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Abstract: Viruses are intracellular parasites that utilize organelles, signaling pathways, and the
bioenergetics machinery of the cell to replicate the genome and synthesize proteins to build up new
viral particles. Mitochondria are key to supporting the virus life cycle by sustaining energy production,
metabolism, and synthesis of macromolecules. Mitochondria also contribute to the antiviral innate
immune response. Here, we describe the different mechanisms involved in virus–mitochondria
interactions. We analyze the effects of viral infections on the metabolism of glucose in the Warburg
phenotype, glutamine, and fatty acids. We also describe how viruses directly regulate mitochondrial
function through modulation of the activity of the electron transport chain, the generation of reactive
oxygen species, the balance between fission and fusion, and the regulation of voltage-dependent
anion channels. In addition, we discuss the evasion strategies used to avoid mitochondrial-associated
mechanisms that inhibit viral replication. Overall, this review aims to provide a comprehensive view
of how viruses modulate mitochondrial function to maintain their replicative capabilities.

Keywords: electron transport chain; glucose; glutamine; fatty acids; innate immunity; metabolic
reprogramming; mitochondria; reactive oxygen species; VDACs; virus; Warburg

1. Introduction

As obligatory intracellular parasites, viruses use cellular pathways and organelles
to meet their requirements for protein synthesis and replication. The life cycle of a virus
is highly dependent on the contribution of mitochondria to the bioenergetics, metabolic,
and biosynthetic capabilities of cells. Mitochondria also induce antiviral innate immune
mechanisms, like the activation of the mitochondrial antiviral-signaling protein (MAVS) [1]
and the type I interferon (IFN) response via the release of mitochondrial DNA (mtDNA) [2].
Furthermore, mitochondria participate in antiviral-signaling pathways, including the
activation of toll-like receptors (TLRs) [3] and the NLRP3 inflammasome [4].

Mitochondrial function and metabolism are supported by fully oxidizable substrates.
The tricarboxylic acid (TCA) cycle (also known as Krebs cycle) in the mitochondrial matrix
is fueled by the metabolic intermediate acetyl-coenzyme A, which is generated by the
oxidation of glucose-derived pyruvate, β-oxidation of fatty acids (FAs), and the amino
acids leucine, isoleucine, glycine, serine, and tryptophan. A major byproduct of the TCA
cycle is NADH, which is a major donor of the electrons (e−) that flow through the complexes
of the electron transport chain (ETC) to reduce the final acceptor molecular O2 to H2O.
Oxygen consumption is the parameter used to measure cellular respiration. The flow of
e− through the ETC also produces two parallel phenomena: a proton (H+) translocation
across the inner mitochondrial membrane and an e− leak. Translocated H+ at complexes I,
III, and IV accumulate in the mitochondrial intermembrane space, generating a negative
transmembrane potential (mitochondrial membrane potential, ∆Ψm) and a positive ∆pH,
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both components of the proton motive force (∆p). ∆p is the force that drives ATP synthesis
from ADP and inorganic phosphate (Pi) by Complex V (F1FO-ATP synthase). In non-
cancerous and non-proliferating cells, mitochondria produce ~95–98% of total cellular ATP
through oxidative phosphorylation (OxPhos). Thus, mitochondrial function is sustained by
coupling substrate oxidation with ATP synthesis [5]. Beyond bioenergetics, an e− leak at
complexes I, II, and IV of the respiratory chain generates reactive oxygen species (ROS).
Quantitatively, mitochondria are the major source of ROS. ROS generation in mitochondria
is highly dynamic and modulated by changes in mitochondrial metabolism. Total cellular
ROS depends on the balance between production and detoxification by enzymatic and
non-enzymatic antioxidants, both in mitochondria and cytosol, that prevent excessive ROS
accumulation [6]. Superoxide anion (O2•−), hydroxyl (OH•), peroxyl (ROO•) and alkoxy
(RO•) radicals, and hydrogen peroxide (H2O2) originate from molecular O2 [7]. Superoxide
dismutases are a family of scavenging enzymes that convert O2•− to H2O2, which is
then further reduced to H2O by catalase, glutathione peroxidases, and peroxiredoxins [3].
Only O2•− and H2O2 act as signaling molecules that contribute to maintaining cellular
homeostasis and proliferation [8]. The highly toxic HO• and peroxynitrite (ONOO−), for
which there are not specific detoxifying systems, do not regulate biochemical pathways.
Mitochondrial ROS are either released to the cytosol, mainly H2O2, as signaling molecules
or converted to non-reactive species by antioxidant systems. If the antioxidant capability of
the cells is exceeded, accumulated ROS cause oxidative stress [9] (Figure 1).

Cells 2024, 13, x FOR PEER REVIEW 2 of 25 
 

 

III, and IV accumulate in the mitochondrial intermembrane space, generating a negative 
transmembrane potential (mitochondrial membrane potential, ΔΨm) and a positive ΔpH, 
both components of the proton motive force (Δp). Δp is the force that drives ATP synthesis 
from ADP and inorganic phosphate (Pi) by Complex V (F1FO-ATP synthase). In non-can-
cerous and non-proliferating cells, mitochondria produce ~95–98% of total cellular ATP 
through oxidative phosphorylation (OxPhos). Thus, mitochondrial function is sustained 
by coupling substrate oxidation with ATP synthesis [5]. Beyond bioenergetics, an e- leak 
at complexes I, II, and IV of the respiratory chain generates reactive oxygen species (ROS). 
Quantitatively, mitochondria are the major source of ROS. ROS generation in mitochon-
dria is highly dynamic and modulated by changes in mitochondrial metabolism. Total 
cellular ROS depends on the balance between production and detoxification by enzymatic 
and non-enzymatic antioxidants, both in mitochondria and cytosol, that prevent excessive 
ROS accumulation [6]. Superoxide anion (O2•−), hydroxyl (OH•), peroxyl (ROO•) and 
alkoxy (RO•) radicals, and hydrogen peroxide (H2O2) originate from molecular O2 [7]. 
Superoxide dismutases are a family of scavenging enzymes that convert O2•− to H2O2, 
which is then further reduced to H2O by catalase, glutathione peroxidases, and peroxire-
doxins [3]. Only O2•− and H2O2 act as signaling molecules that contribute to maintaining 
cellular homeostasis and proliferation [8]. The highly toxic HO• and peroxynitrite 
(ONOO−), for which there are not specific detoxifying systems, do not regulate biochemi-
cal pathways. Mitochondrial ROS are either released to the cytosol, mainly H2O2, as sig-
naling molecules or converted to non-reactive species by antioxidant systems. If the anti-
oxidant capability of the cells is exceeded, accumulated ROS cause oxidative stress [9] 
(Figure 1). 

