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Abstract: Gastric adenocarcinoma (GA) is a significant global health issue with poor prognosis,
despite advancements in treatment. Although molecular classifications, such as The Cancer Genome
Atlas (TCGA), provide valuable insights, their clinical utility remains limited. We performed a multi-
layered functional analysis using TCGA RNA sequencing data to better define molecular subtypes
and explore therapeutic implications. We reanalyzed TCGA RNA-seq data from 142 GA patients
with localized disease who received adjuvant chemotherapy. Our approach included probabilistic
graphical models and recurrent sparse k-means/consensus cluster algorithms for layer-based analysis.
Our findings revealed survival differences among TCGA groups, with the GS subtype showing the
poorest prognosis. We identified twelve functional nodes and seven biological layers, each with
distinct functions. The combined molecular layer (CML) classification identified three prognostic
groups that align with TCGA subtypes. CML2 (GS-like) displayed gene expression related to lipid
metabolism, correlating with worse survival. Transcriptomic heterogeneity within the CIN subtype
revealed clusters tied to proteolysis and lipid metabolism. We identified a subset of CIN tumors
with profiles similar to MSI, termed CIN-MSI-like. Claudin-18, a key gene in proteolysis, was
overexpressed across TCGA subtypes, suggesting it is a potential therapeutic target. Our study
advances GA biology, enabling refined stratification and personalized treatment. Further studies are
needed to translate these findings into clinical practice.

Keywords: gastric adenocarcinoma; TCGA subtypes; molecular classification; consensus cluster
analysis; CIN-MSI-like group

1. Introduction

Gastric adenocarcinoma (GA) is a significant global health concern, with over 1 million
estimated new cases and 768,793 cancer-related deaths in 2020 worldwide [1]. Most patients
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are diagnosed at advanced stages, resulting in high mortality rates. Although surgery is the
cornerstone of treatment with curative intent for resectable locally advanced disease, de-
fined as clinical stage ≥T2 and/or positive regional lymph node metastasis by AJCC-UICC
staging system (8th Edition) [2], the 5-year survival rate remains poor [3]. As a result, vari-
ous multimodal perioperative approaches, including perioperative chemotherapy (CT) [4],
adjuvant CT [5], and chemoradiotherapy (CRT) [6], have been explored, leading to better
long-term prognosis compared to mere surgical resection. Recently, the FLOT perioperative
regimen has been postulated as the standard approach for locally advanced GA [7]. For gas-
troesophageal junction (GEJ) tumors, neoadjuvant CRT may also be an effective option [8].
Despite these advancements, therapeutic resistance continues to be a major obstacle, and
cure rates remain low, with only approximately 35% of patients surviving at 5 years in
the case of lymph node involvement. Further research and personalized approaches are
therefore imperative to improve patient outcomes.

Several clinicopathological factors have been studied to identify patients who may
benefit from chemotherapy, including immune ratios, systemic inflammation, tumor char-
acteristics, and lymph node involvement. Promising molecular markers include MSI,
inflammatory infiltrates, immune checkpoints, and ctDNA [9,10]. However, few are rou-
tinely used in clinical practice.

From a molecular standpoint, GA presents a high degree of molecular heterogene-
ity with subtypes exhibiting diverse biological behaviors. The Cancer Genome Atlas
(TCGA) [11] proposes a molecular classification dividing GA into four subtypes with
distinct clinical and prognostic features based on genetic and epigenetic data across six plat-
forms: (1) Epstein–Barr virus (EBV)-positive tumors (9% of cases), which show recurrent
PIK3CA mutations, DNA hypermethylation, and JAK2 or PD-L2 amplification; (2) Mi-
crosatellite unstable tumors (22% of cases), which display elevated mutation rates; (3) ge-
nomically stable (GS) tumors (20% of cases), which are enriched for the diffuse histological
variant and RHOA mutations or fusions involving RHO-family GTPase-activating proteins;
and (4) tumors with chromosomal instability (CIN) (50% of cases), which show marked
aneuploidy and focal amplification of receptor tyrosine kinases. The Asian Cancer Research
Group (ACRG) [12] established an alternative classification based on data solely from
Asian patients, who were categorized into four molecular subtypes: (1) mesenchymal-like
type, which includes diffuse-subtype tumors with the worst prognosis; (2) Microsatellite
unstable tumors, which are hypermutated intestinal-subtype tumors with the best overall
prognosis; and (3) TP53-active and (4) TP53-inactive types, which include patients with
intermediate prognosis.

