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Abstract: Background: Early identification of Alzheimer’s disease (AD) is essential for optimal treat-
ment and management. Deep learning (DL) technologies, including convolutional neural networks
(CNNs) and vision transformers (ViTs) can provide promising outcomes in AD diagnosis. However,
these technologies lack model interpretability and demand substantial computational resources,
causing challenges in the resource-constrained environment. Hybrid ViTs can outperform individual
ViTs by visualizing key features with limited computational power. This synergy enhances feature
extraction and promotes model interpretability. Objectives: Thus, the authors present an innovative
model for classifying AD using MRI images with limited computational resources. Methods: The au-
thors improved the AD feature-extraction process by modifying the existing ViTs. A CatBoost-based
classifier was used to classify the extracted features into multiple classes. Results: The proposed
model was generalized using the OASIS dataset. The model obtained an exceptional classification
accuracy of 98.8% with a minimal loss of 0.12. Conclusions: The findings highlight the potential of
the proposed AD classification model in providing an interpretable and resource-efficient solution for
healthcare centers. To improve model robustness and applicability, subsequent research can include
genetic and clinical data.

Keywords: feature extraction; deep learning; feature fusion; magnetic resonance imaging; CatBoost;
vision transformer

1. Introduction

Alzheimer’s disease (AD) poses a significant threat to healthcare systems across the
globe [1]. It is the leading cause of dementia among older adults [1–3]. They may face
challenges in recalling recent conversations, events, and names of their family members.
This cognitive decline causes confusion, disorientation, and struggle with routine activities,
lowering quality of life [3]. Although the disease’s pathology has become widely recognized,
there is a limitation in early identification and disease management. Novel approaches
are essential to improve the ability to identify AD in the initial stages. The early detection
of a disease enables prompt intervention to reduce the course of the disease progression.
This form of treatment can regulate symptoms, maintain cognitive function, and prevent
disease progression [4]. Early AD classification has broader societal implications. It assists
healthcare systems in providing individualized treatment, reducing long-term medical
expenses. Early detection aids research into novel therapies and prevention methods.

Individuals’ awareness, mental states, and assessment settings may influence cogni-
tive and clinical examinations [5]. This heterogeneity may cause conflicting findings and
misrepresent early AD classification. Additionally, genetic risk factors may not guarantee
the onset of disease, causing uncertainties in AD classification [6]. For early diagnosis,
current blood evaluation techniques may lack sensitivity and specificity. An invasive lum-
bar puncture may cause headaches, bleeding, and infection [7]. This invasiveness makes

Diagnostics 2024, 14, 2363. https://doi.org/10.3390/diagnostics14212363 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14212363
https://doi.org/10.3390/diagnostics14212363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5445-7899
https://doi.org/10.3390/diagnostics14212363
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14212363?type=check_update&version=1


Diagnostics 2024, 14, 2363 2 of 23

regular screening less desirable. Low spatial resolution EEG monitors brain electrical
activity [7]. However, it may not produce comprehensive brain images, making it less
effective for diagnosing AD. Non-invasive imaging methods can track AD development.
Medical imaging can assist in recognizing and controlling AD, leading to precise monitor-
ing and effective treatment planning [8–10]. Several imaging modalities may reveal the
brain’s structure and function, enabling physicians to assess its condition and customize
treatments [10].

Clinicians may examine AD-affected brain regions using high-resolution medical
imaging. MRI scans can detect hippocampus shrinkage in a brain region, indicating AD [11].
Visualizing these structural alterations enables more precise AD diagnosis compared to
other dementias or neurological diseases. The presence of amyloid plaques, neurofibrillary
tangles, hippocampal shrinkage, and cortical thinning can be identified using MRI and
positron emission tomography (PET) investigations [12–15]. Compared to other imaging
procedures, PET scans are expensive. The ingestion of radioactive tracers enables PET
scans to be more invasive. Individuals with cognitive impairment may be uncomfortable
during the scanning procedure. Computed tomography scans are less sensitive in detecting
minor brain abnormalities, including hippocampal atrophy in early AD classification. MRI
is one of the imaging techniques used to identify AD in its initial stages [16]. It enables
precise observation of disease-related structural changes in the brain. Traditional diagnostic
approaches demand radiologists to manually assess large amounts of complex MRI data,
causing significant challenges. This approach is time-consuming and error-prone, and it
fails to detect AD key identifiers.

The existing techniques [17–20] include multiple ways to automate and improve MRI
data analysis to address the existing challenges. Convolutional neural networks (CNNs)
transformed medical imaging by identifying and analyzing complicated patterns from
extensive datasets [20]. However, convolutional layers in CNNs concentrate on local char-
acteristics due to receptive field limits. The performance of CNNs is limited when it comes
to identifying contextual relationships. The CNN models may fail to capture global context
and long-range dependencies, which are essential in understanding AD’s structural brain
abnormalities. Due to their fixed input sizes, CNNs may lose information while adjusting
to different image dimensions. In medical imaging, vision transformers (ViTs) are potential
alternatives to CNNs [21]. The transformer converts images into patches and utilizes them
as text tokens. It interprets the entire image as a sequence and extracts local and global
information for medical image analysis. ViTs’ attention mechanism highlights image com-
ponents that influence decision-making, rendering it interpretable [22,23]. Understanding
the model’s reasoning is essential for trust and approval from regulators in medical appli-
cations. In scenarios with diffuse or subtle disease indications, ViTs’ emphasis on structure
and context rather than specific textures may enhance medical image interpretation. ViTs
can handle inputs of differing lengths without resizing or cropping, making them adaptable
for medical imaging. Through multi-head attention, transformers may learn richer feature
representations and combine numerous input data views. Transformers’ attention scores
reveal the features influencing model predictions. In contrast to CNNs, the degree of
interpretability of ViTs outcomes is high. Explainable AI-based applications can be built
using the ViTs architecture.