 
Figure 1. Schematics of mitochondrial metabolism. Oxidizable substrates, ADP and Pi, cross the 
outer mitochondrial membrane through VDACs. Acetyl-coenzyme A, generated from respiratory 
substrates, enters the TCA cycle, generating NADH and FADH2, which fuel the electron transport 
chain to support oxidative phosphorylation. The TCA cycle also produces metabolic intermediaries 
released to the cytosol for the synthesis of proteins and lipids. H+ pumping by the respiratory chain 
across the inner mitochondrial membrane generates a ΔΨ and a proton motive force used by the 
F1F0-ATP synthase (complex V) to synthesize ATP. Mitochondrial ATP is exported from the matrix 
by the ANT and released to the cytosol through VDACs. The flow of electrons through complexes 
I, II, and III also generates ROS. AcCoA: Acetyl CoA; ANT: adenine nucleotide transporter; α-KG: 
alpha-ketoglutarate; IMM: inner mitochondrial membrane; OMM: outer mitochondrial membrane; 
Pi: inorganic phosphate; ROS: reactive oxygen species; VDACs: voltage-dependent anion channels; 
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Figure 1. Schematics of mitochondrial metabolism. Oxidizable substrates, ADP and Pi, cross the
outer mitochondrial membrane through VDACs. Acetyl-coenzyme A, generated from respiratory
substrates, enters the TCA cycle, generating NADH and FADH2, which fuel the electron transport
chain to support oxidative phosphorylation. The TCA cycle also produces metabolic intermediaries
released to the cytosol for the synthesis of proteins and lipids. H+ pumping by the respiratory chain
across the inner mitochondrial membrane generates a ∆Ψ and a proton motive force used by the
F1F0-ATP synthase (complex V) to synthesize ATP. Mitochondrial ATP is exported from the matrix
by the ANT and released to the cytosol through VDACs. The flow of electrons through complexes
I, II, and III also generates ROS. AcCoA: Acetyl CoA; ANT: adenine nucleotide transporter; α-KG:
alpha-ketoglutarate; IMM: inner mitochondrial membrane; OMM: outer mitochondrial membrane;
Pi: inorganic phosphate; ROS: reactive oxygen species; VDACs: voltage-dependent anion channels;
∆Ψ: mitochondrial membrane potential.



Cells 2024, 13, 1789 3 of 25

Mitochondria are also metabolic hubs that generate metabolites through the catabolism
of pyruvate, glutamine, and other respiratory substrates in the TCA cycle. When glucose
levels are sufficient for energy generation, α-ketoglutarate and oxalo-acetate, which are
glutamine derivatives, are utilized for the synthesis of nonessential amino acids. Citrate,
exported to the cytosol, is converted into acetyl-coenzyme A and utilized for the synthesis
of FA, cholesterol, and amino acids. Furthermore, glutamine provides nitrogen for the syn-
thesis of purine and pyrimidine and is a precursor for the synthesis of glutathione [6,10–14].
Recently, the transfer of one-carbon units from serine and glycine by a process known as
one-carbon metabolism has been shown to be involved in the de novo synthesis of purines
and thymidylate synthase in highly proliferative tumors [15].

Mitochondria continuously adapt to metabolic demands by changing the number
and morphology through mitochondrial fission, fusion, biogenesis, and mitophagy. Re-
cently, defective mitophagy has been linked to the risk of autoimmune disease due to the
accumulation of mtDNA [2].

Because of the multiple roles in bioenergetics and metabolism, mitochondria are
essential to maintain cellular homeostasis and a necessary target to favor viral replication.
This review summarizes the mechanisms involved in the interactions between viruses and
mitochondria. We also describe how viruses benefit from using mitochondrial metabolism
and avoid the mechanisms associated with mitochondria that inhibit viral replication. A
better understanding of these mechanisms may help to develop novel strategies to control
viral infections.

2. Mitochondrial Reactive Oxygen Species during Viral Infections
2.1. Oxidative Stress and Beneficial Effects of Reactive Oxygen Species

ROS generated during viral infections can either favor viral replication and the progres-
sion of disease or be deleterious to the infected cell. The outcome depends on the amount
of ROS accumulated. Oxidative stress occurs when the production exceeds the cellular
antioxidant capacity and the ability to eliminate the reactive intermediates, resulting in
damage to DNA, proteins, and lipids [7].

ROS-induced damage to macromolecules has been recognized as a key factor in the
pathogenesis of diseases like viral encephalitis, which causes neuronal damage in the cen-
tral nervous system (CNS) [16]. In the CNS, ROS are mainly produced by microglial cells
in response to inflammation or tissue injury [17]. Viruses have evolved strategies to avoid
antiviral responses or premature apoptosis caused by excessive accumulation of ROS [18].
Dengue virus (DENV) serotype 4, Japanese encephalitis virus (JEV), rabies virus, and human im-
munodeficiency virus (HIV) cause oxidative stress in the CNS. The detrimental effects of ROS
on neurons after DENV-4 have been demonstrated by Suwanprinya et al. [19]. Although
the exact mechanism of ROS production induced by DENV-4 has not been identified, virus
attachment to a series of receptors like glycosphingolipids or a component of the viral
particle might cause this phenomenon at the early phase of infection. Excessive ROS pro-
duction, which is more evident after DENV infection progresses, is attributed to a decreased
antioxidant response mediated by nuclear factor erythroid 2-related factor 2 (Nrf2) that is
targeted by a DENV NS2B3 protease complex. The absence of this antioxidant regulation
triggers an increase in ROS levels that favors virus replication, along with upregulation in
the expression of inflammatory and apoptotic genes [20]. Consistent with this, an imbalance
between ROS and the antioxidant systems has been linked to the development of severe
disease [21], mainly mediated by the release of pro-inflammatory cytokines [22], leading to
the vascular dysfunction characteristic of severe DENV infection [23]. Furthermore, DENV
decreases intracellular GSH levels, which also promotes DENV replication [24]. After JEV
infection of neurons, there is a significant upregulation of pyruvate dehydrogenase kinase
1 (PDK-1), stimulating the generation of free radicals. It has been suggested that PDK-1
phosphorylation and the inhibition of the pyruvate dehydrogenase (PDH) complex leads
to the accumulation of ROS [25], which contributes to neuronal apoptosis [26]. Oxidative
stress during rabies virus infection of dorsal root ganglia cultures contributes to neuronal de-



Cells 2024, 13, 1789 4 of 25

generation. The interaction of the rabies virus P protein with complexes I and IV of the ETC
resulted in increased respiration and ROS production [27,28]. Mitochondrial dysfunction
was also associated with a high ∆Ψm, high NADH/NAD+ ratio, and low levels of ATP [27].
Human immunodeficiency virus (HIV) invades the nervous system through the trafficking
of infected immune cells. Infected CNS resident cells, mainly astrocytes, avoid apoptotic
death triggered by virus-induced mitochondrial fragmentation. Clearance of injured mito-
chondria by mitophagy results in astrocytes’ survival. Consequently, infected surviving
astrocytes become a long-term virus reservoir in the brain that can also induce bystander
cell death caused by mitochondrial dysfunction induced by high levels of mitochondrial
ROS [29]. This event relies on the HIV accessory proteins Nef, Vpu, and Vpr and involves
mitochondrial membrane depolarization, with cell death triggered by caspase-dependent
and independent mechanisms [30].

