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Abstract: Understanding the complex link between inflammation, gut health, and dietary amino
acids is becoming increasingly important in the pathophysiology of inflammatory bowel disease
(IBD). This study tested the hypothesis that a leucine-rich diet could attenuate inflammation and
improve gut health in a mouse model of IBD. Specifically, we investigated the effects of a leucine-rich
diet on dextran sulfate sodium (DSS)-induced colitis in germ-free (GF) SAMP1/YitFC (SAMP) mice
colonized with human gut microbiota (hGF-SAMP). hGF-SAMP mice were fed one of four different
diets: standard mouse diet (CHOW), American diet (AD), leucine-rich AD (AD + AA), or leucine-rich
CHOW diet (CH + AA). Body weight, myeloperoxidase (MPO) activity, gut permeability, colonoscopy
scores, and histological analysis were measured. Mice on a leucine-rich CHOW diet showed a
decrease in fecal MPO prior to DSS treatment as compared to those on a regular diet (p > 0.05);
however, after week five, prior to DSS, this effect had diminished. Following DSS treatment, there
was no significant difference in gut permeability, fecal MPO activity, or body weight changes between
the leucine-supplemented and control groups. These findings suggest that while a leucine-rich diet
may transiently affect fecal MPO levels in hGF-SAMP mice, it does not confer protection against
DSS-induced colitis symptoms or mitigate inflammation in the long term.

Keywords: leucine; anti-inflammatory; diet; DSS colitis; SAMP1/YitFC mice

1. Introduction

Dietary amino acids are critical regulators of cellular and microbial metabolic pathways
and play crucial functions in gut homeostasis [1]. Specifically, in inflammatory bowel
disease (IBD), amino acids have been shown to play an important role in gut inflammation
and modulation of gut microbiota with amino acid metabolism linked to IBD severity [2–6].

A growing number of chronic inflammatory diseases and metabolic conditions are
attributed to various environmental factors or modern diets, such as the Western diet, which
is characterized by high animal protein, saturated fats, and refined carbohydrates [7,8]. In
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terms of dietary protein, both a lack or an abundance of dietary amino acids (i.e., amino
acid-deficient or amino acid-enriched diet) has also been shown to worsen the severity of
colitis [5,9], as well as reduce inflammation and oxidative stress in experimental IBD [10–13].
However, investigating the relationship between diet and chronic gastrointestinal disorders
in humans is challenging.

Amino acids are essential building blocks for metabolically active proteins, glutathione
(GSH), nitric oxide, polyamines, and other compounds in the intestinal mucosal cells, thus,
helping in promoting intestinal growth and maintaining the mucosal integrity and barrier
function [14]. Furthermore, amino acids aid in the production of macromolecules required
for intestinal mucosal wound repair and serve as an energy source for enterocytes. The gut
microbiota can use these amino acids to build proteins and other metabolites, impacting
the host’s nutrition and function [15]. Some amino acids including glutamine and arginine
have been shown to influence the course of IBD by potentially reducing inflammation,
oxidative stress, and proinflammatory cytokine levels [16,17]. Recently, our lab identified a
negative correlation between fecal leucine and intestinal inflammation [18]. The potential
role of dietary leucine is further supported by human studies showing decreased leucine
concentrations during active disease [19,20]. The discrepancies in serum amino acid levels
between IBD patients and healthy people, as well as the incidence of malnutrition in
IBD, underline the need for innovative adjunct medications that address these underlying
metabolic imbalances [21–23].

The study of human IBD prototypes, specifically CD and UC, has been significantly
advanced through the development of the SAMP mouse model, which is characterized by
a 100% incidence of transmural inflammation and cobblestone-like lesions in the ileum [24].
By the age of 14 weeks, these mice exhibit pathological features strikingly similar to those
seen in human CD. To explore dietary effects on intestinal inflammation, particularly in
UC, the dextran sodium sulfate (DSS) model is the most widely adopted protocol across
laboratories studying IBD/UC (28560286). We specifically focused on the SAMP mouse
model because no other available animal models replicate the CD or induced colitis.

Herein, we investigated the effect of a leucine-rich diet, in the context of an ‘American’
diet [18] and a standard mouse laboratory diet, using germ-free SAMP1/YitFC (SAMP)
mice colonized with human gut microbiota and treated with dextran sulfate sodium (DSS).
We hypothesized that leucine-rich diets would be anti-inflammatory and provide protection
against DSS-induced colitis.