Due to its self-attention mechanisms, ViTs demand substantial computational re-
sources. The requirement for considerable memory and computational overhead makes
typical ViTs unsuitable for resource-constrained environments including smaller healthcare
facilities or edge computing devices. However, the computational overhead can be reduced
by integrating different ViTs architecture [24]. The existing AD classification models depend
on CNNs and ViTs for feature extraction. These models require high computational devices
to generate a meaningful outcome. The demand for innovative feature extraction is in-
creasing in order to reduce computational resources and offer an effective AD classification
model for resource-constrained settings.
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Due to the limited functionality of the existing treatment interventions, individuals
are diagnosed in the later stages of AD condition. Early-stage AD diagnosis is frequently
misdiagnosed owing to overlapping symptoms with dementia and cognitive impairments.
The lack of robust and scalable tools is one of the significant challenges in detecting AD. The
existing diagnostic tools include complex procedures, limiting their real-time applicability.
The invasive procedures complicate the AD diagnosis and are not widely accessible in
clinical settings. The present DL-based AD diagnosis tools fail to capture subtle and early-
stage structural changes that are essential for classifying AD. These limitations motivated
the authors to design an early detection model, identifying nuanced changes in brain
structure. They employ hybrid ViTs to enhance the model’s ability to process and extract
meaningful features from large MRI datasets.

Hybrid ViTs architecture can extract essential AD features with minimal computa-
tional overhead. The convolution layers may extract lower-level features with decreased
dimensionality, whereas transformer layers acquire long-range relationships to improve
classification accuracy. This combination may provide better outcomes with fewer resources,
making the model suitable for clinical settings with limited computing infrastructure. Thus,
the authors propose a model using hybrid ViTs to classify AD using MRI images. The study
contributions are listed below.

1. A novel hybrid feature extraction using (Compact Convolution Transformer (CCT)–
Linformer and Twins Transformer (TT)-Performer transformers to identify AD features.

In this study, the authors present a groundbreaking hybrid technique, combining CCT
with Linformer and TT with Performer transformers. The proposed approach leverages
the transformers’ potential of convolution and self-attention mechanisms to extract key
features with limited computational overhead. This combination can capture AD patterns
by overcoming the limitations of standard ViTs.

2. An innovative contextualized feature-fusion technique.
The authors propose an innovative feature-fusion technique using a contextualized

embedding approach. The proposed model captures interdependencies between AD
features, enhancing its capability to classify different AD stages. This approach offers
a nuanced understanding of the neurological biomarkers of AD, which is essential in
advancing the diagnostic accuracy of AD classification.

3. A unique quantized and interpretable CatBoost-based AD classification.
The authors build an interpretable CatBoost model for AD classification. The quanti-

zation minimizes the computational resources for AD classification, enabling the proposed
model suitable for resource-constrained settings. The use of SHapley Additive exPlana-
tions (SHAP) values offers model interpretability, allowing clinicians to understand the
mechanism of AD classification. This contribution is unique in integrating quantization
and model interpretability, addressing the existing challenges (lack of interpretability and
huge computation cost) in AD classification.

The proposed study fills the gap between AD classification and demand for inter-
pretable AI-based healthcare applications with limited resources, supporting clinicians to
make decisions with high confidence and trust.

The remaining part of the study is organized as follows: Section 2 highlights the
proposed methodology for AD identification. The experimental results are discussed
in Section 3. Section 4 outlines the significance of the proposed study findings. Lastly,
Section 5 concludes this study by presenting the limitations and future directions.

2. Materials and Methods

The authors proposed a ViTs-based feature-extraction technique, a contextualized
feature-fusion technique, and a fine-tuned classification technique for detecting AD using
MRI images. CCT and TT can extract meaningful features by focusing on crucial AD
patterns. The CatBoost model can classify the features with high precision compared
to the existing gradient-boosting techniques. However, higher computational resources
may limit their performance in the resource-constrained environment. By modifying the
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architecture of CCT and TT, the authors enhanced the feature-extraction process in order
to understand intricate AD patterns. The CatBoost model’s classification performance is
enhanced by streamlining the hyperparameter tuning process. The authors minimized the
computational overhead using the quantization technique. In addition, they improved
the model’s interpretability using the SHAP values. Table 1 outlines the notations and
definitions used in the following mathematical expressions.

Table 1. Notations and definitions.

Notation Definition

Q Query

K Key

V Values

T Transpose of a matrix

dk Dimension of the keys

Pk Projection matrix with K

Pv Projection matrix with V

F Feature map with number of patches and feature dimension

I Image

Attention( ) CCT’s self-attention function

Lin f ormer_Attention ( ) Linformer self-attention function

Conv( ) Convolutional feature-extraction function

WQ, WK , and WV The weight matrices of Q, K, and V.

FFN Feed forward network function

ReLu Rectified linear unit function

X Outcome of the self-attention layer

W1 and W2 Weight matrices

b1 and b2 Bias vectors

Qi, Ki, and Vi Query, key, and value of the ith MRI patch

ŷ Model’s prediction

M Number of weak learners

αt Weight assigned to the tth weak learner ( ht)

Q(X; θ*) Quantization function with features (X) and optimal parameters (θ*)

n Number of features

ϕi(X) SHAP values corresponding to the ith feature

CFi Combined features

N and M Number of features

d1 and d2 Feature dimensions

de The dimensionality of contextual embedding

δ Kernel function

ECCT and ETT Transformer embedding

Fcombined Combined features

Freduced Reduced features

Figure 1 reveals the proposed research methodology for AD classification using MRI
images. It presents the feature dimensions at different stages. A total of 512 features are
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identified using the feature-fusion technique. Finally, a total of 128 principal components
(AD features) are entered into the CatBoost classification model.
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Figure 1. Proposed AD Classification.

2.1. Dataset Acquisition

The authors utilize two datasets to train and test the proposed AD classification.
Alzheimer’s dataset [25] is commonly used to develop a classification model that identifies
different stages of AD. The MRI scans were obtained from 1200 individuals (Female: 60%
and Male: 40%). The age of the individuals ranges from 42 to 85 years. The key MRI
acquisition parameters are magnetic field strength value of 1.5 T with T1-weighted mode,
slice thickness of 1.2 mm, voxel size of 1 mm3, repetition time of 2300 ms, echo time value
of 2.9 ms, flip angle of 8

◦
, field of view of 256 mm × 256 mm, and scan duration of 12 min.

