolomics analysis, coupled
with multivariate statistics, was performed using the Metaboanalyst 6.0 standardized
procedures, also identifying specific metabolic pathways responsible for the alteration of
metabolic pathways in benign vs. malign thyroid pathology (3) and providing a reliable
metabolic analysis of the thyroid pathophysiology in urine vs. serum.
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2. Materials and Methods
2.1. Patients and Study Design

This study complied with the guidelines of the Declaration of Helsinki and the Confer-
ence for Coordination of Clinical Practice and was approved by the Ethics Committee for
Scientific Research (DEP224/26 July 2022) of the Iuliu Hatieganu University of Medicine
and Pharmacy, Cluj-Napoca, Romania. Written informed consent was obtained from all
80 subjects. A total number of 20 healthy subjects (group C) and 60 patients diagnosed with
different thyroid pathologies, i.e., papillary carcinoma and microcarcinoma, were included
in the TC group (n = 30), and patients with a nodular goiter, confirmed to have clinical
hypothyroidism, were included in the B group (n = 30), as shown in Table 1. The urine
samples (together with blood samples) were collected between 2020–2022 from a University
Hospital in Cluj-Napoca, Romania. Here, we present the data regarding the urine samples.

Table 1. Demographic and clinical data of subjects in groups TC, B, and C (control).

Group PTC Group B Group C

Number of participants 30 30 20

Age in years (mean ± SD) 57.9 ± 4.3 56.6 ± 5.1 55.6 ± 4.8 57.9 ± 5.0 43± 5.5
Gender M/F 3/18 2/7 4/20 0/6 9/11

Body mass index (kg/m2)
<30 8 11 16
≥30 22 19 4

Histological type 29 TC including microcarcinomas
and 1 Medullary carcinoma

24 Nodular Goiter
2 Hashimoto’s

4 benign solitary nodules
0

TSH (mIU/L) (mean ± SD) 2.4 ± 0.62 17.9 ± 9.8 1.8 ± 0.7
FT3 (pmol/L) (mean ± SD) 5.9 ± 2.5 4.3 ± 2.6 5.2 ± 1.3
FT4 (pmol/L) (mean ± SD) 20.5 ± 6.60 11.2 ± 2.8 15.2 ± 5.8

First-degree relatives with thyroid or other cancer types
Yes 6 3 3
No 24 27 17

Tobacco smoking (years of smoking cigarettes)
No 4 5 14
<5 5 4 2
5–15 14 15 3
>15 7 6 1

Alcohol consumption (days/week)
No 10/30 14/30 12/20
<5/week 12/30 10/30 6/20
>5/week 8/30 6/30 2/20

The data for the inclusion/exclusion criteria and for the analysis of the risk factors
were collected from the patients’ clinical history and pathology reports. We collected
information regarding the type of thyroid disease, with TNM staging, for TC patients,
along with data regarding associated diseases in the personal medical history, demographic
data, family history, previous medication, lifestyle (tobacco smoking, alcohol consumption,
nutritional status), and environmental and occupational risk factors.

The inclusion criteria consisted of the following: history of thyroid pathology or no
previous history of thyroid pathology, using the diagnostic criteria for thyroid diseases
and histological classification; clear consciousness; no intellectual impairment; and normal
communication, as presented in Table 1.

The exclusion criteria included the following: patients that refused to participate
in this study, pregnant or lactating women, those with combined malignancy, patients
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with psychiatric disorders, and those with incomplete data for the diagnostic criteria or
inconclusive pathology findings.

2.2. Urine Collection and Pre-Analytical Procedures

Urine samples were collected from the first morning urine, before surgery, in sterile
vials and were preserved, after the addition of 0.1% Na-azide, in a deep freezer. A volume of
0.8 mL pure HPLC-grade (Merck KGaA, Darmstadt, Germany) Methanol and Acetonitrile
(2:1 v/v) was added for each volume of 0.2 mL cold urine. The mixture was vortexed
to precipitate proteins, ultrasonicated for 5 min, and stored 24 h at −20 ◦C to increase
protein precipitation. After centrifugation at 12.500 rpm for 10 min (4 ◦C), the supernatant
was collected, filtered through nylon filters (0.2 µm), and introduced into glass micro
vials before being injected into the LC-MS system. The ultra-high-performance liquid
chromatograph (UHPLC) quality control (QC) samples were also prepared at the same
time; 10 µL were collected from each sample and added to 2 ml Eppendorf (Eppendorf
Corporation, Hamburg, Germany) microtubes, vortexed, and divided into 0.2 mL portions
for each tube and then pretreated using the same procedure to improve the data quality for
metabolic profiling.