2. Results
2.1. Leucine-Rich Diet Had a Short-Term Effect of Fecal MPO in hGF-SAMP Mice

To determine the effect of dietary leucine in hGF-SAMP mice, mice were fed one of
four diets for 6 weeks and then treated with DSS. As an in vivo measure of inflammation,
we measured fecal MPO each week. Prior to DSS treatment, mice fed the leucine-rich diet
exhibited a significantly lower fecal MPO compared to those fed the standard diet (fecal
MPO activity; CH + AA: 3.0 ± 0.8 vs. CH: 4.9 ± 0.7; p = 0.003, week 5); however, this effect
disappeared by week 6. The MPO activity was decreased in the leucine-rich diet groups
temporarily for up to 5 weeks as compared to the control groups (Figure 1A–G). After
6 weeks of diet administration, the % residual weight of leucine-rich diet groups was lower
than that of control groups (Figure 1H).



Int. J. Mol. Sci. 2024, 25, 11748 3 of 10Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. MPO activity in mice over 6 weeks. (A–G) MPO activity after 1, 2, 3, 4, 5, and 6 weeks of 
diet administration. Note, there was no significant difference between groups in fecal MPO at base-
line, prior to starting the diets. (H) Percentage change from original body weight over 6 weeks (de-
fined as day 0 and as 100%) (ns p ≥ 0.05, ** p < 0.01, **** p < 0.0001). 
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Following 6 weeks of diet, mice groups were treated with 3% DSS for 7 days to induce 

acute colitis. Mice fed leucine-rich diets exhibited comparable colitis symptoms (body 
weight, colonoscopy, histology, fecal MPO, and gut permeability) compared to their DSS-
treated controls. There was no significant difference in the % change in body weight of the 
mice fed with leucine-rich AD compared to the control group (% residual weight on the 
day of sacrifice; AD + AA: 72.4 ± 6.8, AD: 70.5 ± 6.5, ANOVA, p = 0.06) (Figure 2A). How-
ever, the body weight of mice fed with a leucine-rich CHOW diet was significantly lower 
than that of the control group (CH + AA: 82.7 ± 14.0, CH: 98.4 ± 3.8, ANOVA, p = 0.06). 
There was no significant difference in the fecal MPO activity between the leucine-rich diet 
groups and the control groups after DSS (fecal MPO activity log2; AD: 5.3 ± 2.0, AD + AA: 
4.6 ± 1.5, CH: 3.7 ± 1.8, CH + AA: 5.6 ± 0.5; ANOVA, p = 0.3) (Figure 2B,C). There was also 
no improvement in gut permeability as determined by the translocation of FITC–dextran 
from the gut lumen into the plasma (FITC–dextran log2; AD + AA: 21.4 ± 0.9, AD: 20.8 ± 
1.3, CH + AA: 20.1 ± 1.5, CH: 18.7 ± 0.7; ANOVA, p = 0.005) (Figure 2D,E). No significant 
difference was identified in post-DSS colonoscopy and histology scores between the leu-
cine-rich diet groups and controls. The data presented in Table S1 represent. 

Figure 1. MPO activity in mice over 6 weeks. (A–G) MPO activity after 1, 2, 3, 4, 5, and 6 weeks
of diet administration. Note, there was no significant difference between groups in fecal MPO at
baseline, prior to starting the diets. (H) Percentage change from original body weight over 6 weeks
(defined as day 0 and as 100%) (ns p ≥ 0.05, ** p < 0.01, **** p < 0.0001).