The dataset contains a total of 6400 MRI images, which are classified into four classes:
Normal, very mild demented, mild demented, and moderate demented. The images are in
grayscale with 176 × 208 pixels. The Kaggle repository [26] includes 86390 brain images
of the open access series of imaging studies (OASIS) dataset. The images were acquired
from 1000 individuals (Female: 55% and Male: 45%). The participants age ranges from
42 to 90 years. 1.5T and 3T scanners were used for the image acquisition. The “.nii” MRI
scans were converted into “.jpg” format. The acquisition parameters are repetition time of
2400 ms, echo time of 2.14 ms, field of view of 256 mm × 256 mm. The dataset provider
presents the classified MRI images. The stage of the disorder was based on the clinical
data of the subjects and cognitive assessment scores. The clinically evaluated images
support the proposed model to learn AD patterns and accurately determine the stages.
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Each image accompanied with cognitive scores and clinical assessments. The images were
classified into four classes, including normal, mild demented, very mild demented, and
moderate demented. The authors employ the Alzheimer’s dataset to train the proposed
model. They generalize the proposed model using the OASIS dataset. Table 2 shows the
dataset features. Based on the feature id, the authors generated the SHAP values to enable
model interpretability.

Table 2. Feature of Datasets.

Feature Id Feature Name Description Datatype Importance Level

Feature 1 Hippocampal volume Brain region volume Continuous High

Feature 2 Cortical thickness Thickness of the cerebral cortex Continuous High

Feature 3 Gray matter volume The volume of gray matter in specific brain regions Continuous High

Feature 4 Fractional anisotropy Measure of the white matter integrity Continuous High

2.2. Data Preprocess and Data Augmentation

The image pixel values have a significant impact on the ViTs performance. The values
are normalized to a range between “0” and “1”. This standardization assists ViTs in
handling images with variable lighting conditions. To support the ViTs patching procedure,
the authors resized the images to 224 × 224 pixels. Data augmentation techniques are
applied to mitigate the risk of overfitting. Techniques including rotation, translation, scaling,
flipping, and random cropping are applied to increase the training data. In addition, the
authors use brightness and contrast adjustment techniques to generate variations in image
quality and lighting conditions. These augmentation techniques can improve the model’s
ability to classify AD across diverse imaging conditions.

2.3. Feature Extraction

In medical imaging, features are essential for accurate diagnosis. Compared to the
existing ViTs, CCT and TT can extract the AD features using the convolution layers. These
transformers can converge faster during the training phase, resulting in rapid model
deployment in clinical settings. The dual-branch architecture of TT captures local and global
features. The combination of CCT and TT can provide a comprehensive representation of
MRI images, enhancing the proposed AD classification performance. The proposed model
can benefit from the CCT’s local sensitivity and TT’s global awareness. The complementary
relationship can improve the capability of the proposed model to identify subtle variations
in brain structure associated with AD stages. In addition, the diverse features can improve
the model’s generalization across various patient populations and clinical conditions.
However, these transformers demand a substantial computational resource. Therefore, the
authors integrate Linformer with CCT and Performer with TT to limit the computational
overhead. The hybrid transformers-based feature extraction enables the proposed model to
identify and emphasize crucial regions relevant to AD detection.

The CCT architecture [27] integrates the characteristics of CNN and ViT models. The
convolution layers extract the local features, and the transformer processes these features to
capture the long-range dependencies. By incorporating convolutional layers, CCT preserves
inductive biases, including translation invariance and locality, making it ideal for image
classification. CCT entails significant computational overhead due to the self-attention
mechanism in the transformer layers. The transformer layer may not capture fine-grained
information compared to specialized CNNs. These limitations may cause challenges in
implementing CCT-based feature extraction in resource-constrained contexts. To overcome
the limitations and improve the efficiency of CCT, the authors employ the methodology of
Linformer transformer [28]. The proposed feature-extraction architecture is highlighted in
Figure 2. Linformer generates the key and value matrices into a lower-dimensional space
to simulate the self-attention process, lowering the computational cost from quadratic to
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linear in terms of input sequence length. Despite its simplicity, Linformer outperforms
typical transformer models. Integration with CCT preserves the model’s capacity to gather
local and global features. This substantially accelerates CCT attention computation without
compromising accuracy.
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Figure 2. The CCT-Linformer architecture for feature extraction.

To overcome the limitations and improve the CCT model efficiency, the authors employ
the methodology of the Linformer transformer. The architecture of the Linformer reduces
the quadratic complexity of the self-attention mechanism. Equation (1) highlights the
mathematical form of the CCT’s self-attention mechanism.

Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
(1)

The self-attention of the Linformer transformer is presented in Equation (2).

Lin f ormer_Attention(Q, K, V) = So f tmax

(
Q(PkK)T
√

dk

)
(PvV) (2)

Initially, the CCT’s convolution layer produces a set of patches. The patches are
used to extract features using CCT’s local attention mechanism. They optimize the global
feature extraction by integrating the Linformer self-attention mechanism into the CCT
transformer model. Equation (3) shows the convolutional feature extraction using local
attention mechanisms.

F = CCT_Local_attention(I) (3)

A reshape function is used to transform the features and forward them to the Linformer-
enhanced transformer block. The Linformer-enhanced transformer block handles the fea-
ture map in order to generate fine-grained AD features. Equation (4) shows the process of
the feature extraction using the sequential pooling and MLP head function.

X = Sequential_pooling(F) + MLP(F) (4)

The feature-extraction process involves the computation of Q = FWQ, K = FWK,
V = FWV . A two-layered position-wise-feed-forward network (FFN) is used to process
the outcome of the self-attention layer. Equation (5) indicates the mathematical expression
of FFN.

FFN(X) = ReLu(XW1 + b1)W2 + b2 (5)



Diagnostics 2024, 14, 2363 8 of 23

In addition, the authors use layer normalization and residual connections with quan-
tization to each layer to ensure stable gradients and model convergence. Equation (6)
presents the computation of features using FFN. Using Equation (6), the authors extract a
total of 2048 features.