2.3. UHPLC-QTOF-ESI+-MS Analysis

The metabolomic profiling was performed using UHPLC coupled with electrospray
ionization quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-ESI+-MS) using a
Thermo Fisher Scientific (Waltham, MA, USA) UHPLC Ultimate 3000 instrument equipped
with a quaternary pump, a Dionex delivery system, and MS detection equipment with
MaXis Impact (Bruker Daltonics, Billerica, MA, USA). The metabolites were separated
on an Acclaim C18 column (5 µm, 2.1 × 100 mm, pore size of 30 nm) (Thermo Fischer
Scientific, Waltham, MA USA) at 28 ◦C. The mobile phase consisted of 0.1% formic acid in
water (A) and 0.1% formic acid in acetonitrile (B) (LiChrosolv® MerckMillipore, Burlington,
MA, USA). The gradient program and the MS parameters were detailed previously [32].
The control of the instrument and the data processing was performed using TofControl 3.2,
HyStar 3.2, Data Analysis 4.2 (Bruker, Daltonics, Billerica, MA, USA), and Chromeleon
software 7.3, respectively.

2.4. Statistical Analysis

Subsequent to the sampling using UHPLC-QTOF-ESI+-MS Analysis, up to 429 molecules
were identified. For each sample, the raw data consisted of base peak chromatograms
(BPC), representing the intensity of each molecule vs. the retention time (min). Then,
a matrix cumulating all samples was obtained, for which the step-by-step methodology
applied was presented previously [32]. A final number of 190 molecules were identified and
considered for multivariate and univariate analysis using the Metaboanalyst 6.0 platform
(https://www.metaboanalyst.ca, accessed on 26 September 2024). The identification of
each molecule was performed using the Human Metabolome Database (HMDB) and the
LipidMaps platforms. The experimental m/z values representing [M+H]+ (M—molecular
weight of the molecule) in the ESI+ system of fragmentation were compared with the
average of the theoretical m/z values found in the International Database HMDB, with the
theoretical accuracy related to the experimental m/z values being below 20 ppm.

The multivariate analysis of the detected molecules identified in all samples was
conducted via a partial least squares discriminant analysis (PLSDA) and random forest (RF)-
based prediction test and illustrated by heatmap clusters. The values of variable importance
in the projection (VIP), as well as mean decrease accuracy (MDA) by RF analysis, were
calculated, and the ranking of the most significant molecules explaining the discrimination
was achieved. According to the biomarker analysis algorithm, the ROC curves were
obtained, and the AUROC values (area under the curve) were considered as the best
prediction of differentiation for the putative biomarkers. The pathway analysis was also
applied, based on the identified cohort of 190 molecules. To identify common and specific

https://www.metaboanalyst.ca
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molecules in urine and blood, the Venny 2.1 algorithm was applied (https://csbg.cnb.csic.es,
accessed on 26 September 2024).

3. Results
3.1. Untargeted Metabolic Profiles

According to the raw data obtained by the UHPLC-TOF-ESI+-MS analytics and raw
data processing, matrices containing m/z values and peak intensities of 190 metabolites
belonging to 10 classes of metabolites were selected and identified, as presented in Table S1
(Supplementary File T1). According to the PLSDA score plots, the discrimination regions
between groups C vs. TC vs. B were determined, with a covariance of 33.3% (Figure 1a).
The cross-validation analysis showed a good accuracy (0.8), with R2 values > 0.6 and
Q2 values > 0.5 for the first three components, confirming an acceptable predictability
and reliability of the model. When comparing the TC vs. B samples, the covariance was
32.1% (Figure 1b), but we did not identify any significant differences between these groups,
according to the cross-validation analysis.