2.2. Mice Fed Dietary Leucine Have Increased DSS-Induced Weight Loss Compared to Controls

Following 6 weeks of diet, mice groups were treated with 3% DSS for 7 days to
induce acute colitis. Mice fed leucine-rich diets exhibited comparable colitis symptoms
(body weight, colonoscopy, histology, fecal MPO, and gut permeability) compared to their
DSS-treated controls. There was no significant difference in the % change in body weight
of the mice fed with leucine-rich AD compared to the control group (% residual weight on
the day of sacrifice; AD + AA: 72.4 ± 6.8, AD: 70.5 ± 6.5, ANOVA, p = 0.06) (Figure 2A).
However, the body weight of mice fed with a leucine-rich CHOW diet was significantly
lower than that of the control group (CH + AA: 82.7 ± 14.0, CH: 98.4 ± 3.8, ANOVA,
p = 0.06). There was no significant difference in the fecal MPO activity between the leucine-
rich diet groups and the control groups after DSS (fecal MPO activity log2; AD: 5.3 ± 2.0,
AD + AA: 4.6 ± 1.5, CH: 3.7 ± 1.8, CH + AA: 5.6 ± 0.5; ANOVA, p = 0.3) (Figure 2B,C).
There was also no improvement in gut permeability as determined by the translocation of
FITC–dextran from the gut lumen into the plasma (FITC–dextran log2; AD + AA: 21.4 ± 0.9,
AD: 20.8 ± 1.3, CH + AA: 20.1 ± 1.5, CH: 18.7 ± 0.7; ANOVA, p = 0.005) (Figure 2D,E). No
significant difference was identified in post-DSS colonoscopy and histology scores between
the leucine-rich diet groups and controls. The data presented in Table S1 represent.
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Figure 2. Leucine supplementation does not reduce severity of acute chemical colitis. (A) Percentage 
change from original body weight (defined as day 0 and as 100%) after induction of DSS-colitis, (B) 
MPO activity before and (C) after DSS treatment, (D) intestinal permeability assay (FITC–dextran) 
before and (E) after DSS treatment, (F) colonoscopy score, (G) distal colon endoscopy images, (H) 
histology score, (I) representative histopathological sections of colon tissue (DSS, dextran sulfate 
sodium; FITC, fluorescein isothiocyanate; MPO, myeloperoxidase). 

3. Discussion 
Leucine is an aliphatic amino acid found in abundance in protein-rich foods [25]. The 

aliphatic amino acids, including leucine, isoleucine, and valine, have received considera-
ble interest for their functions that extend beyond conventional metabolic processes [26–
28]. Despite the well-known link between elevated circulating levels of various amino ac-
ids and their role in various diseases [29–32], limited research has been conducted on the 
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diet rich in leucine on DSS-induced colitis in hGF-SAMP mice. Our findings suggest that 
added dietary leucine significantly decreased intestinal inflammation for up to four 
weeks, as evident from the fecal MPO activity; however, leucine had no significant effect 
on DSS-colitis severity and intestinal permeability. Of note, however, leucine-fed mice had 
greater DSS-induced weight loss compared to control mice. 

The weekly assessment of fecal MPO activity suggested that leucine had a short-term 
anti-inflammatory effect on treated mice. According to previous studies conducted using 
amino acid diets, short-term treatment of various amino acids such as glutamine and ar-
ginine was found to help in the reduction of intestinal inflammation in rats and mice [33–
36]. This indicates that the dietary intervention of amino acids over a brief period has the 
potential to significantly reduce inflammation. 

Figure 2. Leucine supplementation does not reduce severity of acute chemical colitis. (A) Percentage
change from original body weight (defined as day 0 and as 100%) after induction of DSS-colitis,
(B) MPO activity before and (C) after DSS treatment, (D) intestinal permeability assay (FITC–dextran)
before and (E) after DSS treatment, (F) colonoscopy score, (G) distal colon endoscopy images,
(H) histology score, (I) representative histopathological sections of colon tissue (DSS, dextran sulfate
sodium; FITC, fluorescein isothiocyanate; MPO, myeloperoxidase).

3. Discussion

Leucine is an aliphatic amino acid found in abundance in protein-rich foods [25]. The
aliphatic amino acids, including leucine, isoleucine, and valine, have received considerable
interest for their functions that extend beyond conventional metabolic processes [26–28].
Despite the well-known link between elevated circulating levels of various amino acids
and their role in various diseases [29–32], limited research has been conducted on the
dietary intake of leucine in the context of IBD. In this study, we assessed the effect of
a diet rich in leucine on DSS-induced colitis in hGF-SAMP mice. Our findings suggest
that added dietary leucine significantly decreased intestinal inflammation for up to four
weeks, as evident from the fecal MPO activity; however, leucine had no significant effect
on DSS-colitis severity and intestinal permeability. Of note, however, leucine-fed mice had
greater DSS-induced weight loss compared to control mice.