Several studies [12–16] have investigated the clinical characteristics and prognostic
role of these molecular subgroups in different GA populations. They conclude that the
GS subtype correlates quite well with the diffuse histology and has the poorest prognosis.
The MSI subtype, more common in older patients, has the best prognosis along with
the EBV subtype, which tends to be located proximally and is associated with intense
inflammatory infiltration. The CIN subtype would be the most common and has an
intermediate prognosis. Furthermore, some studies assessing the effectiveness of treatments
according to molecular subtypes have concluded that the MSI and EBV groups are likely
the ones that benefit the least from adjuvant CT [16,17] but are predictive factors for
immunotherapy response. However, despite the growing body of knowledge, treatment
decision-making is not currently based on molecular subtypes.

Recent advances in RNA sequencing make it possible to characterize transcriptionally
diverse GA subgroups, which allows for better carcinogenesis understanding, more precise
diagnosis, and the assessment of new prognostic and therapeutic strategies [13,14,18,19].
RNA-seq plays a pivotal role in incorporating omics data and is one of the platforms used
to define molecular subgroups of GA within the TCGA classification [11]. In addition,
computational analyses on intricate omics data enable a more profound comprehension of
tumor molecular characteristics.
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We conducted this study to obtain a deeper molecular classification of GA using RNA
sequencing data from TCGA in patients with localized tumors who received adjuvant CT.
Our aim is to gain a better understanding of the molecular heterogeneity of GA, thus allow-
ing a patient’s classification in a way that provides improved clinical and therapeutic utility.

2. Results
2.1. Gastric Adenocarcinoma TCGA Cohort

The GA TCGA cohort includes 443 patients with clinical data available. A homogeneous
group of 150 patients with localized disease who were treated with 5-fluorouracil and/or
platinum-based adjuvant CT was selected for further analyses. Eight of these patients with no
RNA-seq data were excluded. Therefore, the final study population included 142 patients, 88 of
whom had the TCGA molecular subtype available and 54 patients without this information.
The patient selection process is illustrated in Supplementary Figure S1.

At a median follow-up of 15 months, median overall survival (OS) has not been reached
with 25 deaths occurring. Our analysis revealed significant distinct survival outcomes
among TCGA groups, with the GS subtype showing the worst prognosis (Supplementary
Figure S2). Extended clinical information is provided in Supplementary Table S1.

2.2. RNA-Seq Data Pre-Processing and Centroid Assignation

Retrieved RNA-seq data from selected patients included 23,501 genes, 16,993 of which
remained after processing and filtering. Subsequently, the 2000 most variable genes were
selected for further analysis. Samples lacking TCGA subtype information were assigned to
CIN, MSI, GS, or EBV subtypes using Pearson correlation, and centroids were generated for
each subtype. Following the assignment of previously unclassified samples to one of the
four TCGA molecular subtypes, the overall distribution of the 142 patients was as follows:
CIN 77 (54.2%), MSI 27 (19.0%), GS 29 (20.5%), and EBV 9 (6.3%) (Supplementary Table S1).

2.3. Functional Characterization of the TCGA GA Cohort Treated with Adjuvant CT

A network using PGM incorporating the 2000 most variable genes was built. Its
functional structure was explored and 12 functional nodes with overrepresented biological
functions were defined (Figure 1, Supplementary Table S2).
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Previously established TCGA GA molecular subtypes were compared according to
the activities of functional nodes. MSI tumors exhibited higher activity in the transcription
functional node. CIN tumors presented higher activities in keratinocytes, membrane
transport, Wnt pathway, and transcription functional nodes, while GS tumors showed
higher activity in lipid metabolism, cellular adhesion and proteolysis, cellular adhesion
and differentiation, and immune system and inflammatory response functional nodes
(Supplementary Figure S3).

2.4. Biological Layer Analysis

To explore the presence of different layers of information among the transcriptomics
data, sparse k-means/CC algorithm workflow was used [20,21]. Seven biological layers
were defined. All of the layers divided patients into two groups except layer 7, which
divided them into three groups. Each layer was associated with specific biological functions
using a gene ontology analysis. The characteristics of each layer are provided in Table 1.

Table 1. Summary of biological layers characteristics.