The VIP scores >1.6 revealed the first 15 molecules to be considered significant for the
discrimination between the TC and B groups (Figure 1c). The most significant differences
were noticed for guanosine, 6-hydroxymelatonin, homogentisic acid, homocysteine (with
lower levels in the TC group compared with those in the B group), and taurocholic acid
(with higher levels in the TC group). These data were correlated with complementary
statistics, as shown below.

Random forest analysis is a tool used for the suitable classification of putative biomark-
ers that we used for discriminating between groups C vs. TC vs. B and TC vs. B, respectively
(Figure 2a,b). Heatmaps illustrate the relative abundance of molecules in each group by
color intensity, showing increased or decreased levels of molecules, based on mean peak
intensities (Figure 2c,d).

Diagnostics 2024, 14, x FOR PEER REVIEW  6  of  19 
 

 

based  prediction  test  and  illustrated  by  heatmap  clusters.  The  values  of  variable  im-

portance in the projection (VIP), as well as mean decrease accuracy (MDA) by RF analysis, 

were calculated, and the ranking of the most significant molecules explaining the discrim-

ination was achieved. According  to  the biomarker analysis algorithm,  the ROC curves 

were obtained, and the AUROC values (area under the curve) were considered as the best 

prediction of differentiation for the putative biomarkers. The pathway analysis was also 

applied, based on the identified cohort of 190 molecules. To identify common and specific 

molecules  in  urine  and  blood,  the  Venny  2.1  algorithm  was  applied 

(https://csbg.cnb.csic.es, accessed on 26 September 2024). 

3. Results 

3.1. Untargeted Metabolic Profiles 

According to the raw data obtained by the UHPLC-TOF-ESI+-MS analytics and raw 

data processing, matrices containing m/z values and peak intensities of 190 metabolites 

belonging to 10 classes of metabolites were selected and identified, as presented in Table 

S1 (Supplementary File T1). According to the PLSDA score plots, the discrimination re-

gions between groups C vs. TC vs. B were determined, with a covariance of 33.3% (Figure 

1a). The cross-validation analysis showed a good accuracy (0.8), with R2 values > 0.6 and 

Q2 values > 0.5 for the first three components, confirming an acceptable predictability and 

reliability of the model. When comparing the TC vs. B samples, the covariance was 32.1% 

(Figure 1b), but we did not identify any significant differences between these groups, ac-

cording to the cross-validation analysis. 

 
 

(a)  (b) 

Figure 1. Cont.

https://csbg.cnb.csic.es


Diagnostics 2024, 14, 2421 7 of 18

Diagnostics 2024, 14, x FOR PEER REVIEW  7  of  19 
 

 

 

(c) 

Figure 1.  (a) PLSDA score plots discriminating groups TC, B, and C.  (b) PLSDA score plots  for 

groups TC vs. B. (c) The top 15 molecules discriminating between the three groups of samples, with 

VIP scores >1.6. 

The VIP scores >1.6 revealed the first 15 molecules to be considered significant for the 

discrimination between the TC and B groups (Figure 1c). The most significant differences 

were noticed for guanosine, 6-hydroxymelatonin, homogentisic acid, homocysteine (with 

lower levels in the TC group compared with those in the B group), and taurocholic acid 

(with higher levels in the TC group). These data were correlated with complementary sta-

tistics, as shown below. 

Random  forest analysis  is a  tool used  for  the suitable classification of putative bi-

omarkers that we used for discriminating between groups C vs. TC vs. B and TC vs. B, 

respectively (Figure 2a,b). Heatmaps illustrate the relative abundance of molecules in each 

group by color intensity, showing increased or decreased levels of molecules, based on 

mean peak intensities (Figure 2c,d) 

Figure 1. (a) PLSDA score plots discriminating groups TC, B, and C. (b) PLSDA score plots for groups
TC vs. B. (c) The top 15 molecules discriminating between the three groups of samples, with VIP
scores >1.6.