It has been shown that non-toxic levels of ROS enhance viral replication [18,31–34].
While several viral proteins involved in ROS formation have been studied, other potential
mediators of viral ROS modulation are yet to be identified [31]. The beneficial effects of ROS
on the life cycle of viruses, starting as early as a virion binds to its cell receptor, have been
demonstrated using antioxidants both in vitro and in animal models [34]. Particularly, RNA
viruses are prone to ROS-induced modifications [35]. Viral mutations and the immunosup-
pressive effect of ROS may contribute to the selection of more virulent strains that escape
the immune response [35–37]. Viruses that benefit from ROS formation include lymphocytic
choriomeningitis virus (LCMV), Kaposi’s sarcoma-associated herpesvirus (KSHV), respiratory
syncytial virus (RSV), influenza A virus (IAV), and hepatitis C virus (HCV). Michalek et al. [38]
demonstrated increased ROS levels 15 min after the attachment of LCMV to the cell surface.
After a weak initial binding, increased ROS levels and receptor modifications induced
by ROS, strengthened the virion/cell receptor interaction, favoring the progression of
the infection. Furthermore, ROS sensitized the neighboring cells to LCMV binding. The
initial phase of ROS generation after infection was followed by a second wave, which was
required for efficient viral replication. Similarly, a very early induction of ROS production
favored the binding of the KSHV to endothelial cells in the microvasculature [32]. The ef-
fects of RSV, which causes severe respiratory disease, on mitochondrial function have been
widely studied [39–41]. Eighteen hours post-infection (hpi) of adenocarcinoma alveolar
cells, increased mitochondrial ROS generation favored RSV replication. This effect was
blocked by treatment with MitoQ, a mitochondrial antioxidant, which acted as a potent
inhibitor of RSV infection. Furthermore, in a murine model, MitoQ treatment reduced RSV
titers and lung inflammation, indicating the importance of mitochondrial ROS production
in the pathogenesis of the disease [41]. IAV is another respiratory pathogen that benefits
from ROS production in infected cells. IAV infections are responsible for annual, epidemic
respiratory diseases, with some strains having pandemic potential [42]. Antioxidant treat-
ment in IAV-infected mice with an intranasally delivered mitochondrial ROS scavenger
reduced mortality and lung inflammation [33]. This was consistent with an increase in the
type I IFN response and a reduction in IAV titers in the lungs, accompanied by a decrease
in pro-inflammatory cytokines at the late stages of infection. Beneficial effects of ROS
have also been described for HCV, which causes chronic and persistent infections that are
frequently associated with chronic hepatitis, cirrhosis, and hepatocellular carcinoma [43].
Among several HCV proteins that regulate oxidative stress, the core protein—a structural
protein that targets the outer mitochondrial membrane—is considered the most potent
regulator [44,45]. ROS induction is mediated by the binding of HCV core protein and the
inactivation of heat shock protein (Hsp60), a stress response molecular chaperone mainly
localized in the mitochondrial matrix. Protein misfolding caused by Hsp60 inactivation
leads to mitochondrial dysfunction and ROS production, which in turn sensitizes cells to
apoptosis induced by tumor necrosis factor-alpha (TNF-α) [46].

As described above, some viruses trigger mitochondrial ROS production to favor
virulence and viral replication, while others regulate ROS generation to induce cell death
or foster cell survival in the case of persistent chronic infections (Figure 2).
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Figure 2. Mitochondrial ROS production and the effects on virus infection. (A) Virus attachment
triggers ROS generation. (B) ROS favors further virus binding to neighboring cells (bystander effect),
which may lead to apoptotic cell death. (C) Direct interaction of viral proteins with mitochondrial
components induces ROS production, leading to apoptotic cell death, alterations in lipids metabolism,
activation of innate immunity, and the inflammatory response. DENV: dengue virus; LCMV: lym-
phocytic choriomeningitis virus; HIV: human immunodeficiency virus; KSHV: Kaposi’s sarcoma-associated
herpesvirus; HCV: hepatitis C virus; HBV: hepatitis B virus; MDV: Marek´s disease virus; EBV: Epstein–Barr
virus; RSV: respiratory syncytial virus; IAV: influenza A virus; mtDNA: mitochondrial DNA.

Overall, the beneficial effects of ROS include (a) changes in the conformation of cell
receptors that increase virus/cell receptor binding affinity, (b) increased autophagy to
repress inflammasome activation, (c) sensitization of cells to the intrinsic apoptotic pathway
promoting virus release and spread, (d) targeting of proteins involved in the immune
response favoring immune evasion mechanisms, and (e) direct ROS-mediated induction of
mutations on the viral genomes increasing virulence (Figure 3).
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Figure 3. ROS-mediated mechanisms favoring viral infections. ROS-induced conformational changes
on cell receptors favor virus adsorption, trigger autophagy that leads to inflammasome inactivation,
stimulate apoptotic cell death to allow virus release and spread, alter viral proteins that favor evasion
of the immune response, and introduce mutations to the virus genome, increasing virulence.

2.2. Cell Death Mediated by Reactive Oxygen Species

Some viruses inhibit cell death to amplify their progeny or to persist in the host,
while others promote cell death to spread out to other cells or tissues. Mitochondrial ROS
are directly associated with different types of cell death, such as apoptosis, necroptosis,
pyroptosis, and ferroptosis, all of which can occur during viral infections (Table 1).

The role and the mechanisms of mitochondrial ROS in virus-induced apoptosis have
been well-characterized and reviewed previously [18,47,48]. Sendai virus [49], SARS-CoV-2 [50],
porcine epidemic diarrhea virus [51], Rift Valley fever virus [52], HIV-1, HCV, and IAV [47] are
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among the several viruses associated with ROS-induced apoptosis. The mechanisms of
ROS in apoptotic cell death involve the activation of AMP-activated protein kinase (AMPK),
which upregulates the transcription factor E2F1 and, consequently, the transcription of
pro-apoptotic genes [53]. The intrinsic apoptotic pathway can also be induced by ROS-
mediated Bax activation and insertion into the outer mitochondrial membrane, leading to
cytochrome C release and activation of downstream caspases, such as the key apoptosis
executioner, caspase 3. Additionally, caspases can cleave the p75 subunit of complex I in
the ETC, which is followed by ROS generation and further amplification of the apoptotic
signals [53,54].

Necroptosis is a type of regulated cell death with morphological characteristics that
resemble necrosis. Engagement of cell surface death receptors, such as Fas and tumor
necrosis factor-alpha receptor 1, cause loss of plasma membrane integrity, leading to the
release of damage-associated molecular patterns (DAMPs) that promote an inflammatory
response [55]. The execution of necroptosis relies on the receptor-interacting protein kinases
1 and 3 (RIPK1 and RIPK3) and the pseudokinase mixed-lineage kinase domain-like (MLKL)
proteins. Increased mitochondrial ROS induces the mitochondrial translocation of p53 and
RIPK1 phosphorylation. RIPK3 is recruited to the necrosome and phosphorylated by RIPK1.
Then, RIPK3 phosphorylates MLKL, triggering its oligomerization and destabilizing the
plasma membrane [53,55,56]. Furthermore, ROS has been implicated in disulfide bond
formation between MLKL subunits, a prerequisite to induce necroptosis [57]. It has been
shown that RSV infection of human macrophages induces TLR4 and TLR3 activation and
ROS generation, which in turn trigger a RIPK1-independent, TRIF-dependent RIPK3-MLKL
necroptotic pathway [58]. Increased ROS production in Theiler’s murine encephalomyelitis
virus (TMEV) infection of macrophages has also been linked to necroptotic cell death,
particularly when apoptosis is inhibited [59]. Necroptosis has been described for many
viruses, including HIV-1 [60], vaccinia virus [61], MCMV [62], and reoviruses [63]. However,
a direct link between necroptosis and ROS signaling has not been clearly established or
investigated [64].

Pyroptosis is another regulated lytic type of cell death that requires ROS for activation
of the NLRP3 inflammasome that triggers caspase-1 cleavage and activation of the pore-
forming protein gasdermin, leading to membrane permeabilization and cell death [55].
Therefore, pro-inflammatory mediators (IL-1β and IL-18) are released [65]. RSV infec-
tion of macrophages activates TLR2 and ROS production, with ROS having a critical
role as a second signal for inflammasome activation [58]. DENV infection or treatment
of human endothelial cells with DENV recombinant E protein also induced pyroptosis,
necroptosis, and ferroptosis. However, the highest level of cell death has been attributed
to ROS-mediated pyroptosis and caspase-1 activity [66]. Similarly, high levels of ROS
production and inflammasome activation were evident in the platelets from DENV-infected
patients [67].

