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Abstract
Background  Obesity is a complex, diverse and multifactorial disease that has become a major public health 
concern in the last decades. The current classification systems relies on anthropometric measurements, such as BMI, 
that are unable to capture the physiopathological diversity of this disease. The aim of this study was to redefine the 
classification of obesity based on the different H-NMR metabolomics profiles found in individuals with obesity to 
better assess the risk of future development of cardiometabolic disease.

Materials and methods  Serum samples of a subset of the Di@bet.es cohort consisting of 1387 individuals with 
obesity were analyzed by H-NMR. A K-means algorithm was deployed to define different H-NMR metabolomics-based 
clusters. Then, the association of these clusters with future development of cardiometabolic disease was evaluated 
using different univariate and multivariate statistical approaches. Moreover, machine learning-based models were 
built to predict the development of future cardiometabolic disease using BMI and waist-to-hip circumference ratio 
measures in combination with H-NMR metabolomics.

Results  Three clusters with no differences in BMI nor in waist-to-hip circumference ratio but with very different 
metabolomics profiles were obtained. The first cluster showed a metabolically healthy profile, whereas atherogenic 
dyslipidemia and hypercholesterolemia were predominant in the second and third clusters, respectively. Individuals 
within the cluster of atherogenic dyslipidemia were found to be at a higher risk of developing type 2 DM in a 8 
years follow-up. On the other hand, individuals within the cluster of hypercholesterolemia showed a higher risk of 
suffering a cardiovascular event in the follow-up. The individuals with a metabolically healthy profile displayed a lower 
association with future cardiometabolic disease, even though some association with future development of type 2 
DM was still observed. In addition, H-NMR metabolomics improved the prediction of future cardiometabolic disease 
in comparison with models relying on just anthropometric measures.
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Introduction
Obesity is a chronic disease, characterized by abnormal 
and/or excess of body fat accumulation [1]. This disease 
has been linked with several comorbidities such as type 
2 diabetes mellitus (type 2 DM), cardiovascular disease 
(CVD), sleep apnea and several types of cancer [1–4]. 
During the last decades, this disease has become a major 
public health concern, reaching epidemic proportions. 
According to the world health statistics report developed 
by the World Health Organization (WHO) in 2023, 13.1% 
of adults globally had obesity in 2016, up from 8.7% in 
2000 [5]. Currently, obesity is classified based on the 
body mass index (BMI), which is calculated as measured 
body weight (kg) divided by measured height squared 
(m2). Obesity is defined by a BMI higher or equal to 
30 kg/m2 [3]. Moreover, the National Institute of Health 
(NIH) and the WHO distinguish between three classes of 
obesity: (1) obesity class I comprising BMI values from 30 
to 34.9 kg/m2, (2) obesity class II comprising BMI values 
from 35 to 39.9 kg/m2 and (3) obesity class III when BMI 
is greater or equal to 40 kg/m2 [6–7]. However, the cause 
of obesity is complex and multifactorial [1–2, 7–8]. A 
notable heterogeneity of phenotypes has been addressed 
among individuals with obesity due to the impact of dif-
ferent environmental, social, genetic and economic fac-
tors on this disease [8]. In fact, the observational data 
from several studies has allowed the definition of the 
so-called metabolically healthy obesity (MHO) subphe-
notype [8–11]. These individuals are characterized by the 
absence of cardiometabolic abnormalities, such as insulin 
resistance (IR), impaired glucose tolerance (IGT), dyslip-
idemia and arterial hypertension (AHT), in spite of the 
excess of fat accumulated [9]. Therefore, the current BMI-
based classification of obesity has limitations in explain-
ing the relationship between obesity and morbidity or 
mortality [8, 12]. In response to this situation, abdomi-
nal obesity based on the waist-to-hip circumference ratio 
(WHR) has emerged as a more accurate risk assessment 
measure [13]. The WHR allows the definition of abdomi-
nal obesity, using the thresholds of WHR > 1 for men and 
> 0.85 for women [14, 15]. Nevertheless, WHR has some 
limitations to distinguish between subcutaneous and vis-
ceral abdominal fat and therefore, may not account for 
large variations in the level of total fat and abdominal vis-
ceral adipose tissues [16]. This highlights the necessity of 
a better characterization of obesity, based on its underly-
ing pathophysiological mechanisms, to better assess the 
pathological risk derived from this complex condition. Of 