FCCT = Layer_normalization(FFN(X)) (6)

I n order to extract a diverse set of features, the authors employ TT [29]. Figure 3
presents the extraction process using TT-Performer Transformers.
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The TT’s convolution layer generates patches using an MRI image. Multiple attention
mechanisms are applied to extract the key features. Local and global attention processes
are integrated into the TT architecture. The potential of TT can improve the efficiency of
medical image analysis. The locally enhanced transformer (LET) module captures fine-
grained data within smaller regions of the images. The global subsampling attention (GSA)
module optimizes global self-attention by subsampling tokens. It reduces processing costs
while capturing the global context by lowering the number of tokens in the global attention
method. The emphasis on local characteristics may lead to overfitting, especially in training
data with considerable variability or noise. Specialization in local patterns may prevent the
model from generalization. Integrating and enhancing the locally enhanced transformer
and global subsampled attention modules requires detailed knowledge of local and global
attention processes.

The authors integrate the fast attention via positive orthogonal random features
mechanism of the Performer transformer [30] into TT architecture to reduce computational
costs. The integration of TT and Performer allows the proposed feature extraction to
effectively process higher-resolution images. It assists TT in handling complex data in the
resource-constrained environment. The LET module of TT is presented in Equation (7).

Local_Attention(Qi, Ki, Vi) = So f tmax

(
Qi(Ki)

T
√

dk

)
Vi (7)
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The authors integrate the Performer attention mechanism into the GSA module to
compute global attention over the entire set of patches. Equation (8) highlights the Per-
former approximation.

Global_Attention(Qi, Ki, Vi) = δ(Qi)
(

δ(Ki)
TVi

)
(8)

The outcome of the LET and GSA modules are combined in order to generate the final
feature representation as shown in Equation (9).

CFi = Local_Attention(Qi, Ki, Vi) + Global_Attention(Qi, Ki, Vi) (9)

An FFN is used to handle the combined features to produce the TT-based features as
presented in Equation (10).

FFN(Fi) = ReLu(CFiW1 + b1)W2 + b2 (10)

Equation (11) shows the mathematical expression for generating the features using
layer normalization. The authors extract a total of 1024 features using Equation (11).

FTT = Layer_normalization(FFN(Fi)) (11)

2.4. Feature Fusion

To generate a robust and valuable feature set, feature fusion leverages the benefits of
multiple models or data representations. The proposed feature-fusion technique improves
AD diagnosis by utilizing CCT and TT features. The authors apply linear transformations
or embedding layers to project the CCT and TT features into a common-dimensional
space. They employ the attention-based fusion technique for feature fusion. The attention
mechanism enables the proposed feature-fusion model to weigh the significance of features
dynamically. Cross-attention is used to align and merge the features. Dot-product attention
is employed to calculate attention scores. During the process, the query vectors of CCT are
multiplied by key vectors of TT. To normalize the attention scores, a Softmax function is
used. It ensures that the attention weights sum up to 1, enabling the proposed model to
focus on the crucial AD features.

Let FCCT ∈ RN×d1 and FTT ∈ RM×d2 be the feature matrices of CCT and TT, respec-
tively. Figure 4 reveals the process of generating the final set of features. The authors
transform the features into embedding in order to capture contextual relationships.

Equation (12) outlines the computation of contextual embedding.{
ECCT = FCCT × WCCT ∈ RN×de

ETT = FTT × WTT ∈ RN×de

}
(12)

In order to determine the relationship between two feature sets, an interaction is used
as shown in Equation (13).

I = Interaction_ f unction(ECCT , ETT) (13)

The interaction matrix is used to fuse the contextual features as presented in Equation (14).{
Ff usedCCT = I × ECCT

Ff usedTT = I × ETT

}
(14)

A concatenation function is used to combine the feature sets to produce a final
set of features. A maximum of 512 features are extracted through the concatenation
process. To reduce the feature dimensions, the authors used the principal component
analysis (PCA) technique. Using PCA, the authors reduced the number of features to
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128. Equations (15) and (16) present the concatenation and PCA function used to derive
the features.

Fcombined = Concat
(

Ff usedCCT , Ff usedTT

)
(15)

Freduced = PCA(Fcombined) (16)
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2.5. Enhanced CatBoost-Based AD Classification

CatBoost is an advanced gradient-boosting technique for handling categorical data.
It expands the boosting process by repeatedly training decision trees. It can classify data
without explicit encoding and effectively manage overfitting using ordered boosting. The
model’s efficiency and categorical feature management make it ideal for AD classification.
In order to improve the performance of the CatBoost model, the authors apply quantization
and Bayesian optimization with Hyperband (BOHB) techniques. Quantization minimizes
the computational complexity and memory footprint of the proposed AD classification
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model. It reduces the precision of CatBoost model weights and activations from 32-bit
floating point values to 8-bit integers. The reduction may lead to faster inference times
and lower memory utilization, making the model better for resource-constrained contexts.
BOHB integrates the potential of Bayesian optimization and Hyperband optimization tech-
niques to fine-tune the DL model’s hyperparameters. It optimized the CatBoost classifier
hyperparameters, including learning rate, tree depth, and iterations. This optimization im-
proves the model’s performance to maximize AD classification accuracy and generalization.
The authors utilize SHAP values to improve CatBoost classifier interpretability. With SHAP
values, the model can determine the significance of the features associated with AD. It aids
clinical decision-making by allowing healthcare practitioners to trust and validate model
predictions. Equation (17) reveals the computational form of the enhanced CatBoost-based
AD classification.

ŷ = ∑M
t=1 αtht(Q(X; θ*)) + ∑n

i=1 ϕi(X) (17)

2.6. Performance Validation

The suggested AD classification model is evaluated using a range of metrics, each
providing unique insights. Accuracy is used to evaluate the model’s categorization ability. It
shows the ratio of real positive and negative predictions to samples. An accurate assessment
of the model’s performance is beneficial. However, it may not be reliable for datasets with
unequal distributions of classes. To overcome this constraint, accuracy and recall are
employed. Precision measures the model’s ability to properly identify positive cases
among all positive instances, emphasizing on positive prediction accuracy. In contrast,
recall assesses the model’s sensitivity to positive cases by identifying all relevant positive
occurrences in the dataset. The F1-score is employed to balance accuracy and recall by
finding their harmonic mean. This metric assists in maximizing precision–recall trade-offs
and provides an extensive overview of model performance.