Ferroptosis is characterized by an iron overload, accumulation of ROS, lipid peroxida-
tion, depletion of glutathione (GSH), and alterations of mitochondrial morphology [55,68].
Morphologically, ferroptotic cells show disruption of the plasma membrane, chromatin
condensation, and mitochondrial and nuclear swelling [68]. The exact mechanism of ROS
participation in ferroptosis has not been fully elucidated. Viruses may induce ferroptosis
to replicate and evade the host immune system [69]. Ferroptotic cell death has been de-
scribed in the HSV-1 infection of cultured neural cells and in a mouse model of encephalitis.
Following HSV-1 infection, Nrf2, which regulates the expression of antioxidative genes,
is ubiquitinated and degraded, thus disturbing cellular redox homeostasis and promot-
ing ferroptosis [68]. Furthermore, ferroptosis is considered an effective mechanism for
tumor suppression [70]. For example, the Newcastle disease virus (NDV) selectively induces
ferroptosis in tumor cells initiated by the activation of p53, followed by nutrient depriva-
tion, suppression of the cystine-glutamate antiporter system Xc-, and induction of ferritin
degradation, which stimulates iron release [71]. Iron metabolism dysfunction in COVID-19
patients is associated with ferroptotic cell death in multiple organs. In this case, SARS-
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CoV-2 infection decreased the GSH pool and downregulated GPX4 gene expression [72].
Ectopic expression of hepatitis A virus (HAV) 3C protease (3Cpro) induced ferroptosis in
several human cell lines. However, low cellular levels of 3Cpro did not induce cellular
alterations compatible with ferroptosis. Therefore, it has been suggested ferroptosis is a
side effect of 3Cpro activity in certain cell types [73]. Latent Epstein–Barr virus (EBV) has
also been implicated in the induction of ferroptosis in newly infected human primary B
lymphocytes and in transformed B cells. The levels of ferroptotic death vary with the
levels of susceptibility according to the distinct states of latency, with Burkitt´s lymphoma
cells being highly vulnerable to ROS-induced lipid peroxidation and, consequently, to
ferroptosis [74]. Furthermore, these cells have low GSH stores and limited capacity for
cystine uptake [75]. Swine influenza virus (SIV) infection increased the iron levels in ade-
nocarcinoma alveolar cells and inhibited the GPx4/system Xc-axis, which is essential for
avoiding lipid peroxidation. Thus, high concentrations of intracellular iron, combined with
elevated levels of ROS and lipid peroxidation, ultimately caused the death of infected cells
by ferroptosis [76].

Table 1. Types of cell death induced by ROS.

Cell Death
Type Features General Mechanisms

Involving ROS Virus Model References

Necroptosis

✓ Resembles necrosis
✓ Disruption of

plasma membrane
✓ Swelling of

organelles
✓ Leakage of

intracellular
components

✓ Engagement of cell
surface death
receptors
mROS-induced
translocation of p53,
phosphorylation of

✓ RIPK1-3 and MLKL
✓ mtROS-induced

MLKL-disulfide
bond formation

RSV Human monocyte
cell line (THP-1) [58]

TEMV Murine macrophage
culture [59]

DENV Human endothelial
cells (HMEC-1) [66]

Pyroptosis

✓ Swelling and
rupture of cell
membranes

✓ Alteration of nuclear
morphology

✓ Release of
pro-inflammatory
components

✓ Inflammasome
activation

✓ Caspase-1
✓ Gasdermin

(membrane pore
formation)

RSV Human monocyte
cell line (THP-1) [58]

DENV
Human endothelial

cells (HMEC-1)
and platelets

[59,67]

Ferroptosis

✓ Plasma membrane
disruption

✓ Loss of
mitochondrial
potential,

✓ Partial chromatin
condensation

✓ Nuclear and
mitochondrial
swelling

✓ Iron-dependent ROS
accumulation.

✓ ROS-induced lipid
peroxidation,

✓ GSH depletion
✓ Inactivation of GPX4
✓ Mitochondrial

morphological
alterations

HSV-1
Neural cells

Encephalitis murine
model

[68]

NDV Glioma cells [71]

HAV
Ectopic HAV 3C

protease expression
in human cell lines

[73]

EBV Human primary B
cells [74]

SARS-CoV2 Vero (African green
monkey) cells [72]
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Table 1. Cont.

Cell Death
Type Features General Mechanisms

Involving ROS Virus Model References

SIV Adenocarcinoma
alveolar cells [76]

DENV Human endothelial
cells (HMEC-1) [66]

mtROS: mitochondrial ROS; RIPK1-3: receptor-interacting protein kinases 1 and 3; MLKL: pseudokinase mixed-
lineage kinase domain-like; GSH: glutathione; GPX4: glutathione peroxidase 4; 9RSV: respiratory syncytial virus;
TEMV: Theiler’s murine encephalitis virus; DENV: dengue virus; HSV-1: herpes simplex virus 1; NDV: Newcastle disease
virus; HAV: hepatitis A virus; EBV: Epstein–Barr virus; SIV: swine influenza virus.

3. Metabolic Effects of Viral Infections

Virus replication is energetically and metabolically very demanding [77]. Viruses cope
with these demands, inducing metabolic reprogramming, including the upregulation of
enzymes that control the metabolic pathways [78,79]. The metabolic switch enhances gly-
colysis (Warburg effect), glutaminolysis, and lipid oxidation [78] (Figure 4). An upregulated
pentose phosphate pathway and changes in amino acid metabolism after viral infections
have also been reported [80]. Some viruses may turn on more than one pathway to support
their energetic needs, while different cellular metabolic pathways may be activated at
distinct stages of the virus life cycle [81,82].
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Figure 4. Major mitochondrial metabolic pathways and global mechanisms activated during viral
infections. Virus replication is an energy demanding process. To cope with this energetic demand,
viruses induce cellular metabolic reprogramming, which includes enhanced glycolysis (Warburg
phenotype), glutaminolysis, fatty acids synthesis, and lipid oxidation. KSHV: Kaposi´s sarcoma-
associated herpesvirus; HCMV: human cytomegalovirus; EBV: Epstein–Barr virus; NDV: Newcastle disease
virus; MNV: murine norovirus; MDV: Marek´s disease virus; HBV: hepatitis B virus; HCV: hepatitis C virus;
IAV: influenza A virus; WSSV: white spot syndrome virus; HIV: human immunodeficiency virus. GLUT:
glucose transporter; AMPK: AMP-activated protein kinase; SAM complex: β-barrel-specific sorting
and assembly machinery; mtROS: mitochondrial ROS.

3.1. Warburg Phenotype

The Warburg phenotype, characterized by enhanced glycolysis, even in the presence
of physiological concentrations of O2, is displayed by cancer cells and cells with high pro-
liferation rates, like activated T lymphocytes. OxPhos generates 95–98% of the total cellular
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ATP in quiescent cells, whereas glycolysis and the succinyl-CoA ligase reaction in the TCA
cycle provide the remaining 5%. By contrast, cancer cells generate ~10–90% of the total
ATP by glycolysis [83–85]. Full oxidation of glucose in mitochondria generates ~32 moles
of ATP, but only 2 moles of ATP/mole of glucose are produced during glycolysis [83].
Despite this difference in the yield of ATP and arguments in favor or against a higher
rate of glycolysis being able to compensate for the relatively lower efficiency, the reality
is that the ATP demand for cell division is low compared to the energy requirements for
maintaining cellular functions, mainly the activity of the Na+-K+ ATPase. This fact strongly
suggests that ATP generation is not limiting for rapid cell proliferation [86–89]. The current
consensus is that enhanced aerobic glycolysis, together with mitochondrial metabolism, is
necessary to provide not only ATP but also metabolic intermediates for the synthesis of
macromolecules [90–93]. The shift towards aerobic glycolysis has also been proposed to
increase resistance to apoptosis [94,95].

The mechanisms and changes in glucose metabolism induced by viruses are summa-
rized in Table 2.