special interest is the risk of CVD associated with obesity, 
since this is the leading cause of death among individu-
als with obesity [17]. Dyslipidemia, which is present in 
obesity, is closely associated with CVD [2, 6]. Indeed, two 
main lipid profiles have been often described in patients 
with metabolically unhealthy obesity (MUO): (1) a pro-
file characterized by hypercholesterolemia (HC) and (2) a 
profile characterized by the presence of atherogenic dys-
lipidemia, which consists of hypertriglyceridemia (HTG), 
low HDL cholesterol (HDLC) and high concentrations of 
small dense LDL particles [18]. The presence of different 
profiles in MUO in addition to the previously mentioned 
MHO phenotype suggests that the metabolic diversity of 
obesity may play a key role in the development of comor-
bidities derived from it.

Metabolomics is an emerging approach capable of 
measuring a large number of metabolites in several bio-
logical matrices, thereby providing the integration of 
genomic, transcriptomic and proteomic variation, as well 
as the impact of environmental factors [19–20]. Its close-
ness to the phenotype makes metabolomics a powerful 
tool to study complex diseases, like obesity. Although 
metabolomics approaches have already been applied to 
obesity, most of them have focused on the metabolic dif-
ferences between obese and non-obese individuals [8, 21, 
22]. Other approaches have developed machine learning 
(ML)-based models to predict BMI using metabolomics 
data, in order to evaluate its concordance with traditional 
BMI [23–25]. However, none of these approaches has 
focused on exploring differential metabolomics profiles 
within obesity and associating them with the future risk 
of developing cardiometabolic disease. The aim of this 
study was to find distinct proton nuclear magnetic reso-
nance (H-NMR) metabolomics-based profiles of obesity 
to better assess the risk of the future development of 
comorbidities associated with this disease.

Materials and methods
Study population
A subset of the Di@bet.es cohort, consisting of 1387 
individuals from the general population with a BMI 
higher or equal to 30, was used in this study (Supple-
mentary Fig.  1). The Di@bet.es Study, the first national 
study in Spain to examine the prevalence of diabetes and 
impaired glucose regulation, consists of 4538 individuals 
with BMI and metabolomics data available (43% men), 
with ages ranging from 18 to 93 years old, of whom 2181 
participated in the follow-up 8 years later. This research 

Conclusions  This study demonstrated the benefits of using precision techniques like H-NMR to better assess the risk 
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was carried out in accordance with the Declaration of 
Helsinki of the World Medical Association [26]. Writ-
ten informed consent was obtained from all the partici-
pants. The study was approved by the Ethics and Clinical 
Investigation Committee of the Hospital Regional Uni-
versitario de Málaga (Málaga, Spain) in addition to other 
regional ethics and clinical investigation committees all 
over Spain.

Clinical data
Participants were invited to attend an examination at 
their health center, at each visit. Information was col-
lected by means of an interviewer-administered struc-
tured questionnaire, followed by a physical examination 
and blood sampling. Medical history and medications 
were also recorded. Weight, height and waist and hip 
circumferences were measured by standardized meth-
ods. The BMI and WHR were calculated, and categorized 
according to WHO criteria [27–28]. Blood pressure was 
measured using a blood pressure monitor (Hem-703  C, 
Omron, Barcelona, Spain) after several minutes in a 
seated position and the mean of two measurements taken 
1–2  min apart was used for analysis. AHT was consid-
ered if there was a previously physician-diagnosed hyper-
tension and/or if the mean systolic blood pressure was 
≥ 140 mmHg and/or the mean diastolic blood pressure 
was ≥ 90 mmHg [29]. Blood samples were obtained in 
fasting conditions. Additionally, a standard oral glucose 
tolerance test (OGTT) was performed in all individuals 
not receiving treatment for diabetes, using 2-h venous 
samples. Samples were immediately centrifuged and 
the serum was frozen until analysis. Serum glucose was 
measured enzymatically. Diabetes and pre-diabetes were 
diagnosed and classified according to WHO criteria [30]. 
Incident cardiovascular events (CV event) during follow-
up, including coronary heart disease (CHD), stroke and 
peripheral artery disease (PAD), were recorded by ques-
tionnaire at the follow-up examination. Incident diabe-
tes was considered if fasting plasma glucose at follow-up 
examination was ≥ 126 mg/dl, if 2 h post OGTT plasma 
glucose was ≥ 200 mg/dl [30] or if a clinical diagnosis of 
diabetes already existed and the treatment was ongo-
ing. Samples were managed by the biochemistry labora-
tory of the Hospital Regional Universitario de Málaga, 
the IBIMA Biobank and the CIBERDEM Biorepository 
(IDIBAPS Biobank).