Layer Main Function
(Gene Ontology) Groups Genes Patients

n (%)

1 Muscular and nervous 2 118 Group 1
86 (60.6)

Group 2
56 (39.4)

2 Cellular adhesion 2 97 Group 1
69 (48.6)

Group 2
73 (51.4)

3 Proteolysis 2 46 Group 1
79 (55.6)

Group 2
63 (44.4)

4 Cellular differentiation 2 125 Group 1
64 (45.1)

Group 2
78 (54.9)

5 Immune system 2 116 Group 1
77 (54.2)

Group 2
65 (45.8)

6 Lipid metabolism 2 65 Group 1
70 (49.3)

Group 2
72 (50.7)

7 Cellular adhesion 3 104 Group 1
45 (31.7)

Group 2
52 (36.6)

Group 3
45 (31.7)

The distribution of TCGA subtypes among the newly defined biological layers was then
explored. Layers 1, 2, 4, 5, and 7 classified patients into similar groups to those previously
defined by the TCGA classification (Table 2). However, proteolysis and lipid metabolism
layers showed no relation with CIN, MSI, and GS subtypes, dividing samples into groups
different from TCGA subtypes. The evaluation of the relationship between the TCGA EBV
subtype and biological layers is hindered by the limited number of patients. Nonetheless, all
EBV samples were classified into lipid metabolism cluster 2 and cellular adhesion cluster 3.

Table 2. Distribution of gastric adenocarcinoma TCGA molecular subtype in each layer.

Layer Cluster CIN
n (%)

MSI
n (%)

GS
n (%)

EBV
n (%)

Layer 1: Muscular and
Nervous *

I 54 (70.1) 23 (85.2) 3 (10.3) 6 (66.7)
II 23 (29.9) 4 (14.8) 26 (89.7) 3 (33.3)

Layer 2: Cellular Adhesion * I 36 (46.8) 23 (85.2) 3 (10.3) 7 (77.8)
II 41 (53.2) 4 (14.8) 26 (89.7) 2 (22.2)

Layer 3: Proteolysis I 39 (50.6) 17 (63.0) 16 (55.2) 7 (77.8)
II 38 (49.4) 10 (37.0) 13 (44.8) 2 (22.2)

Layer 4: Cellular
Differentiation *

I 26 (33.8) 24 (88.9) 7 (24.1) 7 (77.8)
II 51 (66.2) 3 (11.1) 22 (75.9) 2 (22.2)

Layer 5: Immune System * I 51 (66.2) 20 (74.1) 1 (3.4) 5 (55.6)
II 26 (33.8) 7 (25.9) 28 (96.6) 4 (44.4)

Layer 6: Lipid Metabolism I 43 (55.8) 13 (48.1) 14 (48.3) 0 (0)
II 34 (44.2) 14 (51.9) 15 (51.7) 9 (100.0)
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Table 2. Cont.

Layer Cluster CIN
n (%)

MSI
n (%)

GS
n (%)

EBV
n (%)

Layer 7: Cellular Adhesion
I 44 (57.1) 1 (3.7) 0 (0) 0 (0)
II 20 (26.0) 4 (14.8) 28 (96.6) 0 (0)
III 13 (16.9) 22 (81.5) 1 (3.4) 9 (100)

Abbreviations: CIN: chromosome instability. EBV: Epstein–Barr virus; GS: genomically stable; MSI: Microsatellite-
instability. * Layers included in the combined molecular layer. Statistically significant results are marked in bold.

2.5. Combined Molecular Layer

As layers 1, 2, 4, and 5 provide overlapping information (Supplementary Figure S4)
and show correlation with the previously defined TCGA subtypes, they were grouped
into a unique classification called combined molecular layer (CML). Since layer 7 divided
patients into similar groups and had similar biological functions to layer 2, its information
was disregarded. A total of 456 genes from layers 1, 2, 4, and 5 were used to define the CML
(Supplementary Table S3) and 3 groups were established using CC analysis: 45 (31.69%)
samples were included in CML1, 39 (27.46%) in CML2, and 57 (40.14%) in CML3.