An increased expression of glucose transporters (GLUT) and enzymes involved in the
glycolytic pathway has been shown in several viral infections [78]. Human cytomegalovirus
(HCMV) replication increased glucose uptake [96] by downregulating GLUT1 and upreg-
ulating the more efficient GLUT4 [97]. HCMV infection also upregulated the glycolytic
enzymes phosphofructose kinase-1, hexokinase, PDH, and also increased glycolytic inter-
mediates and lactate [98–101]. In addition, these changes in glucose metabolism increased
FA and lipid synthesis [101]. GLUT3 and hexokinase II have been found to be upregulated
in KSHV-latently infected endothelial cells [94].

Several viral infections cause enhanced glycolysis and metabolic reprogramming
through the activation of hypoxia-inducible factor 1-alpha (HIF-1α). An initial infection
with SARS-CoV2 is characterized by enhanced aerobic glycolysis and high virus titers [82].
Elevated glucose levels promote viral replication and cytokine expression, leading to rapid
tissue dissemination and exacerbated inflammation [82,102]. In monocytes, enhanced
glycolysis and the pro-inflammatory state responsible for the lung injury observed in
COVID-19 patients were mediated by HIF-1α [102]. Epstein–Barr virus (EBV) is a human
oncogenic gamma-herpesvirus that is associated with several types of lymphocytic disor-
ders and epithelial tumors [103]. The EBV latent membrane protein (LMP)-1 oncoprotein
regulates tumorigenesis and shifts the metabolic program towards aerobic glycolysis by
activating HIF-1α [104–106]. KSHV also activates HIF-1α, which is required for activating
KSHV oncogenes [79].

In other cases, the Warburg effect in virus-infected cells is accompanied by decreased
activity of the mitochondrial respiratory chain complexes and mitochondrial dysfunction
without a complete shutdown of OxPhos. Newcastle disease virus (NDV) is an avian virus
oncolytic to mammalian cells [107]. Recently, it was shown that NDV induces mitochondrial
damage, leading to the degradation of SIRT3 via mitophagy [108]. SIRT3 is a mitochondrial
member of the sirtuin family of the NAD-dependent ADP-ribosyl transferases and/or
protein deacetylases involved in metabolism and stress response [109]. Reduced or lack
of SIRT3 activity shifts mitochondrial bioenergetic metabolism toward glycolysis, which
contributes to viral replication [108].

Finally, a mitochondrial metabolic switch has also been well-characterized in viral
infections of crustaceans caused by the white spot syndrome virus (WSSV). The stage of viral
genome replication in the shrimp immune cells is characterized by increased expression
and activity of glycolytic enzymes, such as hexokinase and phosphofructokinase [110].
Furthermore, AMPK expression and phosphorylation are also significantly upregulated in
WSSV-infected shrimp. Via the mTORC2-AKT pathway, AMPK phosphorylates glycolytic
enzymes, promoting the expression of HIF-1α [111,112]. Thus, enhanced glycolysis pro-
vided energy and biomolecules for virus replication [110]. Additionally, Chen et al. [113]
reported that an induced metabolic shift into the Warburg phenotype can counteract the
high levels of ROS produced in response to WSSV infection.
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Table 2. Mechanisms involved in the virus-induced shift towards aerobic glycolysis.

Virus Mechanism References

HCMV

Downregulation of GLUT1
Upregulation of GLUT4 and glycolytic intermediates.

Increase in lactate production
Involvement of AMPK pathway

[97–101]

SARS-CoV2 Induction and activation of HIF-1α
Enhanced aerobic glycolysis [82]

EBV
Upregulation of GLUT1, lactate dehydrogenase A, and

PDK-1
LMP-1-induced expression of HIF-1α

[104–106]

KSHV Induction and activation of HIF-1α
Upregulation of GLUT3 and hexokinase II [94]

NDV Degradation of SIRT3 [108,109]

WSSV
Increased expression of hexokinase, phosphofructokinase,

and AMPK
Induction and activation of HIF-1α

[110–112]

GLUT: glucose transporter; AMPK: AMP-activated protein kinase; PDK-1: pyruvate dehydrogenase kinase 1;
HIF-1α: hypoxia-inducible factor 1-alpha; LMP-1: latent membrane protein 1; SIRT3: sirtuin 3; HCMV: human
cytomegalovirus; EBV: Epstein–Barr virus; KSHV: Kaposi´s sarcoma-associated herpesvirus; NDV: Newcastle disease
virus; WSSV: white spot syndrome virus.

3.2. Reverse Warburg Effect

Oncoviruses can induce the reverse Warburg effect, which is characterized by en-
hanced aerobic glycolysis in cancer-associated fibroblasts. In this two-compartment model
of metabolic symbiosis, cancer cells secrete H2O2 and cause oxidative stress in neighboring
fibroblasts, which produce metabolic intermediates, such as pyruvate, ketone bodies, FA,
and lactic acid that feed the tumor cells [114].

The life cycle of the oncovirus KSHV comprises a quiescent, latent state and a lytic,
replicative phase. In contrast to the abundant expression of viral genes observed during
lytic infection, latency is characterized by the episomic persistence of the viral genome
with restricted viral gene expression [115]. The latency-associated nuclear antigen (LANA)
protein is the main latency-regulatory viral protein, whereas the switch to the lytic phase
is controlled by the replication and transcription activator (RTA) protein [116]. Different
latency programs with distinct patterns of gene expression have been described. EBV
nuclear antigen (EBNA) 1 is expressed in Burkitt’s lymphoma, LMPs in nasopharyngeal
carcinoma, Hodgkin’s lymphoma, and NK/T cell lymphoproliferative diseases [117,118],
and all EBNAs and LMPs are expressed in EBV-associated post-transplantation lympho-
proliferative disorders, acute infectious mononucleosis, and X-linked lymphoproliferative
syndrome [119]. It is well-established that in a latent KSHV infection, gene expression
is restricted by several microRNAs (miRNAs) [120]. miRNAs are highly conserved non-
coding RNAs that intervene in a wide array of biological processes [121]. Comparable
to cellular miRNAs, virus-encoded miRNAs also regulate energetic metabolism and an-
giogenesis [122]. It has been demonstrated that KSHV-encoded miRNAs induce aerobic
glycolysis in infected cells [123] while others are transferred to uninfected neighboring
cells, inducing the reverse Warburg effect [79,124]. Induction of the glycolytic pathway is
also observed in EBV-induced nasopharyngeal carcinoma. In this case, BART1-5P miRNAs
increased glucose consumption and lactate production via regulation of the AMP-activated
protein kinase (AMPK)/mTOR/HIF-1α pathway. The discovery of virus-encoded miRNAs
unveiled a mechanism used by many viruses, particularly those that maintain a latent state,
to induce a metabolic shift in the surrounding cells that favor their own persistence [125].
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In general, viruses utilize a broad spectrum of strategies to directly or indirectly
utilize the Warburg phenotype and mitochondrial metabolism to support the energetic and
synthetic requirements of viral replication.

3.3. Fatty Acids Synthesis and Lipid Peroxidation

Disturbances in the synthesis, accumulation, and oxidation of FAs are common in viral
infections. Lipid droplets (LDs), formed by a core of triacylglycerols, cholesteryl esters, and
retinyl esters surrounded by a phospholipid monolayer, play an important role in viral
infections [126]. Catabolism of stored triglycerides yields FAs that undergo mitochondrial
β-oxidation, resulting in ATP formation. Aside from being used to store energy, FAs
released from phospholipids and triglycerides act as signaling molecules [127–129]. During
viral infections, changes in the lipid composition of LDs influence the pathogenicity and
replication of the viruses [130]. For example, virus-dependent increased LD levels activate
the NLRP3 inflammasome and modulate the innate immune response [131]. Below, we
describe how viruses alter lipid metabolism.