In medical diagnostics, classification models’ specificity, sensitivity, AUROC (Area
Under the Receiver Operating Characteristic curve), and AUPRC (Area Under the Precision–
Recall Curve) are significant evaluation metrics. Specificity evaluates the model’s ability
to identify true negatives. Sensitivity indicates the potential of the proposed AD classifier
to detect true positives. The model’s overall ability to differentiate positive and negative
classes is measured by AUROC. AUPRC emphasizes accuracy (positive predictive value)
and recall, especially in unbalanced class distributions. The use of the Matthews Correlation
Coefficient (MCC) is used to strengthen the assessment. The MCC regulates unbalanced
datasets by considering true and false positives and negatives. The MCC outcome ranges
from −1 (complete disagreement) to +1 (perfect agreement), with 0 signifying random
predictions. To account for chance agreement, Kappa was used to assess the agreement
between model predictions. Kappa values enrich classification accuracy by revealing the
model’s performance beyond chance.

To evaluate the model’s computational efficiency and resource demands, FLOPS and
parameters are analyzed. These metrics are essential for assessing the model’s suitability
for real-world deployments with limited computing resources and processing time. Finally,
the performance measures’ standard deviation and confidence interval were generated to
examine model variability and dependability. In order to assess the statistical significance
and robustness of the results, the confidence interval and standard deviation are used.

3. Results

The proposed AD classification model was constructed on a system equipped with
Windows 10, an Intel i7+ processor, 16 GB of RAM, and an NVIDIA Geforce RTX 4090
GPU. TensorFlow 2.17.0., Theano 1.0.5., Keras 3.6.0., and PyTorch 2.4. libraries were used
to build the model. The Alzheimer’s dataset was divided into three subsets: training
(70%), validation (15%), and testing (15%). In addition, the authors used the OASIS
dataset (20%) in order to evaluate the generalization ability of the proposed model. Table 3
reveals the key parameters of the proposed model, including CCT-Linformer-based feature
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extraction, TT-Performer-based feature extraction, and the enhanced CatBoost model.
Each set of parameters plays a significant role in fine-tuning the proposed model. For
instance, the dropout rate of 0.1 mitigates the CCT-based feature extraction by randomly
deactivating neurons during the training phase. The CatBoost-based AD classification
utilizes a learning rate of 0.03 and depth of 8, allowing robust classification with reduced
computational overhead.

Table 3. Computational configurations.

Model Parameter Value

CCT-based feature extraction

Image size 224 × 224

Learning rate 0.0001

Optimizer Adam with weight decay

Weight decay 0.01

Number of layers 12 transformer layers

Embedding dimension 768

Linformer compression rate 4×
Dropout rate 0.1

Number of attention heads 12

TT-based feature extraction

Image size 224 × 224

Learning rate 0.0005

Optimizer Adam with weight decay

Weight decay 0.01

Number of layers 24 transformer layers

Embedding dimension 1024

Performer kernel function Favor+ (fast attention via positive orthogonal random features)

Dropout rate 0.2

Number of attention heads 16

Performer regularization Low-rank approximation

Enhanced CatBoost model

Learning rate 0.03

Depth 8

Iterations 1000

L2 leaf regularization 3

Bagging temperature 1.0

Loss function Logloss

Optimization BOHB

Figure 5 shows the AD classification model’s performance improving over training
epochs. It represents a noticeable improvement with increasing epochs. A consistent pattern
of improved accuracy, precision, recall, and F1-score in training and validation phases is
observed as the number of epochs increases from 5 to 34. The model achieves a significant
point with a validation accuracy of over 95% and sustained progress in additional indicators
by 20 epochs. The model’s recall and F1-score are stable at 94%, indicating effective learning
without overfitting. The model reaches its optimum performance at the 42nd epoch, with
training and validation accuracies of 99.2% and 98.2%, respectively. There is no sign of
further considerable progress after the 42nd epoch, indicating that the model has reached
saturation. The minimal variation between training and validation outcomes indicates
effective generalization with low overfitting. These findings suggest that the model gained
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knowledge from the training data and generalized substantially to the validation data,
making it a promising AD classification model. The hybrid ViTs and quantized CatBoost
classifier handled MRI images effectively, maintaining high recall and F1-score.
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Figure 6 shows the computational loss during the training and validation phases
across different epochs. It reveals the robustness of the proposed model, reflecting its effec-
tive learning ability while maintaining strong generalization performance. The trade-off
between training and validation loss provides the importance of the model in addressing
the overfitting challenge. As the number of epochs increases, there is a progressive reduc-
tion in the training and validation loss. The consistent reduction in loss during training
demonstrates that the model is improving in regard to training data. The low loss at the
42nd epoch indicates a high classification accuracy. The insights gained are shown in
Figure 6, representing capability of classifying MRI images.

Table 4 exhibits an in-depth overview of the performance evaluation (testing phase)
of the proposed model on the Alzheimer’s dataset. The model demonstrates excellent
performance across all performance metrics. Based on its performance analysis, the pro-
posed AD classification model is highly accurate and consistent across four classes. The
model accurately classifies Normal, Very Mild Demented, Mild Demented, and Moderate
Demented with an average accuracy of 99.2%. The average precision and recall of 98.9%
and 99.1% demonstrate the potential of the proposed model in identifying actual instances
and minimizing incorrect classifications. A robust F1-score of 99% provides additional
evidence of the model’s comprehensive performance. The high MCC and Kappa values
indicate the potential of the proposed model for real-world applicability.
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Table 4. Findings of performance analysis—Alzheimer’s dataset.