The weekly assessment of fecal MPO activity suggested that leucine had a short-
term anti-inflammatory effect on treated mice. According to previous studies conducted
using amino acid diets, short-term treatment of various amino acids such as glutamine
and arginine was found to help in the reduction of intestinal inflammation in rats and
mice [33–36]. This indicates that the dietary intervention of amino acids over a brief period
has the potential to significantly reduce inflammation.
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There was no difference in post-DSS colonoscopy scores or intestinal permeability
between the leucine-treated and control groups, suggesting that a diet high in leucine does
not worsen or alleviate the severity of colitis. Various studies have shown that dietary
amino acids may play a role in increasing or alleviating the inflammation and symptoms of
colitis in animals. In one study, a diet rich in leucine prevented the invasion of inflammatory
cells and accelerated the expression of proinflammatory cytokines in rats [37]. In a previous
study conducted in rats, glutamine helped to protect them from colitis and decreased the
inflammation and severity of colitis [38]. Similarly, dietary intervention of several other
amino acids such as arginine, histidine, glycine, etc., protected from DSS-induced colitis
and helped in alleviating the inflammation and related symptoms [23,39,40]. In a previous
study conducted in mice, a diet rich in amino acids increased inflammation in the gut and
worsened DSS-induced colitis [41].

Leucine and various other aliphatic amino acids play a key role in regulating the
immune system by influencing several pathways related to cell growth, proliferation, differ-
entiation of immune cells, production of inflammatory cytokines, and the maintenance of
immune homeostasis [42,43]. Various studies have reported higher plasma concentrations
of aliphatic amino acids in different inflammatory-related diseases showing a negative
association between the amino acids and various diseases [44]. It was previously reported
that a leucine-rich diet inhibited the infiltration of inflammatory cells and increased the
expression of proinflammatory cytokines [21]. These findings suggest that leucine may
play a dual role in modulating immune responses. Previous studies have also reported that
the aliphatic amino acids have immune-modulating features and are linked to increased
inflammation and toxic health effects in various immunological disorders [45,46]. It was
previously reported in a study that a diet either low or deficient in leucine may inhibit
DSS-induced colitis and reduce intestinal inflammation [9]. Leucine and other amino acids
have been proven to have mixed effects on colitis, with some studies indicating protective
benefits and others indicating increased inflammation. Overall, leucine might play a dual
role in immune regulation, possibly regulating both inflammation and immunological
responses based on nutritional and disease conditions. In conclusion, this study gives
important insights into the various effects of leucine-rich diets on DSS-induced colitis in
hGF-SAMP mice. Further investigation is warranted to elucidate the potential correla-
tion between inflammation, body weight regulation, and leucine-rich diets in the context
of IBD.

4. Materials and Methods
4.1. Animals

This experiment tested groups of (6 mice/group) of age- and sex-matched 14-week-old
germ-free (GF) SAMP1/YitFc (SAMP) mice. The SAMP GF mouse colony (Cleveland
Digestive Diseases Research Core Center—CDDRCC, Mouse Models Core) is maintained
in high-efficiency particulate air-filtered pressurized isolators in the Animal Resource
Center ultra-barrier facility, at the Case Western Reserve University (CWRU) School of
Medicine. All experiments were conducted in BSL-2 grade rooms with dedicated use for
gnotobiotic animals.

All mice were caged using our GF-grade nested isolation (NesTiso) caging system
and maintained on non-edible Aspen bedding provided by the CDDRCC Mouse Models
Core. Mice were subjected to a 12 h light and 12 h dark cycle in AAALAC-accredited
Animal Research Center rooms at Case Western Reserve University, in species-appropriate
temperature and humidity-controlled rooms. Protocols on animal handling, housing, and
the transplant of human microbiota into GF mice were approved by the IACUC and the
Institutional Review Board at CWRU, following the National Research Council Guide for
the Care and Use of Laboratory Animals (2014–0158). Measures to control for bedding-
dependent microbial bias/overgrowth were implemented in all experiments, as previously
described [47,48].
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4.2. Transplantation of Human Gut Microbiota

The establishment of human gut microbiota in GF mice was performed using pre-
viously characterized cryopreserved human fecal microbiota communities isolated from
a patient with Crohn’s disease (stored at −80 ◦C; phosphate-buffered saline (PBS)/7%
dimethyl sulfoxide (DMSO) mixture), as previously described [47]. All GF mice were
gavaged with gut microbiota (0.20 mL/10 g of body weight; 108–9 colony-forming units;
CFU/mouse) two weeks prior to starting the experiment.