Inhibition of FA synthesis decreases the production of infectious virus particles [132]. FA
inhibition rendered KSHV intracellular virions non-infectious, suggesting a FA-dependent
blockage of virion assembly and/or maturation [81]. By contrast, gallid herpesvirus 2 or
Marek´s disease virus (MDV), an alpha herpesvirus of chickens, increased FA synthesis in
infected cells and induced LD formation, which facilitated virus replication [133]. Lipolysis
has been described as a mechanism that provides energy for WSSV during virus replication.
However, virus-induced lipogenesis is also required at later stages when long-chain FAs
must be supplied for virus morphogenesis [134]. Recently, it was shown that the ORF6
protein of SARS-CoV2 that inserts into LDs and interacts with mitochondria binding to the
SAM (β-barrel-specific sorting and assembly machinery) complex in the outer mitochon-
drial membrane induces lipolysis and stimulates FA trafficking into mitochondria [135,136].
Opposite to the initial stages of SARS-CoV2 infection, the second phase is characterized by
low virus titers, reduced glycolysis, and oxidative metabolism, with increased FA oxida-
tion [82]. The accessory SARS-CoV2 ORF3c protein, localized to the outer mitochondrial
membrane, causes this metabolic shift, probably by an indirect mechanism that involves the
transport of pyruvate from the cytoplasm to the mitochondrial matrix [136]. SARS-CoV2
infection demonstrates how a virus manipulates mitochondria according to the specific
needs at each step of the infectious process (Table 3 and Figure 5).

Table 3. SARS-CoV2 accessory proteins and mitochondrial dysfunction.

Protein Mitochondrial Target Mitochondrial Dysfunction References

ORF3a mPTP

Increase mitochondrial Ca++

Increase ROS Promotes HIF-1α
expression

Release of mtDNA

[137]

ORF3b MAVS-Drp1 Suppression of IFN response [138]

ORF3c TOM20 and TOM70 (OMM)
MAVS

Increase of FA synthesis
Suppression of IFN response [136,139]

ORF7a MAVS Suppression of IFN response [140]

ORF8a MAVS Suppression of IFN response [141]

ORF9b MAVS
TOM70 Suppression of IFN response [140–144]

ORF10 MAVS
Mitophagy receptor NIX Suppression of IFN response [145]

mPTP: mitochondrial permeability transition pore; MAVS: mitochondrial antiviral-signaling protein; Drp1:
Dynamin-related protein 1; LD: lipid droplet; SAM complex: Sorting and Assembly Machinery complex; OMM:
outer mitochondrial membrane; TOM70: translocase of OMM.
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Figure 5. Metabolic switch in SARS-CoV2 infection. SARS-CoV2 infection follows a bimodal
metabolic reprogramming. Initial SARS-CoV2 infection is characterized by mitochondrial ROS
production that promotes hypoxia-inducible factor 1-alpha (HIF-1α) expression, lipolysis, and an
increase in FA synthesis. Together with the induction of the Warburg effect, virus replication is
enhanced, accompanied by a severe pro-inflammatory response (cytokine storm). During the second
stage, glycolysis and oxygen consumption decrease, FA oxidation increases, and the mitochondria
return to regular respiration and ATP production. It is a hypo-inflammatory stage, with decreased
virus titers and immunotolerance [92,133].

Enveloped viruses need lipids for the viral envelope, while positive-sense RNA viruses
require lipids to constitute the replication and assembly compartments [146]. These com-
partments are partially closed double-membrane structures formed by the rearrangement
of membranes of different organelles. Infections with RNA viruses cause redistribution
of LDs that become more accessible to viral non-structural proteins to initiate replica-
tion [147,148]. ROS generation also modulates LD formation. High mitochondrial ROS
production increased the number of LDs and stimulated HBV gene expression in HepG2 hu-
man hepatocellular carcinoma cells expressing hepatitis B virus HBx protein [149]. Treatment
with the antioxidant N-acetylcysteine decreased LD accumulation in a time-dependent
manner [150]. In addition to the effect on LD formation, ROS induce the peroxidation
of lipids rich in polyunsaturated FAs, both in cell membranes and viral envelopes. HCV
infections cause liver steatosis and induce the peroxidation of lipids and viral enzymes
of the replicase complex, particularly NS3/4A and NS5B [147]. Attenuated replication
may facilitate long-term viral persistence [151]. It has been consistently demonstrated that
peroxidation of the viral envelope causes disintegration of the viral particle [152]. The
pathological role of lipid peroxidation has been demonstrated for neurotropic viruses, such
as rabies virus. In a dorsal root ganglia model, Jackson et al. [153] demonstrated the presence
of multiple axonal swellings, concomitantly with positive viral antigen and immunostain-
ing for 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation associated with oxidative
stress. It was suggested that lipid peroxidation induced modifications in mitochondrial
and cytoskeletal proteins, which were finally responsible for axonal swelling. Therefore,
mitochondrial dysfunction and altered lipid metabolism, induced by virus replication, are
key mediators of neuronal degeneration in rabies virus infection.

The cellular lipid metabolism in DENV-infected cells is characterized by activation
of FA synthesis, accumulation of LDs, and mobilization of FAs [153], being FAs the main
energetic substrate for efficient replication [154,155]. By an autophagy-dependent pro-
cess, DENV increases β-oxidation, which generates ATP while depleting LDs and triglyc-
erides [155].
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Another alteration of lipid metabolism induced by viruses is caused by the immediate-
early EBV protein BRLF1 that induces the expression of the FA synthase and several proteins
involved in FA metabolism and cholesterol biosynthesis in epithelial and B cells [150].

Overall, alterations in lipid metabolism caused by viral infections range from in-
creased FA synthesis and lipid droplet accumulation to increased FA oxidation and lipid
peroxidation. Ultimately, the mechanisms seem to be virus-specific.

3.4. Glutamine Metabolism

Glutamine is the most abundant amino acid in the body and is used for the synthesis
of proteins, nucleotides, and lipids [156]. Glutaminolysis is the catabolic conversion of
glutamine into nitrogen-containing metabolites of the TCA cycle that both support OxPhos
and are used for the synthesis of amino acids and nucleotides [157,158]. During viral
infections, enhanced glutamine catabolism sustains virus replication [124].

The transcription factor c-myc, which regulates the expression of genes associated
with cancer cell metabolism, favors viral infections [142]. The adenovirus E4ORF1 protein
enhances adenovirus replication in human lung cells by activating c-myc, which, in turn,
upregulates glutamine transporters and increases the activity of the rate-limiting enzyme
glutaminase [159]. It has also been shown that during latency, the LANA protein of KSHV,
as well as EBV infection, upregulates glutaminase expression by activating c-myc [160]. IAV
infection of primary human bronchial epithelial cells and bone marrow-dendritic cells from
pediatric patients showed a switch to glutamine utilization that was also dependent on
c-myc [161].