The MDA values higher than 0.006 (Figure 2a) showed putative biomarkers for differ-
entiation between groups C, TC, and B. Lower values were noticed for docosahexaenoic,
linolenic, and mevalonic acids in the TC group. When comparing the TC vs. B groups, the
MDA values were below 0.0006 (Figure 2b), and increased levels of hydroxy tryptamine
and N-acetyl tryptophan were identified for the TC group compared to those for the B
group. The heatmaps illustrate 25 molecules identified with decreased (19) or increased (6)
levels in the TC and B groups compared to the results for the controls. In general, most
of these molecules displayed lower levels in the B and TC groups compared to those in
the C group (Figure 2c). When comparing the TC vs. B groups, 17 molecules showed
increased levels, and 8 molecules displayed decreased levels in the TC group (p < 0.05)
(Figure 2d). Applying the volcano plot analysis, the fold-change values and log2 (FC)
showed a semi-quantitative evaluation of the most significant differences between groups
TC and B (Figure 3).

Significant decreases were noticed for dihydroxy butyric acid and nicotinuric acid in
group TC, while significant increases in glycerophosphocholine, serotonin, 12-Ketodeoxycholic
acid, Leucine, Taurocholic acid, LysoPE 22:0, and Butenyl carnitine were detected in this
group when compared to those of the B group.

3.2. Common and Specific Molecules Found in Urine Comparative to Blood Serum

Considering the molecules identified in urine (n = 190) and in serum (n = 166), accord-
ing to our previous data [32], the Venny 2.1 algorithm was applied, identifying 90 common
and 100 specific molecules in urine and 76 in serum. The complete list of these molecules is
presented in Supplementary File T2.
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3.3. Pathway Analysis

The cohort of molecules separated and identified in all groups was subjected to path-
way analysis, considering the matched metabolic pathways from the pathway enrichment
analysis and the impact values (p values < 0.05). We also compared the data obtained from
urine with previous data obtained from blood samples [32]. A higher value on the y-axis
(−log10p) indicates a lower p-value (threshold), while the x-axis gives the pathway impact
value. The dimensions and color of the circles present in Figure 4 illustrate the impact for
the first five metabolic pathways in urine.

In urine, the alteration of steroid amino acid metabolism had the highest impact,
followed by pyrimidine/purine and amino acid metabolism. As reported previously [32],
in blood, the order of impact (from 1 to 0.323) was Phenylalanine, tyrosine, and tryptophan
biosynthesis > Linoleic/linolenic acid metabolism > Glutamine and glutamate metabolism
> Tryptophan metabolism > Pyrimidine/purine metabolism. In general, the impact of
lipid metabolism, especially steroid derivative values, was more pronounced in the urine
compared to the blood samples.
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3.4. Biomarker Analysis

Using Metaboanalyst 5.0, the biomarker analysis was applied to obtain the ROC
curves and AUROC values for diagnostic purposes, considering the biomarkers’ sensitivity
vs. specificity. The metabolites with the highest AUROC values were good biomarker
candidates, useful for differentiating between groups TC and B in urine; additionally, a
comparative analysis using blood serum samples results was conducted [32]. Table 2
includes these data.

Table 2. Ranking of the 15 highest AUROC values for the putative biomarkers in the TC vs. B groups
for both urine and serum. Log 2FC negative or positive values indicate the relative decrease (D) or
increase (I), respectively, for metabolites identified in these groups.

TC vs. B (Urine) AUROC log2FC TC vs. B (Blood Serum) AUROC Log2FC

LysoPE (22:6) 0.720 0.562 LysoPA (18:2) 0.730 −1.921
Mevalonic acid 0.699 −0.118 Taurine 0.718 0.444
Dihydrocortisol 0.692 −0.059 Acetylcysteine 0.716 0.343

Glycerophosphocholine 0.687 −0.517 LysoPE (20:4) 0.683 −1.155
O-Phosphothreonine 0.672 −0.348 Inosinic acid 0.677 −0.416

Hippuric acid 0.667 −0.428 L-Palmitoylcarnitine 0.676 −0.790
Androsterone 0.663 0.001 Cervonyl carnitine 0.676 −1.183
LysoPE 22:0 0.662 −0.810 Stearic acid (C18:0) 0.668 0.407

19-Norandrosterone 0.660 −0.162 Uridine 5′-diphosphate 0.661 −1.325
Porphobilinogen 0.656 −1.176 Arachidonic acid (C20:4) 0.660 −0.892

Tetrahydrocortisone 0.651 −0.452 PGE2 /D2 0.655 0.145
2-Thiouracil 0.649 0.608 5 Hydroxy tryptophan 0.651 0.156