H-NMR analysis
Before H-NMR analysis, 200 µl of fasting serum collected 
at the baseline study were diluted with 50  µl of deuter-
ated water and 300 µl of 50 mM phosphate buffer solu-
tion (PBS) at a pH of 7.4. H-NMR spectra were recorded 
at 306 K on a Bruker Avance III 600 spectrometer operat-
ing at a proton frequency of 600.20 MHz.

Lipoprotein analysis
Lipoprotein analysis was performed using the Lipo-
scale® Test, a novel advanced lipoprotein test based on 
2D diffusion-ordered H-NMR spectroscopy [31]. The 
methyl signal was deconvoluted using 9 Lorentzian func-
tions to determine the lipid concentration of the large (l), 
medium (m) and small (s) subclasses of the main lipo-
protein classes (VLDL, LDL and HDL), and their size (Z) 
associated diffusion coefficients. Then, lipid concentra-
tions were combined with the associated particle volume 
to quantify the number of particles required to trans-
port the measured lipid concentration of each lipopro-
tein subclass. Finally, weighted average VLDL, LDL and 
HDL particle sizes were calculated from various subclass 
concentrations by totaling the known diameter of each 
subclass multiplied by its relative percentage of subclass 
particle number. The variation coefficients for the parti-
cle number were between 2% and 4%, and for the particle 
sizes, they were less than 0.3%.

Glycoprotein analysis
The region of the H-NMR spectrum where the glyco-
proteins resonate (2.15–1.90 ppm) was analyzed using 
several analytical functions according to a previously 
published procedure [32]. For each function, the total 
area (proportional to concentration) and signal shape 
(height to bandwidth H/W ratio) were determined. The 
area of GlycA provided the concentration of protein-
bound N- acetylneuraminic acid, and the area of GlycB 
provided those of N-acetylglucosamine [33]. The GlycF 
area arises from the concentration of the acetyl groups 
of N-acetylglucosamine, N-acetylgalactosamine and 
N-acetylneuraminic acid unbound to proteins (i.e., free 
fraction) [34]. H/W ratios of GlycA and GlycB, a parame-
ter associated with the aggregation state of the sugar-pro-
tein bonds, were also reported. The variation coefficients 
for the glycoproteins were lower than 3%.

Low molecular weight metabolite (LMWM) analysis
Fully-automated software developed by the company 
Biosfer Teslab- was used to perform the deconvolution of 
the signals associated with 15 different LMWMs as pre-
viously reported [35]. For each metabolite, the total area 
was quantified and normalized to obtain the concentra-
tion. The variation coefficients obtained for the LMWMs 
were between 6% and 18%.