Other viruses enhance glutaminolysis independently of c-myc. The highly virulent
avian pathogen NDV induces upregulation of the glutamate transporter SLC1A3 and
increases glutaminase activity [128]. In infected chicken embryonic fibroblasts with MDV,
glutamine was converted to α-ketoglutarate as an intermediate for the TCA cycle to support
virus replication [133]. Since glutamine is necessary for the efficient function of lympho-
cytes and macrophages [162], it was suggested that glutamine catabolism during MDV
may contribute to avoiding the antiviral immune response [133]. A murine norovirus (MNV)
model has been used to study metabolic reprogramming in MNV-infected macrophages.
Noroviruses strains causing acute or persistent infection require glutaminolysis as a carbon
source for genome replication. The viral non-structural protein NS1/2 has been identified
as responsible for the increase in glutaminase levels. Although the effect of glutaminolysis
on norovirus replication is clear, there is no current information on the effect of this catabolic
process on infected macrophages [163]. Serum glutamine and glutamate depletion con-
comitantly with increased phosphatidylcholine biosynthesis suggest that both pathways
contribute to HBV replication and progression to the hepatocellular carcinoma associated
with HBV infection [164,165]. Glutaminolysis is also the major pathway supplying in-
termediates for the TCA cycle and OxPhos in HIV-1-infected naïve and memory CD4+

T cells [166,167]. Elevated levels of intracellular glutamine are observed during HIV-1
infection [167,168]. Although the entry of glutamine-derived carbon into the citric acid
cycle is not affected, the secretion of glutamine-derived glutamic acid and protein levels
of enzymes that metabolize glutamine to glutamic acid are significantly increased [168].
Glutaminolysis regulates the early steps of infection, favors virus replication, increases
susceptibility to HIV-1 infection, and drives CD4+ T-cell proliferation [167,168].

Although many viruses require both increased glycolysis and glutaminolysis for
efficient replication, the vaccinia virus, the causal agent of smallpox, only requires the
anaplerotic reactions derived from glutamine catabolism without enhancing glycolysis.
Glutamine is specifically used for vaccinia virus protein synthesis without a significant effect
on transcription [169]. A similar finding has been described for the KSHV infection, in
which glutaminolysis is required for early protein translation with no impact on virus gene
transcription [79].
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4. Mitochondria in the Immune Response to Viral Infections

The effects of ROS on the innate immune response are broad, altering protein function
and introducing post-translational modifications that affect the immune signaling pathways.
ROS participate in the antiviral immune response by inducing MAVS and by activating
TLRs and DNA-sensing pathways, like STING (stimulator of interferon genes) [170,171].
A signaling cascade, initiated after nucleic acid-sensing receptors associated with the
adaptor MAVS, leads to the expression of antiviral genes, mainly type I IFN. The robustness
of the response depends on the activation/degradation of molecules like IRF-3 and IFN-
stimulated genes (ISG) [172]. Other viruses have a direct effect on MAVS. The HCV protease
NS3/4a binds to mitochondria and cleaves MAVS [173], whereas the PB1-F2 protein of
IAV, as well as SARS-CoV2 ORF10 protein, induce mitophagy and MAVS degradation,
suppressing the type I IFN response [174]. The Murine herpesvirus-68 (MHV-68), closely
related to KSHV and EBV, is also recognized by the cytosolic DNA-sensing pathway
cGAS/STING. Tao et al. [170] demonstrated that increased ROS levels antagonized the
IFN-β response to MHV-68 by oxidizing a STING-cysteine residue. Thus, by manipulating
the ROS levels, MHV-68 inhibits the innate immune response, favoring its own replication.

Participation of ROS in the inflammatory response is also linked to their role as a
second signal for activation of the NLRP3 inflammasome [172,175], which leads to cleav-
age and maturation of the pro-inflammatory cytokines, IL-1β and IL-18. Furthermore,
Gasdermin-D, a key molecule during pyroptosis, is also cleaved upon ROS signaling [175].
Mitochondrial ATP, which is released after virus-induced cell death, has also been impli-
cated in the activation of the NLRP3 inflammasome [175,176].

Mitochondrial DNA (mtDNA) is a double-stranded circular DNA that encodes 13 sub-
units of the mitochondrial respiratory chain. Its proximity to the inner mitochondrial
membrane—where ROS are produced in the ETC—and the lack of protection by histones
make mtDNA highly vulnerable. mtDNA plays a critical role in the mitochondrial-derived
immune response [177]. Following mitochondrial damage or cell death, mtDNA is released
and sensed by innate immune receptors, triggering the inflammatory response [3]. Several
members of the Picornaviridae family, including enterovirus 71 (EV-A71), Seneca Valley virus
(SVV), and foot-and-mouth disease virus (FMDV), trigger mtDNA release into the cytosol after
induction of mitochondrial damage. An opening of the mitochondrial permeability transi-
tion pore (mPTP) and VDAC1/Bak/BaX-dependent mtDNA leakage into the cytoplasm
has been shown during SVV infection, whereas EV-A71 and FMDV also induce mPTP open-
ing and VDAC1-dependent mtDNA release without involving Bak/BaX-activity. Released
mtDNA also binds to cGAS (cyclic GMP-AMP synthase), activating the antiviral immune
response. These picornaviruses are able to surpass the antiviral immunity by encoding the
2C protein, a highly conserved non-structural protein, which degrades cGAS or blocks the
activation of the signaling cascade [178].

Independently of which is the mitochondrial target, viruses display an array of evasion
strategies to avoid the mitochondria-derived immune response.

5. Virus Interaction with Voltage-Dependent Anion Channels

The voltage-dependent anion channels (VDACs) 1, 2, and 3 are β-barrel structures
in the outer mitochondrial membrane of all eukaryotic cells [179–182]. The influx of
oxidizable substrates, ADP, inorganic phosphate, and glycolytic ATP into mitochondria
and the efflux of ATP through the outer mitochondrial membrane occurs only through
VDACs [180,183,184]. VDACs also contribute to the regulation of calcium import to mito-
chondria [185]. Once inside the matrix, oxidizable substrates enter the TCA cycle, generat-
ing NADH that fuels the ETC. Overall, VDACs operate as a biological switch that, in the
open state, maximizes the flux of metabolites for optimal mitochondrial function, whereas
during the closed state, it lowers mitochondrial metabolism [183,186]. Thus, regulation
of only this channel has an amplifying effect on several intra- and extra-mitochondrial
pathways that modulate cancer metabolism and bioenergetics. Since mitochondrial ROS
production directly depends on the activity of the ETC, VDAC opening or closing is a major
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driver for ROS formation [183]. Moreover, VDAC regulation may serve as an adjustable
rheostat, with a range of operational levels that depend on the magnitude and duration of
VDAC opening [183,186].

Information about the interactions between VDACs and viral proteins is still very
scarce. The DENV E protein is a viral receptor binding protein that interacts with the
cellular chaperone GRP78, which in turn interacts with VDAC1. As a result of these
interactions, VDAC1 is re-localized during DENV infection, with mitochondria moving
toward the endoplasmic reticulum. It was suggested that the re-localization of VDAC1
is required to traffic metabolites near the sites of DENV replication in proximity to the
endoplasmic reticulum. The relevance of the DENV E/GRP78/VDACs was confirmed
by VDAC1 silencing, which significantly reduced DENV protein expression, percentage
of infection, and extracellular virus titers [187]. Infectious bursal disease virus (IBDV) is a
double-stranded RNA (dsRNA) virus that causes severe immunosuppression in chickens.
VDAC1 has been found to be upregulated during IBDV infection, being key in mediating
IBDV polymerase activity [188]. VDAC1 interacts with IBDV VP1 and VP3 proteins, which
are components of the polymerase complex. This interaction is crucial for stabilizing the
complex and promoting polymerase activity that enhances viral replication and transcrip-
tion. Cytomegalovirus (CMV) is a herpesvirus with high seropositivity in humans [189].
Although still controversial, it was suggested that CMV increases the risk of developing
Alzheimer’s disease and cognitive alterations [190]. Recently, in a murine CMV model,
an association between cognitive disorders and increased permeability of the blood–brain
barrier was demonstrated. Among several altered mitochondrial parameters, it was shown
that VDAC1 expression and mitochondrial ROS increased in brain microvascular endothe-
lial cells after repeated MCMV infections during a 12-month period, which was suggestive
of a cell dependence on OxPhos. Likely, cell metabolic reprogramming alters the integrity of
the blood–brain barrier, favoring T-cell infiltration and facilitating cognitive decline [191].