Hydroquinone 0.648 −0.020 7-Methyl-cholic acid 0.649 0.864
LysoPC (18:3) 0.648 −0.358 LysoPC (20:4) 0.649 −1.011

Guanosine 0.647 0.347 Hypotaurine 0.645 0.319

The AUROC values for the top 15 molecules ranged from 0.730 to 0.645, as shown in
Table 2. According to these data, in urine, mainly lipid molecules, such as LysoPE 22:6 and
LysoPE 22:0), Mevalonic acid, Dihydrocortisol, Glycerophosphocholine, Androsterone, and
19-Norandrosterone, showed a higher sensitivity vs. specificity relevance, while in blood,
the amino acid derivatives were more representative as biomarker candidates. Many of
these molecules were also confirmed as potential biomarkers by complementary statistics
in both urine and blood samples.

3.5. Semi-Targeted Approach and Statistics for Specific Metabolite Classes

Ten different classes of metabolites involved in specific metabolic pathways were
identified in urine. For each class, the matrices (m/z values vs. peak intensities) were
analyzed using Metaboanalyst platform statistics in order to more specifically identify,
for each class, the molecules which may discriminate between TC and B vs. C samples.
Supplementary Files (S1 and S2) include VIP score graphs and RF graphs, respectively,
corresponding to each class of metabolites and illustrating the differences between TC, B,
and C groups. Figure 5a–j illustrates the heatmaps obtained for each class of metabolites by
applying Ward’s clustering method, with Euclidian distance and an ANOVA p-value (FDR)
cutoff of 0.05.

Regarding the polar metabolites and their related pathways (Figure 5a–d), the heatmaps
illustrate either similar or specific variations for TC and B groups. Alterations in the TCA
metabolism were observed by decreased levels of fumaric, succinic acids, hydroxy, and
dihydroxy benzoic acid in both the TC and B groups; increased levels of phenyl lactic acid
in group B; and increased release of glucose and p-cresol in the TC group (a). Therefore, the
levels of phenyl lactic acid, glucose, and p-cresol can differentiate TC from B. Modifications
in the release of the butyrate derivatives methionine and cysteine selenocomplexes due
to lower levels of homocysteine and its sulfates, dihydroxy butyrate, selenomethionine,
and methylselenocysteine, were noticed in both the TC and B groups. Specific increases
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in homocysteine sulfate in group B and ketobutyric acid in group TC were also observed
(b). The alterations in the amino acid metabolism are represented by decreased leucine,
arginine, acetyl proline, hydroxylysine, serotonin, and hydroxytryptophan in both the TC
and B groups. Meanwhile, many other amino acid derivatives (from phosphoserine to
cystathionine) can vary between the TC and B samples (c). Alterations in the nucleotide
and nucleoside levels were also identified, with decreased levels specifically of guanosine,
inosine, thymine, uridine, deoxycytidine, and hippuric acid. Guanosine and dimethyl
guanosine seem to act as good markers to differentiate between the TC and B groups
(d). Regarding the lipid metabolites (Figure 5e–j), the heatmaps illustrate more important
differences between the TC and B groups, especially for bile acids and prostaglandins. The
levels of some unsaturated free fatty acids were increased in both the TC and B groups,
when compared to those for the controls, except for myristic and palmitic acid, which
seems to differentiate group TC from B. The B group showed the highest levels of palmitic
acid, while the TC group had the highest levels of oleic and linolenic acids (e). A large
population of acylcarnitines known to be actively involved in the transport of acyl groups
of fatty acids to the mitochondria was identified. Besides L-carnitine, twelve molecules
showed increased levels in the TC vs. the B and controls groups, while six specimens
exhibited increased levels only in the TC group (f). Bile acid metabolism was significantly
affected, with increased release of keto deoxycholic, lithocholic, and chenodeoxycholic
acids in group TC, significantly differing from the results for the B and control groups
(g). The prostaglandins also showed a good discrimination between the three groups.
The increased release of PGA1 and PGF1a satisfactorily differentiated the TC from the B
group, as did decreased PGF2a levels in the TC group and increased levels in the B group
(h). Steroids (corticosteroids, vitamins, and sex hormones) also exhibited altered levels in
the TC and B groups compared to those in the control group. There were no significant
differences between the TC and B groups, except in regards to estrone, hydroxy estrone,
hydroxy testosterone, oxo-retinoic acid, 25 hydroxyvitamin D, and ergocalciferol levels
(i). Phospholipids, especially LysoPC with different fatty acids and LysoPE 22:0, showed
variations among the three groups, some with significant increases in the TC group, espe-
cially for the unsaturated fractions (j). These data are consistent with our results regarding
pathway analysis and reveal details about the specific variations of different classes of
metabolites, identifying either common metabolic signatures of the TC and B groups or
specific alterations for each pathology group when compared to controls.