Statistical analysis
A non-hierarchical clustering approach was performed 
deploying K-means and K-medoids algorithms. Three 
clusters were defined using the following informative 12 
variables as predictors: GlycA, LDL cholesterol (LDLC), 
HDLC, triglycerides (TG), triglyceride to cholesterol 
ratios of VLDL (TG/C-VLDL), IDL(TG/C-IDL), LDL 
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(TG/C-LDL), HDL (TG/C-HDL), the small to total parti-
cle number ratios of VLDL (s/t-VLDLp), LDL (s/t-LDLp) 
and HDL (s/t-HDLp) and glucose. The optimal number of 
clusters was selected based on the sum of squared error 
(SSE) and the average silhouette coefficient. This coeffi-
cient is a measure of how similar a sample is to its own 
cluster compared to other clusters. High values indicate 
that the sample is well matched to its own cluster and 
poorly matched to neighboring ones. The silhouette coef-
ficient was also computed for each sample. This showed 
that the clusters defined by the K-means algorithm had a 
higher robustness than the ones relying on the K-medoids 
one (Supplementary Fig.  2). Thus, these clusters were 
considered for further analysis. A principal component 
analysis (PCA) was computed using the above men-
tioned variables as predictors, to display the distribution 
of the clusters in a reduced dimensional space delimited 
by the first two principal components (PC). The distri-
bution of obesity classes based on BMI and WHR were 
also displayed in the same reduced space. The loadings 
of the PCA were computed to know the contribution of 
each original variable to the PC. Differences in traditional 
variables between clusters were evaluated using the Chi-
squared test for categorical predictors (i.e., sex, glycemia, 
AHT, WHR and treatment) and the Kruskal-Wallis test 
for numerical predictors (i.e., age and BMI). The post-hoc 
comparisons were computed using the Chi-squared and 
the Mann-Whitney tests accordingly, and all the resulting 
p-values were adjusted for multiple comparisons using 
Benjamini and Hochberg’s method. In addition, to better 
understand the metabolic differences between clusters, a 
quantile regression including the age, sex and treatment 
as covariates was created. The 50% quantile was chosen 
in order to compare the median values of each metabo-
lite between clusters, instead of the means as in the 
classical linear regression. The resulting p-values were 
adjusted using the method developed by Benjamini and 
Hochberg and the false discovery rate threshold was set 
to a 5%. After this analysis, associations between clus-
ters and CV event, stroke, peripheral vasculopathy (PV) 
and DM happening during the 8-years follow up were 
evaluated using a correspondence analysis (CA). To do 
that, the corresponding contingency tables were created, 
displaying the cluster defined in the columns and all the 
previously mentioned conditions in the rows. Finally, 
five logistic regression models were computed to pre-
dict the future development of cardiometabolic disease 
in the follow-up. Individuals were considered to have 
developed cardiometabolic disease if they developed, 
in the follow-up, any of the conditions listed previously 
(i.e. cardiovascular event, stroke, PV and DM). The pre-
dictors included in each model were: (1) BMI, (2) WHR, 
(3) PC1 and PC2, (4) BMI, PC1 and PC2 and (5) WHR, 
PC1 and PC2. A training set comprising the 70% of the 

individuals was used to train all the models, whose per-
formance was later evaluated in a test set comprising the 
remaining 30% individuals. The receiver operating curves 
(ROC) and their corresponding area under the curve 
(AUC) were computed for all of the models. In addition, 
the confusion matrix, the sensitivity and specificity were 
also calculated for each model. The statistical analysis 
was performed using the scikit-learn package and python 
software, version 3.6.

Results
H-NMR metabolomics-based clustering of individuals with 
obesity
The original Di@bet.es population was filtered by BMI 
to keep only individuals with obesity, i.e., those having 
a BMI higher or equal to 30. A K-means algorithm was 
deployed to define three different clusters. The clusters 
defined, as well as the current obesity classes defined by 
WHO and the abdominal obesity based on WHR were 
displayed in a reduced dimensional space (Fig.  1, A-C). 
A separation between groups was not observed neither 
for the WHO obesity classification, nor for abdominal 
obesity. Therefore, no evident relationship was observed 
between the metabolomics-based classification of obe-
sity and the classification based on anthropometric 
traits. The loadings computed for each principal com-
ponent were also computed (Fig. 1, D-E). Loading values 
can be interpreted as the weights of each metabolomics 
feature within the principal component. The most rel-
evant features in the PC1 were TG, TG/C-HDL, GlycA, 
TG/C-LDL and HDLC. They mainly contributed to the 
separation of the second cluster from the other two. On 
the other hand, TG/C-IDL, s/t-LDLp, LDLC, s/t-HDLP 
and s/t-VLDLP were the features with the highest impor-
tance in the PC2, which contributed to the separation of 
the third cluster from the first one. The two additional 
obesity classifications were not able to capture the meta-
bolic implications of these features.