CML3 tumors showed the highest lipid metabolism, keratinocytes, and Wnt pathway
functional node activities, whereas CML2 presented the highest cellular adhesion, immune
system, and proteolysis functional node activities (Supplementary Figure S5A,B). Survival
analysis showed significantly different outcomes among these groups: CML1 had a better
prognosis than CML2 and CML3, with CML2 emerging as the worst prognostic group
(p = 0.01) (Figure 2A). When the CML classification was compared with the TCGA sub-
groups, it was observed that CML1 correlated closely to MSI tumors, CML2 to GS tumors,
and CML3 to CIN tumors (Figure 2B).
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(A) Survival analysis according to CML subgroups. (B) Distribution of the TCGA GC molecular
subtypes in the CML groups. Abbreviations: CIN: chromosome instability. CML: combined molecular
layer; EBV: Epstein–Barr virus; GS: genomically stable; MSI: Microsatellite-instability.
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CIN Molecular Subtype

CML3 includes 63.6% of TCGA CIN tumors, while 24.7% of them were assigned to
CML1 along with the majority of MSI tumors (Figure 2B), thus suggesting transcriptomic
heterogeneity among this subtype. When we explore this heterogeneity, differences in
functional node activities between these two CIN subgroups were found. CML3 CIN
tumors (CIN-classical tumors from now on) showed significantly higher cellular adhesion
and proteolysis, immune system and inflammatory response, cellular adhesion and dif-
ferentiation, transcription, Wnt pathway, and transmembrane transport functional node
activities than CML1 CIN tumors (CIN-MSI-like tumors from now on) (Supplementary
Figure S6A,B). Moreover, CIN-classical tumors presented a tendency to a worse OS than
CIN-MSI-like (HR= 4.33; 95%CI 0.87–21.47, p = 0.07) (Figure 3).

Int. J. Mol. Sci. 2024, 25, 11371 7 of 18 
 

 

 
Figure 3. Molecular combined layer (CML) reflecting differences in functional node activity levels 
in the CIN TCGA subtype. Survival curves according to CIN subtype CML classification by func-
tional information. Abbreviations: CIN: chromosome instability. MSI: Microsatellite-instability. 

2.6. Proteolysis Layer 
The classification based on the proteolysis layer did not correlate with the TCGA GC 

molecular subtypes. It classified patients into two categories, consisting of 79 (56%) and 
63 (44%) patients (clusters 1 and 2, respectively) (Table 1). Significant variations in func-
tional node activities related to lipid metabolism, membrane function, cellular adhesion, 
proteolysis, inflammatory responses I and II, and keratinocytes were identified between 
these two groups (Supplementary Figure S7B). However, no differences in OS were ob-
served, either independently or in combination with the previously defined CML classifi-
cation (Supplementary Figure S7C). 

Proteolysis categorization was established based on genes such as claudin-18, mucins 
5 and 6, and keratin 20, among others. Expression levels of claudin-18 were significantly 
different between proteolysis clusters 1 and 2, resulting in low-claudin-18 and high-clau-
din-18 expression groups (Figure 4A). Additionally, claudin-18 expression divides pa-
tients into low-claudin-18 and high-claudin-18 expressors within each of the TCGA sub-
types, after being separated by the proteolysis layer within these groups (Figure 4B). 
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2.6. Proteolysis Layer

The classification based on the proteolysis layer did not correlate with the TCGA
GC molecular subtypes. It classified patients into two categories, consisting of 79 (56%)
and 63 (44%) patients (clusters 1 and 2, respectively) (Table 1). Significant variations
in functional node activities related to lipid metabolism, membrane function, cellular
adhesion, proteolysis, inflammatory responses I and II, and keratinocytes were identified
between these two groups (Supplementary Figure S7B). However, no differences in OS
were observed, either independently or in combination with the previously defined CML
classification (Supplementary Figure S7C).

Proteolysis categorization was established based on genes such as claudin-18, mucins
5 and 6, and keratin 20, among others. Expression levels of claudin-18 were significantly
different between proteolysis clusters 1 and 2, resulting in low-claudin-18 and high-claudin-
18 expression groups (Figure 4A). Additionally, claudin-18 expression divides patients into
low-claudin-18 and high-claudin-18 expressors within each of the TCGA subtypes, after
being separated by the proteolysis layer within these groups (Figure 4B).
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Figure 4. (A) Division of patients into low-claudin-18 and high-claudin-18 expression groups within
the proteolysis layer (79 samples in Cluster 1 and 63 samples in Cluster 2). (B): Claudin-18 expression
across the TCGA molecular subtypes (CIN, MSI, and GS) whose distribution according to the
proteolysis layer is included in Table 2. ****: p < 0.0001; ***: p < 0.001.