Classes Accuracy Precision Recall F1-Score MCC Kappa

Normal 99.5 98.7 98.8 98.7 97.8 96.1

Very mild demented 99.3 99.2 98.9 99.0 96.9 96.8

Mild demented 99.1 98.8 99.3 99.0 96.8 96.5

Moderate demented 98.9 99.0 99.5 99.2 97.9 97.1

Average 99.2 98.9 99.1 99.0 97.4 96.6

The sample classified results using the OASIS dataset are presented in Figure 7. It
provides valuable insights into the proposed model outcomes. The SHAP values of the four
features indicate the influence of hippocampal volume (Feature 1), cortical thickness (Fea-
ture 2), gray matter volume (Feature 3), and fractional anisotropy (Feature 4) in generating
the outcomes. For instance, a low hippocampal volume or significant degradation in white
matter integrity produced higher SHAP values for mild and moderate demented classes.

In Figure 7a, Feature 1 (0.02) and Feature 3 (0.03) contributed favorably, whereas
Feature 2 (−0.01) and Feature 4 (−0.02) contributed negatively. The MRI scan shows no
sign of degeneration, confirming the “Normal” prediction. Overall, Figure 7 represents the
significance of the proposed model in understanding the progression of AD. Clinically, the
model’s interpretability assists healthcare practitioners in comprehending the reasoning
behind the AD classification.

Figure 8 highlights the confusion matrix for AD classification using the OASIS dataset.
The results underscore the proposed model’s generalization accuracy. It indicates the
potential of the proposed model in handling diverse data and varying conditions, which
is essential for clinical settings. The confusion matrix shows the excellent performance of
the proposed AD classification across all classes in the OASIS dataset. The recommended
feature fusion supported the proposed model in identifying the crucial patterns associated
with the individual classes.
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Figure 9 reveals the findings of the performance evaluation of different ViTs. The
existing transformer-based models are lower in precision than the proposed model, which
has 98.8% accuracy. The proposed model offered a precision of 97.9% and a recall of
98.1%, suggesting its potential to accurately identify positive and negative instances while
balancing recall and accuracy. By outperforming the existing models on key criteria,
the suggested approach can handle complex AD classification. The enhanced transformer
architecture captures complex MRI features successfully and the fine-tuned CatBoost model
improves classification accuracy, resulting in excellent performance.
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Figure 10 illustrates the AD classification models’ AUROC and AUPRC performances.
The suggested model achieved remarkable AUROC and AUPRC scores of 0.98 and 0.96,
respectively. The recommended feature fusion and enhanced CatBoost models identified
the crucial AD patterns with high accuracy. Compared to the existing models, the proposed
model successfully differentiates AD classes and maintains accuracy and recall.
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Table 5 provides AD classification model computational demands and uncertainty
analysis. In comparison to LeViT + CatBoost (21.3 million parameters) and Linformer + Cat-
Boost (18.4 million parameters), the suggested AD classification model required 9.3 million
parameters and 1.54 Giga FLOPS. The computational efficiency of the proposed model is
greatly enhanced by its lightweight construction, achieving a remarkably low computa-
tional loss of 0.12. The suggested AD classification model operates efficiently with fewer
parameters, reduced FLOPS, and minimum computational loss while producing an excep-
tional outcome. It is promising for medical image analysis in low-computational conditions.
The lightweight proposed model can be implemented in small healthcare centers to identify
AD in the earlier stages.

Table 5. Computational requirements and uncertainty analysis.

Model
Number of
Parameters
(Millions)

Number of FLOPS
(Giga FLOPS) SD CI Computational Loss

Proposed AD classification model
(Alzheimer’s dataset) 10.2 1.43 0.0003 [95.9–97.2] 0.16

Proposed AD classification model
(OASIS dataset) 9.3 1.54 0.0003 [95.3–96.7] 0.12

CCT + CatBoost 15.6 2.9 0.0004 [95.4–97.5] 0.28

TT + CatBoost 17.8 2.5 0.0003 [96.1–96.9] 0.34

Linformer + CatBoost 18.4 3.1 0.0004 [95.3–96.7] 0.31

Performer + CatBoost 16.5 2.7 0.0004 [95.8–96.3] 0.29

LeViT + CatBoost 21.3 2.6 0.0004 [95.4–97.5] 0.41

Comparative Analysis

Table 6 outlines the findings of the comparative analysis. It demonstrates the superior
performance of the proposed AD classification model. The proposed model achieved an
exceptional accuracy of 99.2% on Alzheimer’s and 98.8% on OASIS datasets, respectively.
It significantly outperformed the recent state-of-the-art models, including Singh et al.
(2024) [30] with 96.8%, Prasath and Sumathi (2024) [31] with 97.5%, Tang et al. (2024) [32]
with 98.1%, Pramanik et al. (2024) [33] with 97.3%, and Khatri et al. (2024) [34] with 91.3%.
Compared to the existing models, the proposed model obtained remarkable precision,
recall, F1-score, specificity, and sensitivity. For instance, the model obtained a recall
of 99.1% for the Alzheimer’s dataset, indicating the potential of the proposed model in
identifying true positive cases. Similarly, the highest specificity of 98.6% for the Alzheimer’s
dataset guarantees the identification of correctly identified false positives, offering greater
diagnostics reliability in real-time settings. Yu et al. (2024) [35] and Tang et al. (2024) [32]
obtained a better accuracy and precision. However, the proposed model outperformed them
by achieving an accuracy of 99.2% and a precision of 98.9% on the Alzheimer’s dataset.
This reflects the significance of the recommended feature-extraction and classification
approaches in effectively handling complex MRI, resulting in optimal classification of
AD stages.

Furthermore, the significant improvement in the model’s performance can be credited
to the feature-fusion technique, enabling it to identify local and global dependencies from
the MRI images. The model interpretation and robustness were enhanced through quantiza-
tion and SHAP values. These advancements enabled the model to be well suited for clinical
settings with low computational resources. In addition, the findings highlight the model’s
potential for further advancements in AD diagnosis using ViTs-based feature extraction.
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Table 6. Findings of comparative analysis.