Comparison of the different metabolomics profiles
In order to better understand these implications, a uni-
variate comparison between clusters was conducted. 
First of all, non-metabolomics variables were compared 
(Table 1). In regard to age, the individuals within the third 
cluster displayed a statistically significant higher median 
age (59 years) than the one observed in the remaining two 
clusters (57 and 55 years in clusters 2 and 3, respectively). 
However, statistically significant differences (p = 0.004) 
were only found between the third and the first cluster. 
On the other hand, no statistically significant differences 
in BMI were observed between clusters. In respect to 
sex, a higher proportion of men was observed in cluster 
2 (59%) in comparison to the other two clusters, which 
displayed a very similar percentage of men between 
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them (41% in cluster 1 and 42% in cluster 3). AHT was 
also compared between clusters and statistically sig-
nificant differences were found among all of them. The 
second cluster displayed the highest prevalence of AHT 
(76%), followed by the third (67%) and the first one (59%), 
respectively. Moreover, the highest prevalence of diabe-
tes mellitus was also found in the second cluster (48%), 
while no statistically significant differences were found 
between the remaining two clusters (20% and 17% in the 
third and first clusters, respectively). Abdominal obesity 
was defined based on WHR. For men, a threshold of 1 
was used to define abdominal obesity, while for women 

a threshold of 0.85 was used. As BMI, abdominal obesity 
did not show statistically significant differences between 
clusters. Due to the fact that the cohort used in this study 
is a representation of the Spanish general population, 
some individuals were under different treatments, that 
were not always related with obesity.

The comparison between clusters also included the 
H-NMR metabolomics-based glycoprotein, lipoprotein 
and LMWM profiles (Table 1). These comparisons were 
adjusted by age, sex and treatment to avoid confound-
ing effects. In regard to glycoprotein profile, the indi-
viduals within the second cluster displayed the highest 