2.7. Lipid Metabolism Layer

The lipid metabolism layer stratified samples into two groups: 70 patients (49%) in
cluster 1 and 72 patients (51%) in cluster 2. Differences were observed in lipid metabolism,
transcription, membrane, keratinocytes, immune systems, and inflammatory response II
(Supplementary Figure S8A,B). However, OS showed no significant distinction between
the two clusters (Supplementary Figure S8C).

Upon incorporating information from the lipid metabolism layer into the CML, vari-
ations in OS were identified within the CML2 cluster (as previously mentioned, closely
aligned with the TCGA GS subgroup). The median OS was 60.37 months for CML2
(GS)-lipid metabolism 2 and 15.57 months for CML2 (GS)-lipid metabolism 1 clusters,
respectively (HR = 2.88; 95% CI, 1.14–12.66; p = 0.0368) (Figure 5).
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Figure 5. (A) Overall survival curves of patients classified into CML2 (aligned to GS tumors as
shown in Figure 2B) with further stratification into Lipid Metabolism Cluster 1 and Lipid Metabolism
Cluster 2. CML 2-Lipid Metabolism Cluster 2 exhibited higher median OS than Cluster 1. (B) Survival
curves for the TCGA subtypes (MSI, GS, and CIN, corresponding to CML 1, CML 2, and CML 3,
respectively, as shown in Figure 2B) stratified further by whether they belong to Cluster 1 or 2 of the
lipid metabolism layer.

3. Discussion

GA represents a complex and clinically diverse malignancy with a significant global
health impact. Even in localized or locally advanced stages, despite recent advances in
multimodal treatment, the prognosis remains poor, with cure rates less than 40%. We need
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better tools to more effectively identify which patients will benefit from treatment and
discover new therapeutic targets, aiming to improve these poor outcomes.

Several clinicopathological factors have been studied to better identify patients who
may benefit from CT or who are chemoresistant. These include the neutrophil-lymphocyte
or lymphocyte-monocyte ratio [9], systemic immune-inflammation index [22], lymphovas-
cular and perineural invasion [23], tumor differentiation [24], tumor regression rate, and
lymph node involvement [25]. However, few are commonly used in treatment decisions.
From a molecular perspective, promising studies focus on the prognostic value of MSI [25],
peritumoral inflammatory infiltrate [10], immune checkpoint expression [10], and circulat-
ing tumor DNA (ctDNA) after surgery [26]. Still, no definitive biomarkers or molecular
profiles have been established in clinical practice to guide the need for chemotherapy.

Despite the insights provided by the TCGA work [11], its utility in treatment decision-
making for GA patients is not clear. Clinical trials are typically not designed for specific
molecular subgroups, and few studies have explored the prognostic significance of this
classification [12,15], and its role in the selection of patients who may benefit from avail-
able treatments. In addition, these classifications are far from perfect, as the populations
included are not homogeneous. New strategies for the early diagnosis of GA and the
identification of biomarkers that enable a more precise selection of patients who may
benefit from existing treatments are essential. Emerging tools, such as micro-RNA detec-
tion, hold potential as early diagnostic methods [27] and may also serve as predictors of
treatment resistance [28,29], offering valuable insights for guiding personalized therapeutic
strategies. In the context of RNA-seq analysis, various studies have identified subsets of
GA in different stages with characteristic expression profiles that correlate with certain
histopathological variables, a higher risk of recurrence, or specific patterns of dissemination,
constituting independent prognostic predictors for this neoplasm [14,18]. However, these
tools have not yet been incorporated into clinical practice.

This study aims to deeply explore the molecular heterogeneity of GA and its implica-
tions for CT response and survival. Using a multi-layered functional analysis approach on
CT-treated localized GA patients from the TCGA cohort, we identified distinct functional
layers, molecular subtypes, and survival patterns associated with specific biological func-
tions. These findings enhance our understanding of the biology of the disease and hold
potential implications for personalized treatment strategies.

Probabilistic graphical models (PGMs) offer a valuable tool for modeling gene in-
teractions, which facilitate genetic data analysis and disease prediction. PGMs have
proven to be effective in identifying variations in biological processes across diverse tumor
types [20,30,31]. Similarly, classification methods like sparse k-means [32] and consensus
cluster (CC) [33] have shown efficacy in delineating tumor and immune subtypes in breast,
bladder, or colon cancers [20,21,34].