These findings agree with the previous LC-MS or NMR experimental data obtained in
serum samples and confirm the specific alterations of these metabolic
pathways [13,15,24,25,33–37]. Only one reference related to the urine metabolic profile
compared to that of serum has been published previously in a similar study, “Biomarkers
for TC, benign thyroid nodule and healthy controls”. Differentiation metabolites such
as serum β-hydroxybutyrate, docosahexaenoic acid, 1-methyladenosine, pregnanediol-3-
glucuronide, as well as nicotinuric acid mononucleotide and xanthosine, were validated to
be significantly different, with AUROC values above 0.94, thus being considered suitable
biomarkers for TC and potentially useful for clinical diagnosis [38]. Our findings reveal
novel data and information, especially considering lipid metabolism.
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4. Discussion

Over the last decade, systematic reviews regarding the potential of proteomic and
metabolomic techniques to elucidate mechanisms involved in thyroid pathology, especially
TC, have been published [16,22,24–26,39–41]. Tissue, blood serum, and plasma samples
were mainly studied, with metabolic alterations of subclinical and clinical relevance identi-
fied in hypothyroidism and TC.

Serum TSH and FT4 levels are the major determinants of clinical hypothyroidism;
however, the metabolic alterations compared to the levels in healthy controls remain poorly
defined. Using untargeted UHPLC-MS plasma metabolomics, the influence of hypothy-
roidism on metabolism was recently investigated [13]. There were identified dysregulated
pathways in clinical hypothyroidism compared to those of the controls, especially in re-
gards to primary bile acid biosynthesis, steroid hormone biosynthesis, lysine degradation,
tryptophan metabolism, and purine metabolism. Around 65 metabolites and five primary
metabolism pathways were significantly associated with TSH and FT4 serum levels using
machine learning algorithm prediction models. Few studies suggested a possible associ-
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ation between hypothyroidism and bile composition and excretion, e.g., FT4 stimulates
hepatic BA synthesis and the biliary secretion of lipids (cholesterol and phospholipids),
while TSH promotes cholesterol synthesis and inhibits BA synthesis. BAs act as signaling
molecules regulating the thyroid pituitary axis and are associated with energy expenditure.
Primary BAs, including cholic acid, taurocholic acid, and taurodeoxycholic acid, were
found to be decreased in the serum of patients with hypothyroidism. Concomitantly,
significantly higher levels of glycerophospholipids, including PC, PE, PI, PS, and Lyso
(PC, PE, PA), were identified as potential biomarkers for the prediction of hypothyroidism.
Steroid hormones (especially DHEA-S, androsterone glucuronide, and pregnanediol) were
also decreased. The amino acid metabolism was notably altered, with reduced levels of
L-tyrosine, L-lysine, and L-histidine. Also, the levels of the 5-hydroxytryptamine, tryp-
tophan metabolism, and lysine degradation metabolic pathways were markedly altered
compared to those of the controls. Tryptophan plays a crucial role in protein synthesis and
is a precursor for the biosynthesis of 5-hydroxytryptamine, melatonin, kynurenic acid, and
tryptamine, as well as the reduced secretion of tryptophan and kynurenine, contributing to
hypothyroidism. The purine metabolism pathway was also significantly disturbed, with
patients with hypothyroidism showing increased levels of purine metabolites (adenine,
hypoxanthine, and xanthine).