4.3. Diet and Experimental Design

Mice were randomized to one of four dietary groups: the American diet (AD), the
leucine-rich AD (AD + AA), a standard mouse laboratory diet P3000 of CHOW (CH),
or the leucine-rich CHOW diet (CH + AA) (Figure 3). The AD used in this study was
originally created to mirror the 2011–2012 National Health and Nutrition Examination
Survey’s (NHANES) “What We Eat in America” survey and has been described in detail
by our laboratory [18]. The modifications in the diets were carried out by Research Diets,
NJ and the composition of all four diets is described in the Supplementary Files (Table S2).
The leucine content of the CH + AA diet was ~14.3 mg/g in the diet and the daily intake of
leucine received by mice in this group was around ~72 mg (assuming ∼5 g daily intake of
diet). However, the leucine content of the CH + AA diet was ~28.1 mg/g in the diet and the
daily intake of leucine received by mice in this group was around ~141 mg (assuming ∼5 g
daily intake of diet). Body weight, myeloperoxidase (MPO) activity, and ileitis severity
(colonoscopy, histology) were measured in mice. Colitis was induced using dextran sodium
sulfate (DSS) after six weeks on the various diets. At the end of the experiment, mice
were humanely euthanized using carbon dioxide narcosis. All tests were carried out in
accordance with criteria aimed at decreasing microbiome variability and enhancing the
study’s reproducibility and statistical power [49,50].
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CH, standard CHOW diet; CH + AA, leucine-rich CHOW diet; Leu, leucine; DSS, dextran sulfate
sodium; FITC, fluorescein isothiocyanate; MPO, myeloperoxidase.).

4.4. DSS-Induced Colitis

To induce colitis, all mice were given ad libidum 3% (weight/volume) DSS dissolved
in sterile water for 7 days. Mice then resumed with regular water for two days and then
were sacrificed. To assess the impact of colitis, the mice were observed daily for changes in
body weight, as well as the occurrence of blood, the consistency of their feces, and their
general appearance.

4.5. Colonoscopy

Following DSS, colonoscopic assessment was used to measure inflammation in the
colon using a previously validated scoring method [51]. In brief, isoflurane, USP (Butler
Schein Animal Health), was used to anesthetize mice prior to endoscopic operations, and no
laxatives or fasting was required to prepare for the colonoscopy. After that, the mice were
euthanized, and numerous parameters such as BW and colitis severity were measured.

4.6. Analysis of Intestinal Inflammation and Gut Permeability In Vivo

MPO activity in feces was measured weekly, and intestinal gut permeability (fluores-
cein isothiocyanate; FITC–dextran) was assessed before and after DSS treatment. Fecal
MPO activity was determined using a previously established dianisidine-H2O2 technique
adapted for use with 96-well plates [52]. A previously established method was used to
assess intestinal gut permeability in mice [53]. In brief, the mice were fasted overnight
before receiving an oral gavage of a fluorescently labeled sugar probe, FITC–dextran
(80 mg/mL in sterile PBS). After 4 h, blood was collected in EDTA-coated vials and
plasma was diluted properly to measure the fluorescence intensity, which correlates with
intestinal permeability.

4.7. Histopathological Analysis

Colons were rinsed with sterile phosphate-buffered saline. Following that, a lon-
gitudinal incision was made in the colon and the diseased tissue was preserved in 10%
buffered formalin. Following a 24 h fixative stage at 4 ◦C, the specimens underwent a
70% ethanol washing process. Tissues were then paraffin-embedded and subjected to
staining with Hematoxylin and Eosin (H&E). Intestinal inflammation was then scored in a
blinded manner using a validated scoring system [24,54]. The scoring system assessed the
following three parameters: (1) active inflammation, (2) chronic inflammation, and (3) villus
architecture. A numerical score was allocated to each of these factors, with values ranging
from zero (indicating normal tissue) to three (indicating increasing levels of inflammation).
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