A notable strength of our study lies in the selection of a more homogeneous population
compared to the broader TCGA cohort. Specifically, we included only patients with local-
ized tumors who received 5-fluorouracil and/or platinum-based adjuvant chemotherapy.
In our cohort, the median OS was not reached during a median follow-up of 15 months.
However, it is crucial to acknowledge the dynamic nature of the treatment landscape
for locally advanced GA. Patients in the TCGA study likely underwent less effective
chemotherapy regimens, with over 65% receiving monotherapy involving fluoropyrim-
idines or platinum. This stands in contrast to contemporary, more aggressive approaches
such as the perioperative FLOT schedule [7].

While the original TCGA study did not report survival differences by molecular sub-
types in his overall population, our analysis focused on localized GA patients treated with
adjuvant CT revealed significant distinct outcomes among TCGA subtypes. GS tumors
showed the worst prognosis, aligning with other studies based on ACRG [12] or TCGA [11]
classifications. Historically, the Lauren diffuse histological subtype, linked to GS tumors,
has been linked to poorer survival in both localized and advanced diseases [35–37]. In the
TCGA, the diffuse histology is strongly associated with the molecular GS subtype, suggest-
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ing an unfavorable prognosis. Reports have also highlighted the inherent chemoresistance
of these tumors [35,38], emphasizing the need to explore alternative therapeutic approaches
in this population.

In our study, retrieved RNA-seq data from the selected 142 patients initially covered
23,501 genes. To manage data complexity, we prioritized the analysis of the 2000 most vari-
able genes with the aim of capturing dynamic expression while minimizing noise. PGMs
allowed us to discern the functional structure of these genes and to define 12 functional
nodes harboring overrepresented biological functions, thus providing a comprehensive
perspective of crucial processes in GA pathology and underlying molecular mechanisms.
This approach, previously shown to be successful across different tumor types [20,21,30,34],
enhances the interpretability of the results and facilitates a deeper understanding of gene
interactions (Figure 1).

The key breakthrough of our analysis lies in the identification of seven distinct biologi-
cal layers of information among the transcriptomic data (Table 2). These layers spanned a
wide spectrum of biological activities, including muscular and nervous functions, cellular
adhesion, proteolysis, cellular differentiation, immune system responses, lipid metabolism,
and keratinocyte activities, which can assist in obtaining molecular data applicable to
clinical practice. When we explored the distribution of TCGA subtypes among the defined
biological layers, most of them grouped patients in a similar way to the TCGA classification.
However, proteolysis and lipid metabolism layers classified patients independently of
TCGA subtypes, thus potentially providing supplementary insights for a more precise
classification of these tumors.

As described above, the CML, composed of 456 genes, emerged as a critical deter-
minant of TCGA-defined molecular subtypes (Figure 2B) and is closely associated with
prognosis (Figure 2A). CML1 predominantly includes MSI tumors, exhibiting the best
survival, while CML2 correlates with GS tumors, representing the worst prognostic group.
CML3 encompasses most CIN tumors, demonstrating intermediate outcomes. These clus-
ters also showed differential expression of genes from various nodes (Supplementary
Figure S5B). For instance, CML3 tumors exhibit the highest Wnt pathway functional node
activity. Aberrant activation of the Wnt signaling cascade in primary tumors, particularly
in GA, plays a pivotal role in cancer progression, promoting epithelial-mesenchymal tran-
sition (EMT), enhancing tumor cell migration and invasion, facilitating the escape from
dormant states at metastatic sites, and modulating immune surveillance and evasion [39].
Consequently, dysregulation of the Wnt pathway may represent a novel therapeutic target,
especially for CIN tumors. Investigational inhibitors targeting various points along the
Wnt-APC-Beta-catenin pathway have already been developed [40,41] and hold promise as
a therapeutic strategy against metastatic spread.

According to the CML classification, most of CIN tumors were designated as CML3,
but approximately one-third were grouped into the CML1 cluster, along with the majority
of MSI tumors. This observation indicates transcriptomic heterogeneity within the CIN
category. Based on variations in functional node activities, we identified two distinct subsets
of CIN tumors, termed CIN-classical and CIN-MSI-like tumors. The former subgroup
displayed heightened transcription, cellular adhesion, immune system response, Wnt
pathway, and transmembrane transport node activities, along with worse OS compared
to CIN-MSI-like tumors. TP53 mutations, traditionally linked with CIN tumors, have
been associated with diminished immune activities and resistance to immunotherapy [42].
Nevertheless, our findings suggest that the CIN-MSI-like subgroup may exhibit molecular
behavior more similar to MSI tumors. Despite the absence of defined DNA repair protein
deficiencies, they might respond more favorably to immunotherapy while displaying
increased resistance to CT, rendering them less suitable candidates for adjuvant treatment.