The enterovirus 71 (EV 71) 2B protein, which is a viroporin, directly interacts with
VDAC3 to increase ROS production and enhance viral replication, as evidenced by the
inhibition of EV 71 replication after VDAC3 knockdown. This interaction also suppresses
the synthesis of taurine/hypotaurine, which has antioxidant activity. Although the exact
mechanism is unknown, it was suggested that the 2B/VDAC3 interaction would suppress
the expression of the enzymes involved in hypotaurine metabolism. By contrast, siRNA
silencing of VDAC3 increased the antioxidant capacity of infected cells, implying that
VDAC3 might be involved in a negative regulation of this antioxidant mechanism [192].
Ca2+ storage organelles, such as the ER and mitochondria, are important in calcium home-
ostasis [193]. Tight contact between mitochondria and ER triggers a rapid mitochondrial
Ca2+ influx and Ca2+ overload that can disrupt ∆ψm and alter OxPhos [185]. Additionally,
elevated mitochondrial Ca2+ levels increase ROS production [194,195] by stimulating the
flow of electrons in the ETC or by altering the structure of the respiratory complexes [173].
VDACs participate in efficient Ca2+ transfer to the mitochondria by forming multi-protein
complexes with Ca2+ channels in other organelles. The mitochondrial permeability transi-
tion pore (mPTP) is a non-specific pore that is permeable to solutes of <1.5 kDa. mPTP opens
in the inner mitochondrial membrane under elevated levels of Ca2+ in the matrix, especially
under conditions of oxidative stress and low levels of adenine nucleotides. The opening of
the mPTP causes mitochondrial swelling, disruption of the outer membrane, and release of
mitochondrial components that induce apoptosis. HCV core and NS5a proteins are known
to cause ER stress with the release of Ca2+ and direct transfer from the ER to the mitochon-
dria. This results in alterations of the ETC, increasing ROS production and sensitivity to
mitochondrial permeability transition and cell death [196,197]. Particularly, the induction
of mPTP has been attributed to HCV core protein [197]. HBV is another virus that modifies
mitochondrial function by interacting with VDAC3. The HBV HBx regulatory protein has
a binding affinity for VDAC3. The HBx/VDAC3 association decreased ∆Ψm and altered
mitochondrial physiology [198]. It is well-established that HBV can alter Ca2+ signaling to
create a cellular environment favorable for virus replication [199]. Interaction of the viral
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protein with VDAC3 enhances Ca2+ trafficking into the mitochondria. Furthermore, HBx
regulates the mPTP, promoting mitochondrial Ca2+ outflow [200]. Mitochondrial dysfunc-
tion during HBV infection has been linked to chronic hepatitis, cirrhosis, and oncogenesis.
It is likely that the HBx/VDAC3 interaction and mPTP regulation mediated by HBx plays a
pivotal role in the outcome of the disease. Pharmaceutical targeting of Ca2+ signaling may
provide a potent strategy for controlling HBV.

The porcine respiratory and reproductive syndrome virus (PRRSV) causes one of the most
important diseases that affect the swine industry. PRRSV GP5 proteins are key for viral
infectivity. Interaction of GP5 with VDAC1 promoted VDAC oligomerization and enhanced
mitochondrial Ca2+ uptake from the ER by promoting ER-mitochondria contact. This
resulted in the induction of mROS release and triggered autophagy, which repressed
NLRP3 inflammasome activation and increased viral replication [201].

Although few, these studies demonstrate that the virus’s influence on VDAC function
may be key to altering the physiological status of the mitochondria to sustain virus infection.

6. Viral Effects on the Electron Transport Chain

Several viruses have been shown to regulate the activity of ETC. RSV manipulation
of the mitochondrial metabolism and signaling pathways has been widely recognized.
Among several RSV-mitochondrial targets, the inhibition of Complex I is central to RSV
pathogenesis [34]. High viral loads in infected cells are associated with decreased mitochon-
drial respiration and increased ROS production caused by the inhibition of complex I. It has
been shown that HCV limits OxPhos by downregulating the core subunits of Complexes
I and IV at early time points after infection, while Complex V activity decreases at the
later stages [106]. Derakhshan et al. [202] demonstrated that the HSV-1 Us3 protein kinase
mediated the inhibition of cellular respiration by blocking electron transport between
complexes II and III. HIV-1 causes neurological disorders without infecting neurons. The
neurotoxic HIV-1 transactivator of transcription (Tat) protein is secreted by infected T cells
and macrophages/microglia affecting bystander cells, such as neurons [203]. Tat inserts
into mitochondria through a basic domain, induces mitochondrial hyperpolarization, and
decreases the activity of complexes III and IV in isolated neuronal mitochondria [204,205].
Thus, the effect of Tat on respiratory chain complexes in neurons and the global effects on
mitochondrial function might be partially responsible for the neurological signs observed
in HIV-1-infected patients. In the case of human herpes simplex virus 1 (HSV-1) infection, a
decline in ATP levels has been attributed to mitochondrial dysfunction [206]. The highly
oncogenic MDV infects immune cells, causing a deadly lymphoproliferative disease in
chickens [207]. The phosphorylated p38 protein (pp38) of MDV is required to lyse lympho-
cytes B, to induce latency, and to prevent apoptosis in T cells. pp38 increased the activity of
mitochondrial succinate dehydrogenase, which is part of Complex II and feeds electrons
directly into the ubiquinone/ubiquinol pool. The mechanism by which pp38 upregulates
Complex II activity is currently unknown. However, co-localization with mitochondria
could not be demonstrated, suggesting that the effect is indirect [208].

7. Virus-Triggered Mitochondrial Fission

Mitochondria are dynamic organelles that undergo morphological adaptations through
cycles of fusion and fission to fuse or divide individual mitochondria, respectively [3]. Mi-
tochondrial dynamics is involved in the regulation of the cell cycle, the immune response,
and programmed cell death [209]. Beyond the changes in morphology, the number of
mitochondria is determined by the rate of mitochondrial biogenesis and the removal of
damaged mitochondria by mitophagy [210]. Disruption of mitochondrial fission leads to
altered metabolism, proliferation, and apoptosis [211]. Some viruses exert a tight control
on mitochondria dynamics. Checking when mitochondria fragmentation and mitophagy
are required is clued to promptly escape from the mitochondria-induced immune response.
AMPK is an energy sensor that detects low ATP levels [212,213] and affects mitochondrial
dynamics. During NDV infection, under energetic stress, AMPK induces mitochondrial
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fission and controls mitophagy [108]. EBV-encoded BHRF1 protein is a BCL2 homolog that
stimulates DNM1L (dynamin 1-like proteins)/Drp1-mediated mitochondrial fission and
drives the reorganization of mitochondria into perinuclear aggregates. BHRF1 inhibits the
IFN type I response by interacting with autophagosomes and stimulating mitophagy [214].

8. Concluding Remarks

Viruses modulate mitochondrial function and cellular metabolism to favor their own
replication, persist in the host, and increase their virulence. Many viruses target more than
one mitochondrial component and signaling pathway. Inhibition of the ETC, increased
or decreased ROS production, differential utilization of glucose, glutamine, and FAs, and
changes in mitochondrial dynamics are the mechanisms triggered by viral infections.
Viruses use numerous strategies to bypass or avoid cellular mechanisms, which can prevent
the infection from spreading or decrease the virulence. Several viruses are considered the
main etiological agents of emerging diseases with pandemic potential. Therefore, besides
understanding viral pathogenesis, gaining knowledge of virus/mitochondria interactions
may provide novel opportunities for therapeutic interventions that can eventually be
applied to the treatment of emergent viral diseases or to overcome the antiviral resistance
of certain strains.
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