The fact that the metabolism of tumor cells is altered has been known for many years,
although the mechanisms and consequences of metabolic reprogramming have just be-
gun to be understood. To satisfy tumor cell proliferation and survival requirements, the
biosynthetic cell capabilities are increased, including the stimulation of fatty acid and
nucleotide synthesis. Glucose is the substrate preferred by glycolysis for energy supply,
providing pyruvate, ATP, and NADH, the electron donor in the mitochondria enabling
the oxidative phosphorylation pathway, which yields much more ATP than glycolysis.
Moreover, glucose provides metabolites used as building blocks for the biosynthesis of fatty
acid and nucleotide biosynthesis, required for cellular proliferation. Acetyl-CoA enters the
TCA cycle to supply energy for tumor cells and is needed for fatty acid biosynthesis, as well
as for some amino acids to be converted to proteins. Therefore, the metabolic pathways
are reprogrammed, and glycolysis is strongly enhanced to fulfil the high ATP demands
of these cells. The interactions between the altered metabolic pathways (glutamate and
glutamine metabolism and the TCA cycle) and lipid biosynthesis and metabolism in the
plasma of TC patients were recently demonstrated, identifying some significant biomarkers
such as sebacic acid, L-glutamine, and indole-3-carboxaldehyde [14]. In this context, similar
metabolic alterations were found in TC and benign hypothyroidism when compared to
those of the controls, but also including recently noticed specific features [36]. Based on
tissue metabolomics, differences in the level of 3-hydroxybutyric acid (an intermediate of
fatty acid metabolism) in the TC and control groups, as well as differences in carnitines
ratios and sphingosine and sphingosine-1-phosphate levels, indicate that these molecules
can be considered potential diagnostic biomarkers. The benign pathology was associated
with an increased FFAs metabolism, while lower FFAs levels were associated with the
increased consumption of lipids in TC. Increased bile acid levels were correlated with the
upregulated fatty acid metabolism in the B group. Meanwhile, proline and glutamic acid
derivatives levels were elevated, and the levels of hydroxybutyric and di-hydroxybutyric
acids, intermediates of fatty acid metabolism, were lower in the TC vs. the B and con-
trol groups.

The main categories of metabolites considered as biomarker candidates for TC di-
agnosis were either polar molecules or lipids, such as estrogens, responsible for thyroid
dysfunction [13,20,21,32,33,35]. The untargeted and targeted metabolomics revealed sev-
eral tissue molecules, including carbohydrates (glucose, fructose, galactose, mannose, and
rhamnose), 2-keto-gluconic and malonic acids, several amino acids, purine and pyrimidine
metabolites, fatty acids, cholesterol and arachidonic acid, and choline-derived phospho-
lipids. Citrate and lactate are the most significant biomarkers that can be used. Elevated
tissue concentrations of some amino acids (methionine, leucine, tyrosine, and lysine), polar
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lipids (especially phospholipids and sphingolipids), together with the upregulated de novo
synthesis of fatty acids in TC plasma, are also significant [39,40].

Recently, a combined metabolomic and lipidomic analysis of plasma samples from
TC patients compared to healthy controls revealed 113 differential metabolites and 236 dif-
ferential lipids, mainly involved in energetic and branched-chain amino acid metabolism,
glutamate and glutamine metabolism, the tricarboxylic acid cycle, and lipid metabolism,
providing new targets for comprehensive TC treatment [14].

In serum samples, increased levels of hydroxybutyric acid, docosahexaenoic, and
1-methyladenosine were noticed [35], as well as alterations of 42 metabolites, including
proline betaine, and decreases in LysoPC (18:0 and 18:1) [16]. A large study performed
on serum metabolomics for TC compared with control samples, identified proline be-
taine, taurocholic acid, L-phenylalanine, retinyl beta-glucuronide, alpha-tocotrienol, and
threonine acid as being upregulated in the TC group, while L-tyrosine, L-tryptophan,
2-arachidonylglycerol, citric acid, and 42 other metabolites were downregulated. The
Warburg effect was reflected by alterations in aspartic acid and glutamic acid metabolism,
the urea cycle, and the tricarboxylic acid cycle, all involved in TC pathogenesis [21].