When combining the lipid metabolism layer with the CML, it specifically segregated
the CML2 (GS-like) cluster into two clearly differentiated prognostic groups (Figure 5).
This suggests the existence of two distinct populations within the CML2 subtype with
highly differential expression of molecules related to lipid metabolism. This finding is
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clinically relevant, given the potential for targeted therapeutic interventions based on the
combination of molecular subtypes and lipid metabolism status. Abnormal lipid metabolism
is identified as a critical feature in gastric tumor cells. Several studies indicate that altered
expression of genes linked to fatty acid synthesis or oxidation is significantly associated
with malignant phenotypes, promotes metastasis, and induces drug resistance in GA cells
by reshaping the tumor microenvironment [43–45]. Accordingly, inhibitors of key lipid
enzymes, such as carnitine palmitoyltransferase 1B (CPT1B) and CPT2 or those involved
in fatty acid oxidation, are currently under preclinical and clinical investigations. They
could potentially play a role in reversing CT resistance in gastrointestinal tumors [46,47].
This is particularly relevant in GS tumors, which have traditionally shown resistance to
conventional treatments.

A noteworthy aspect of our study is the identification of two groups with signifi-
cantly distinct claudin-18 expression levels within the proteolysis layer. Proteolysis cluster
2 displayed elevated claudin-18 activity, suggesting potential benefits from anti-claudin
therapies. As a vital component of gastric epithelial tight junctions, claudin 18.2 (CLDN
18.2) plays a fundamental role in cell-cell adhesion and migration, selectively allowing
the paracellular flux of ions and small molecules between cells [48]. In normal tissues,
CLDN18.2 epitopes within tight junction complexes are typically inaccessible. However, in
tumor tissues, these epitopes are exposed on the surface of tumor cells due to disrupted
cell polarity during malignant transformation. CLD18-ARHGAP26/6 fusions, identified
in GA, are predominantly present in the TCGA GS and diffuse-type subgroups [49], and
closely correlated with high levels of CLDN 18.2 expression [50]. This expression is found
in around 25–40% of metastatic gastroesophageal adenocarcinomas [51,52]. Recently, two
phase 3 trials (GLOW [53] and SPOTHLIGHT [54]) revealed that zolbetuximab, a first-
in-class monoclonal antibody binding to CLDN18.2, in combination with first-line CT,
prolonged OS in HER2-negative and CLDN18.2-positive GA patients. Moreover, other
treatment strategies targeting CLDN18.2 are under evaluation in both preclinical and clini-
cal trials. Further studies are required to confirm whether these clusters with differential
claudin-18 activity are better predictors of claudin expression than the TCGA subgroups
and would allow us to better select patients who would have a greater benefit. This is cru-
cial as CLDN18.2 positivity appears evenly distributed across the four molecular subtypes
(Figure 4B). It also remains to be determined whether they play a predictive role in the
response to anti-claudin therapies.

Our study has several limitations. The sample size is relatively small, and the lim-
ited follow-up may constrain the robustness of our conclusions regarding recurrence and
survival outcomes. Moreover, variations in chemotherapy regimens received by patients
could differ from current standard treatments, potentially influencing study outcomes.
The inherent heterogeneity of GA presents challenges in precisely defining molecular
subtypes and identifying specific biomarkers for treatment response. Additionally, the
retrospective nature of our analysis limits our ability to establish causality and may intro-
duce selection biases. The evolving landscape of treatment modalities in locally advanced
GA adds complexity, as patients in our study may have received less active chemother-
apy regimens compared to contemporary approaches. Nevertheless, our study provides
valuable insights that enhance understanding of GA biology and may guide personalized
treatment strategies.

Future molecular perspectives should include comprehensive genomic profiling to
identify novel mutations and biomarkers that guide treatment decisions. Integrating
multi-omics approaches can elucidate interactions between molecular pathways, partic-
ularly lipid metabolism and proteolysis. Additionally, focusing on the tumor immune
microenvironment may help identify immune signatures predictive of immunotherapy
responses. Exploring circulating biomarkers like micro-RNAs through liquid biopsies can
enable real-time monitoring of treatment efficacy. Lastly, targeting cancer stem cells and
investigating novel drug combinations could enhance therapeutic outcomes and address
chemoresistance in GA.
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4. Materials and Methods
4.1. Patient Selection and RNA-Seq Data Pre-Processing

We select patients with localized GA included in the TCGA project who received
5-fluorouracil and/or platinum-based adjuvant CT and have RNA-seq data available [9].
The patient selection process is illustrated in Supplementary Figure S1.