Model Accuracy Precision Recall F1-Score Specificity Sensitivity

Proposed AD classification model
(Alzheimer’s dataset) 99.2 98.9 99.1 99.0 98.6 98.9

Proposed AD classification model
(OASIS datatset) 98.8 97.9 98.1 98.0 97.5 98.1

Gharaibeh et al. (2023) [36] 96.7 95.4 95.3 95.3 88.0 86.0

El-Latif et al. (2023) [37] 95.9 90.7 90.8 90.7 91.5 92.3

Liu et al. (2022) [38] 86.1 84.1 85.2 84.6 84.1 85.0

Hu et al. (2023) [39] 95.3 90.0 94.4 92.1 87.4 86.8

Sait (2024) [40] 96.2 94.1 93.7 93.9 90.1 91.4

Yu et al. (2024) [35] 97.4 95.4 95.7 95.5 94.2 95.3

Aghdam et al. (2024) [41] 97.3 96.1 96.3 96.2 90.1 89.4

El-Assy et al. (2024) [42] 97.1 95.5 95.4 95.4 91.1 91.1

Singh et al. (2024) [43] 96.8 96.3 95.8 96.0 90.8 90.5

Prasath and Sumathi (2024) [31] 97.5 95.3 94.9 95.1 92.4 91.5

Tang et al. (2024) [32] 98.1 98.3 98.2 98.2 96.7 96.7

Pramanik et al. (2024) [33] 97.3 97.4 97.3 97.3 95.1 94.8

Khatri et al. (2024) [34] 91.3 90.5 90.7 90.6 91.6 91.0

4. Discussion

The proposed model employed transformer-based attention mechanisms and convo-
lutional layers to extract the key patterns of AD. CCT and TT enabled the model to capture
local and global relationships in MRI images, yielding comprehensive and useful feature
representations. Additionally, Linformer and Performer techniques reduced computing
complexity and improved large-scale MRI data processing, improving transformer effi-
ciency. BOHB optimized the model’s performance for resource-constrained contexts. The
improved CatBoost model assisted the model in achieving high precision. Integrating
SHAP values improved interpretability and provided insight into the model’s decision.
Tables 4–6 highlight that the suggested model’s accuracy, precision, and recall were higher
than the typical CNN models, making it a superior tool for early AD identification.

Gharaibeh et al. (2023) [36] employed a SWIN transformer-based segmentation al-
gorithm for AD classification. They used VGG-16 3 × 3 convolution filters for capturing
features, causing challenges in multi-class classification. This computationally intensive
model may face challenges in the resource-constrained environment. In addition, the lack
of model interpretability minimizes the application of the Gharaibeh et al. model.

El-Latif et al. (2023) [37] built a customized CNN model to classify the MRI images.
They obtained a multi-class classification accuracy of 95.9%. However, the proposed AD
classification model outperformed the El-Latif et al. model by achieving an accuracy of
99.2% and 98.8% on Alzheimer’s and OASIS datasets, respectively.

Liu et al. (2022) [38] employed 3D CNN with instant normalization to improve the
AD classification accuracy. They achieved a significant improvement in the context of AD
classification using MRI images. Due to the high memory usage, this model required high-
end computational devices to learn the AD patterns during the training phase. In contrast,
the proposed AD classification demands lower computational costs for AD classification.

Hu et al. (2023) [39] integrated VGG and SWIN transformer models to identify the AD
patterns. The shortcomings of VGG-16 reduced the performance of the feature extraction,
leading to lower accuracy compared to the proposed model. Sait (2024) [40] applied
EfficientNet–LeViT models for classifying the AD stages. However, the lack of model
interpretation minimized the usage of this model. Similarly, Yu et al. (2024) [35] and
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Aghdam et al. (2024) [41] applied ViTs for AD classification. Nonetheless, these models
may not perform better in clinical settings due to the substantial memory requirements.

El-Assy et al. (2024) [42] used two CNN models for extracting AD features. They
concatenated the AD features without a dedicated feature-fusion technique. The increase
in the number of features may influence the model in real-time settings. In contrast, the
proposed model applied conceptualized embedding-based feature fusion to balance the
trade-off between a limited number of features and exceptional classification accuracy.

Singh et al. (2024) [43] employed multiple pre-trained CNN models for classifying the
MRI images associated with AD. They achieved an average generalization accuracy of 96.8%
with F1-score of 96.0%. However, CNN models require huge computational resources,
causing difficulties in model implementation. Prasath and Sumathi (2024) [31] developed
an AD classification model using the LeNet architecture. The shallow architecture reduces
the capability of this model to capture complex AD patterns. The lack of an advanced
activation function limits the LeNet classification of performance.

Tang et al. (2024) [32] employed 3D CNNs for extracting AD features. The model
required a significant number of parameters, reducing its capability with larger datasets.
The larger memory footprint may negatively impact convergence and overall classification
accuracy. Pramanik et al. (2024) [33] used fuzzy granule-based interpretable ViT for AD
classification. An additional layer containing fuzzy granules and transformers demands
substantial computational costs. This combination may limit deployment in clinical settings.
The fuzzy granule process may overfit the model to the training data, affecting the model’s
generalization to novel data. Khatri et al. (2024) [34] integrated CNNs and ViT for classify-
ing the MRI images. The combination of CNNs and ViTs may lead to slow convergence or
suboptimal performance. As a result, the model may demand high computational devices.

A number of design and methodological improvements enabled the suggested AD
classification algorithm to outperform the existing AD classification approaches [30,35–43].
High computational and memory demands rendered the existing models inefficient for pro-
cessing high-resolution MRI images. Thus, the existing AD classification models frequently
downsample MRI images, losing fine-grained information needed for AD diagnosis. This
resolution-computational feasibility trade-off typically delivers inferior performance. The
proposed AD classification model significantly improves the process of detecting AD using
MRI images in the early stages.

Advanced DL and transformers assisted the proposed model in classifying AD early
and accurately, providing a valuable tool to enhance patient care. The study’s findings
have significant implications. Early identification of AD is essential for initiating therapy to
prevent progression and improve patient outcomes. With a trustworthy automated MRI
data processing method, this model may assist radiologists and physicians in diagnosing
AD. Quantization enabled the proposed AD classification model to operate in resource-
constrained environments, including mobile devices, edge computing platforms, and
embedded systems. Quantization lowered energy usage, which is beneficial for battery-
powered or energy-sensitive models. The reduced power consumption can allow the use
of devices, including smartphones or wearable devices, supporting healthcare centers to
render continuous health-monitoring services. Using fewer resources, the model allows
healthcare centers to utilize modern diagnostic techniques without expensive equipment.
Access to cutting-edge technology enables healthcare institutions to provide early detection
services to a wider number of patients.