Fig. 1  Principal component analysis. Sample distribution within the first two principal components. A Samples are colored according to the clusters 
defined by the K-means algorithm. B Samples are colored according to the corresponding BMI-based obesity class. C Samples are colored according to 
abdominal obesity. D Loading values of the first principal component. (E) Loading values of the second principal component
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Variable Cluster 1 (N = 459) Cluster 2 (N = 274) Cluster 3 (N = 654) Cluster 2 vs. 1 Cluster 3 vs. 1 Cluster 3 vs. 2
Age 55 [41.0;67.5] 57 [46.0;67.0] 59 [46.0;69.0] 0.147 0.004 0.361
BMI 33.0 [31.3;35.8] 33.0 [31.4;35.8] 32.5 [31.2;35.6] 0.884 0.162 0.173
Sex: 1.19E-05 0.939 7.50E-06
Male 189 (41%) 162 (59%) 272 (42%)
Female 270 (59%) 112 (41%) 382 (58%)
Glycemia: 2.52E-18 0.197 9.46E-16
Normoglycemia 299 (65%) 97 (35%) 389 (60%)
Pre-diabetes 84 (18%) 47 (17%) 133(20%)
Diabetes 76 (17%) 130 (48%) 132 (20%)
AHT: 1.19E-05 0.034 0.010
No 187 (41%) 65 (24%) 219 (33%)
Yes 272 (59%) 209 (76%) 435 (67%)
Abdominal obesity: 0.116 0.372 0.392
No 187 (40%) 90 (33%) 219 (36%)
Yes 277 (60%) 274 (67%) 435 (64%)
Treatment: 0.041 0.933 0.041
No 274 (60%) 139 (51%) 386 (59%)
Yes 185 (40%) 135 (49%) 268 (41%)
GlycA (µmol/L) 674 [613;750] 979 [864;1146] 730 [652;808] 2.07E-118 3.27E-09 3.33E-92
GlycB (µmol/L) 256 [223;288] 310 [263;356] 257 [228;291] 8.08E-25 0.635 9.92E-26
GlycF (µmol/L) 271 [245;301] 359 [319;399] 285 [259;313] 1.46E-87 7.84E-06 6.80E-70
HWGlycA 15.8 [14.3;17.4] 19.8 [18.0;21.6] 16.4 [15.0;18.1] 1.93E-62 2.99E-05 5.20E-47
HWGlycB 4.2 [3.8;4.7] 4.8 [4.3;5.3] 4.3 [3.9;4.7] 2.28E-19 0.082 1.12E-15
VLDLTG (mg/dL) 57.6 [41.8;76.5] 148 [117;195] 63.8 [48.7;84.2] 3.25E-161 0.003 2.03E-155
IDLTG (mg/dL) 10.8 [9.1;12.7] 17.1 [14.7;20.3] 13.5 [11.1;16.1] 1.69E-81 1.10E-25 1.24E-34
LDLTG (mg/dL) 13.7 [11.9;16.1] 20.5 [17.1;24.0] 19.9 [17.191;22.867] 1.08E-64 5.17E-76 0.019
HDLTG (mg/dL) 15.0 [12.8;17.9] 21.6 [18.2;26.6] 16.1 [13.2;19.7] 2.76E-46 0.068 4.46E-42
TG (mg/dL) 98.2 [79.8;120] 207 [174;263] 115 [96.2;141] 2.82E-159 1.47E-10 1.77E-130
VLDLC (mg/dL) 13.3 [8.8;18.6] 37.8 [31.1;47.9] 17.8 [12.9;23.4] 7.85E-147 1.08E-10 2.28E-117
IDLC (mg/dL) 9.6 [7.6;11.4] 17.0 [14.2;20.9] 14.1 [11.3;16.9] 7.35E-80 6.87E-45 4.25E-19
LDLC (mg/dL) 126 [112;140] 127 [107;150] 152 [136;167] 0.230 1.45E-42 3.14E-25
HDLC (mg/dL) 54.7 [48.2;61.9] 44.4 [39.3;50.0] 50.1 [45.5;57.2] 3.35E-34 6.59E-11 3.28E-14
TC (mg/dL) 205 [187;224] 231 [206;257] 236 [219;256] 7.88E-22 3.79E-41 0.196
VLDLp (nmol/L) 42.5 [30.8;58.3] 117 [93.0;155] 49.2 [37.3;65.5] 3.93E-169 2.23E-04 1.03E-158
lVLDLp (nmol/L) 1.3 [0.9;1.7] 2.7 [2.24;3.35] 1.3 [1.0;1.6] 4.63E-121 0.617 1.73E-136
mVLDLp (nmol/L) 3.6 [2.5;4.8] 7.1 [4.3;11.4] 4.8 [3.7;6.1] 1.19E-57 3.46E-14 4.53E-28
sVLDLp (nmol/L) 36.8 [26.7;52.3] 107 [84.6;140] 43.0 [32.2;58.6] 8.69E-172 0.001 1.36E-164
VLDLZ (nm) 41.9 [41.7;42.2] 41.5 [41.3;41.8] 42.0 [41.8;42.2] 2.48E-21 0.004 2.45E-35
LDLp (nmol/L) 1279 [1151;1443] 1442 [1231;1704] 1540 [1388;1700] 1.48E-10 5.91E-40 4.12E-06
lLDLp (nmol/L) 171 [155;187] 173 [142;196] 213 [195;230] 0.367 2.73E-72 1.48E-47
mLDLp (nmol/L) 336 [278;393] 327 [262;404] 487 [420;561] 0.949 6.61E-74 2.56E-54
sLDLp (nmol/L) 773 [693;871] 925 [771;1114] 828 [739;927] 4.28E-24 4.14E-05 2.26E-13
LDLZ (nm) 20.8 [20.7;21.0] 20.6 [20.27;20.9] 21.1 [21.0;21.3] 3.01E-22 1.25E-42 1.55E-95
HDLp (µmol/L) 28.9 [25.8;32.2] 26.5 [23.6;29.5] 26.7 [24.0;29.7] 3.39E-10 1.01E-15 0.848
lHDLp (µmol/L) 0.254 [0.237;0.273] 0.282 [0.252;0.323] 0.294 [0.274;0.319] 1.59E-18 8.37E-45 0.005
mHDLp (µmol/L) 8.8 [8.0;9.7] 8.0 [7.4;9.2] 9.2 [8.5;10.1] 1.11E-07 2.26E-04 2.57E-18
sHDLp (µmol/L) 20.0 [17.3;22.6] 18.0 [15.4;20.4] 17.2 [15.2;19.6] 9.30E-08 2.38E-25 0.001
HDLZ (nm) 8.2 [8.2;8.3] 8.2 [8.2;8.3] 8.3 [8.2;8.3] 0.008 1.69E-41 1.49E-18
Glucose (mmol/L) 4.6 [4.1;5.2] 5.5 [4.7;6.8] 4.7 [4.2;5.4] 2.48E-20 0.539 4.37E-20
Lactate (mmol/L) 0.82 [0.65;1.05] 1.05 [0.84;1.42] 0.82 [0.66;1.09] 8.02E-11 0.705 5.07E-13
Creatine (mmol/L) 0.057 [0.042;0.073] 0.054 [0.038;0.07] 0.056 [0.044;0.072] 0.674 0.272 0.607