RNA-seq values underwent log2 transformation, and genes with ≥75% of valid values
were included in the analysis. Missing values were imputed using Perseus Software v12 [55],
and the study focused on the top 2000 most variable genes based on standard deviation.

4.2. Molecular Subtype Attribution

A differential gene set among TCGA subtypes was defined using multi-class Sig-
nificance Analysis of Microarrays (SAM). This involved samples with available TCGA
molecular subtype information and the 2000 most variable genes. Centroids for each
molecular subtype were then established. For tumors lacking TCGA molecular subtype
data, gene expression values were compared with each subtype centroid using Pearson
correlation, and the sample was assigned to the subtype with the highest correlation.

4.3. Network Construction and Functional Node Activities

A PGM using GA TCGA RNA-seq data was defined with the gRapHD R Package
v6.0.1 [56]. The PGM aimed to minimize the Bayesian Information Criterion (BIC) in a high-
dimensionality context. This was achieved through a two-step process: first, defining the
minimum spanning tree with maximum likelihood, and then conducting a forward search
of edges to minimize the BIC while preserving graph decomposability [57]. The acquired
network was divided into branches, and functional nodes were determined based on each
branch’s overrepresented function. Overrepresented functions were identified through
gene ontology analyses using the DAVID webtool, specifying categories as GOTERM-
DIRECT, Biocarta, and KEGG_PATHWAY, with “Homo sapiens” as the background [58].
Subsequently, the functional node activity for each node in each sample was calculated as
the mean expression of genes associated with the primary function of that node. These
functional node activities facilitated group-wise comparisons of samples.

4.4. Biological Layer Analysis

Sparse k-means [32] and Consensus Cluster (CC) algorithms [59] were employed
for the molecular characterization of TCGA GA tumor samples [20,21]. Sparse K-means
assigned weights to genes based on their relevance in sample classification, while CC
determined the optimum number of sample groups defined by these genes. Genes identi-
fied in each layer underwent gene ontology analysis for functional information retrieval.
Both analyses were performed recursively, defining different layers of information. Sparse
K-means and CC calculations used R v3.2.5 with the sparcl package [32], and the Consensus
Cluster Plus package v1.38 [59], respectively.

4.5. Differential Gene Expression Analyses

SAM was employed to analyze differential expression patterns among groups, with a
false discovery rate (FDR) set below 5% [60]. Hierarchical clusters were constructed using
an average linkage clustering method with Pearson correlation as distance. These analyses
were conducted using the TM4 Multiexperiment Viewer (MeV) 4.9 software [61].

4.6. Statistical Analyses

Mann–Whitney, Kruskal–Wallis, and ANOVA’s multiple comparison tests were uti-
lized to assess differences in functional node activity between groups, and results were
presented using Tukey’s box and whiskers graphs. Differences in distributions were evalu-
ated using the Chi-squared test, with a Yates correction or a Fisher exact test applied when
necessary. Survival analyses employed Kaplan Meier and log-rank tests, defining OS as the
time elapsed between diagnosis and death or last follow-up. GraphPad Prism v6 software
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was used for these analyses, and network visualization was performed using Cytoscape
software v3.5.1 [62]. All p-values were two-sided and a p-value below 0.05 was considered
statistically significant.

5. Conclusions

In summary, our comprehensive analysis of the TCGA GA cohort has revealed the
presence of distinct functional layers, molecular subtypes, and survival patterns linked to
specific biological functions. The identification of the CML and its interaction with lipid
metabolism status provides novel perspectives into patient prognosis, particularly in the
context of the GS molecular subtype. Additionally, the discovery of claudin-18 activity and
its potential as a therapeutic target adds further depth to our understanding of the disease.
All these findings pave the way for more precise and personalized treatment strategies
and help clinicians and researchers develop targeted therapies that take into account the
intricate biological complexity of this challenging malignancy. Further exploration of these
layers and their associations with patient outcomes will undoubtedly shape the future of
GA management, with the potential to improve survival rates and enhance the quality of
life for affected individuals.
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