In energy-constrained settings, this energy efficiency renders the proposed model
practicable for long-term deployment. This increased applicability is essential for reaching
a wider audience, particularly in distant or underserved locations without significant
computer infrastructure. The model’s deployment with low-cost devices may improve
AD diagnosis and surveillance, improving health outcomes. Healthcare institutions may
use the model to monitor patient changes over time to personalize treatment programs.
This individualized strategy may improve symptom management and decrease disease
progression. The model’s precise imaging and categorization can assist researchers in
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identifying AD stages, leading to recruiting volunteers for specialized studies. These
advances in Alzheimer’s research may lead to novel therapies. The model’s reliable
monitoring and diagnosis can support caretakers to comprehend disease progression.
Healthcare facilities may effectively coordinate treatment and support for patients and
their families.

Limitations and Future Directions

The authors encountered multiple challenges during model development. CCT and TT
are computationally intensive and require fine-tuning for optimal performance. To extract
insightful data from MRI scans with minimal computational resources, model complexity
and computational efficiency should be balanced. An additional set of difficulties emerged
while using Linformer and Performer techniques. Integrating these transformers to mini-
mize transformer computational burden required substantial investigation to determine the
optimal configurations. There were several data-related challenges during the data augmen-
tation process. MRI datasets are typically massive, requiring considerable amounts of space
and computing power. The integration of ViTs demands careful validation to overcome
potential overfitting challenges. Deploying the proposed model on edge devices requires
additional fine-tuning in order to deliver better performance on unseen data. Ensuring
patient data confidentiality may add complexity to the implementation process. Improve-
ments in real-world integration demand further optimization. MRI scans are essential for
detecting neurological diseases; however, they are not indicative of AD progression. This
may restrict the performance of the proposed AD classification. OASIS has a large dataset
for investigating generalizability. However, it may not completely reflect demographic
diversity, scanning equipment, or image quality in real-world clinical settings. This limits
the model’s potential in varied healthcare settings without further validation. Quantization
reduced the model’s size and processing requirements. However, healthcare centers may
face challenges in implementing the model on cloud computing platforms. Model accuracy
and efficiency should be carefully balanced, and additional optimization may be required
to guarantee model performance in these scenarios. Long-term sustainability requires the
model to be readily updated with novel information or adapted to different hardware
settings. The challenges may emerge during the process of scaling to larger datasets or
healthcare contexts while preserving the model’s outstanding efficiency. Additionally, data
quality and consistency are crucial for successful implementation. Diverse image quality,
scanning procedures, and data noise demand substantial preprocessing strategies for the
proposed model to yield a practical outcome in real-time settings.

The suggested AD classification shows potential in early diagnosis and resource-
constrained implementation. However, numerous areas need improvement. Improving the
model’s resilience, expanding its application, and resolving limitations observed during the
present implementation are the future targets for this research endeavor. While the present
model depends on MRI images for AD identification, integrating genetic data, cognitive
test scores, and other neuroimaging methods, including PET or computed tomography
scans, may boost diagnostic accuracy. Integrating multimodal data may assist in improving
the proposed model’s efficiency. To efficiently integrate these varied data sources, future
research may develop better data fusion tools. Future research should include patient and
physician insights into model development and alteration to fulfill clinician and patient
requirements. User-centered design may render patient and healthcare provider services
more intuitive and accessible. Based on real-world use cases and feedback, the model
and interface may be validated and refined. Large-scale clinical studies across diverse
populations and healthcare settings are needed to ensure the model’s generalizability
and therapeutic usefulness. These trials would assist in discovering inconsistencies and
restrictions in the model’s real-world performance. These studies may help improve the
model and promote clinical application. Lightweight AD classification models for mobile
platforms or personal healthcare devices may be explored in the future. These models
may provide real-time AD assessments to clinicians remotely for at-risk patients at home.
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To make model predictions more transparent, explainable AI technologies are required.
To improve clinician trust in clinical settings, future research should include detailed
visualizations of the model’s decision-making process.

5. Conclusions

The study achieved a notable advancement in AD classification using innovative
feature-fusion and classification techniques. The integration of Linformer and Performer
transformers enabled the model to identify the intricate AD patterns from complex MRI
images. The optimized CatBoost model with quantization and SHAP values supported
the proposed AD classification to achieve a remarkable generalization accuracy of 98.8%
and an F1-score of 98.0 with a minimal loss of 0.12 with the OASIS dataset. The model’s
precision and efficiency allow MRI scans to diagnose AD in the nascent stages. Early identi-
fication and treatment may reduce disease development and improve patient outcomes.
Early detection of AD enables healthcare institutions to initiate therapy earlier, improving
patient quality of life and lowering long-term care expenses. Linformer, Performer, and
quantization approaches make the model computationally efficient, allowing MRI data
processing with fewer resources. Healthcare centers can maximize resources using less
processing power without affecting diagnostic accuracy. The authors encountered multiple
challenges during the model development. Balancing the computational requirement of
CCT and TT models was one of the primary challenges. Extracting valuable insights from
MRI images without exhausting computational resources required a trade-off between
model complexity and computational efficiency. The integration of the Linformer and
Performer approaches presented additional challenges. Optimization of these strategies
to minimize transformer computational load required extensive research to find the op-
timal combinations. Improving the model’s robustness and its applicability should be
the primary goal of future studies. Integrating genetic data, cognitive test scores, and
neuroimaging technologies including PET or CT scans may enhance diagnosis. Designing
improved data fusion technologies for successfully integrating these diverse features is
essential for building an AD classification model. Large-scale clinical investigations across
demographics and healthcare settings are required to validate the model’s generalizability
and treatment efficacy. These studies can discover real-world performance discrepancies
and constraints, improving and clinically adopting the model.
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