The metabolomic profile of patients with follicular tumors vs. benign nodules, ana-
lyzed by LC-MS in another study [25], identified six types of lipids, which may explain
the differences between their metabolic profiles. These included amino acids (L-glutamate,
L-glutamine), Lyso (PA, PC) derivatives of C16, C18, C20 and C22 fatty acids, sphin-
gomyelin (d18:0/12:0), and linoleic acid. It was concluded that altered LysoPA levels
may be one cause of follicular tumor carcinogenesis caused by a lipid metabolic pathway
dysregulation.

Acyl-CoA is used in beta-oxidation inside the mitochondria or, depending on the mito-
chondrial status, is conjugated with L-carnitine to form acylcarnitines, which play an essen-
tial role in regulating the balance of intracellular carbohydrates and lipid metabolism. They
serve as carriers to transport activated fatty acids into the mitochondria for β-oxidation, as
a major source of energy for cell activities. Therefore, acylcarnitines are strongly involved
in thyroid pathology, which is related to lipid metabolism. In our study, we observed a high
concentration of urinary acylcarnitines, which correlates with the results of our previous
study, in which we observed an increased serum level of acylcarnitines [32].

These findings were confirmed by our previous study focused on blood serum
metabolomics [32], confirming the involvement of 10 classes of metabolites with specific
metabolic pathways, which could differentiate patients from TC and B groups.

Selenium and its complexes with amino acids (methionine and cysteine), especially
selenomethionine and selenocysteine, abundant in the thyroid tissue, play an essential
role in thyroid hormone metabolism, although the specific mechanisms are not yet fully
understood. Selenocysteine is in the active site of the three peroxidases, and its deficiency
is currently a very common condition, having an inverse correlation with TC evolution,
as documented by many authors [37,42–44]. Our data, in agreement with the results of
our previous study [32], showed decreases in selenomethionine and methylselenocysteine
levels in both the TC and B groups in comparison to those of the controls, in good agreement
with the above-mentioned experimental findings.

There are several limitations of the current study. First, we included patients diagnosed
with nodular goiter and clinical hypothyroidism in the B group, according to their TSH and
FT4 values, without considering different comorbidities of hypothyroidism which might be
seen in other clinical studies. Due to the exclusion criteria, the study displayed a relatively
small sample size, targeting mainly differentiated thyroid cancer, specifically the papillary
form; thus, our findings need to be further validated in larger scale studies.

5. Conclusions

Using untargeted metabolomics based on UHPLC-QTOF-ESI+-MS technology, urine
samples from patients diagnosed with thyroid carcinoma and benign nodular goiters
were compared with samples from healthy subjects. Specific urine putative biomarkers
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of discrimination were identified by complementary statistics provided by the integrated
Metaboanalyst 6.0 platform and compared with the serum metabolic profiles obtained
from the same patients. Ten different classes of metabolites, upregulated or downregu-
lated in comparison to those of the controls, were targeted and compared, including a
pathways analysis. The metabolomic window showed altered pathways for amino acid
metabolism, carbohydrate-related TCA metabolites, selenium complexes, and purine and
pyrimidine metabolites. Specific molecules were identified as putative biomarkers of dif-
ferentiation, as detailed above. The lipidomic window proved to be more relevant for
finding biomarkers related to thyroid carcinoma or benign nodules, such as alterations in
free fatty acid metabolism, acylcarnitines and bile acids, steroid hormones, phospholipids,
and prostaglandins.

The overall picture of the urinary metabolome, resulting from multivariate statistics
complemented with biomarker and pathway analysis, was compared with a similar picture
of the serum metabolome, finding both similar and remarkably different metabolites, both
upregulated or downregulated, in thyroid carcinoma vs. benign nodules as compared with
the levels for healthy controls.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14212421/s1, Table S1. Urine molecules (n = 190)
separated using HPLC-QTOF-ESI+-MS and identified according to their m/z values. The experimental
m/z values were compared with the average of theoretical m/z values from the International Database
HMDB (Human Metabolomic Database). Table S2. Common and specific molecules identified in
urine vs. blood serum, as determined using the Venny 2.1 algorithm. Figure S1. VIP score graphs
corresponding to different classes of metabolites, illustrating the differences between TC, B, and
C groups. Figure S2. RF graphs (MDA values) corresponding to different classes of metabolites,
illustrating the differences between TC, B, and C groups.
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