Table 1  Univariate comparison between clusters. The median and the interquartile range are displayed for continuous variables and 
the observed frequency for the categorical variables. The comparisons of all metabolomics features were adjusted by age, sex and 
treatment. The post-hoc p-values were adjusted for multiple comparisons using Benjamini– Hochberg’s method
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glycosylation levels. In the case of GlycA and GlycF, sta-
tistically significant differences were also observed 
between the first and the third cluster (p < 0.01 for GlycA 
and GlycF), displaying this last one higher concentra-
tions of these two variables. On the other hand, these 
two clusters had similar values of GlycB (256 µmol/L 
and 257 µmol/L in clusters 1 and 3, respectively). A simi-
lar behavior as the one described for H-NMR-derived 
glycosylation profile was observed in TG metabolism. 
Once again, the individuals of the second cluster dis-
played the highest TG concentrations (207  mg/dL), fol-
lowed by the third (115  mg/dL) and the first (98.2  mg/
dL) cluster, respectively. Moreover, the concentration of 
TG transported in each of the main lipoprotein classes 
(i.e. VLDL, IDL, LDL and HDL) was also significantly 
higher in cluster 2 than in the remaining two clusters (all 
p < 0.05). In this regard, the third cluster also displayed 
higher concentrations of TG transported in VLDL, IDL 
and LDL than the first cluster, but no statistically signifi-
cant differences between these two clusters were found 
for TG transported in HDL. The comparison of the total 
cholesterol (TC), as well as, the cholesterol transported 
in each lipoprotein class also displayed statistically sig-
nificant differences between the metabolomics clusters. 
In this case, the individuals within the third cluster dis-
played the highest TC concentrations (236 mg/dL). How-
ever, the comparison between the third and the second 
cluster was not statistically significant (p = 0.196). Con-
trary to what was observed for TG, different tendencies 
were observed when the cholesterol transported in each 
lipoprotein class was compared among clusters. For the 
cholesterol transported in VLDL and IDL, the second 
cluster displayed the highest concentration (37.8  mg/
dL and 17.0  mg/dL, respectively), followed by the third 
(17.8 mg/dL and 14.1 mg/dL) and the first one (13.3 mg/
dL and 9.6 mg/dL). However, the highest levels of LDLC 
were found in the third cluster (151  mg/dL). Further-
more, no statistically significant differences in LDLC 
concentrations were observed between the second and 
the first cluster (p = 0.230). On the other hand, the high-
est and the lowest HDLC concentrations were found in 
the first (54.6 mg/dL) and the second (44.4 mg/dL) clus-
ters, respectively. After the comparison of lipid profiles, 
lipoprotein determinations (VLDLP, LDLP, HDLP and 

their corresponding large, medium and small subclasses) 
were compared between clusters. The comparisons of 
VLDLp, mVLDLp and sVLDLp were statistically signifi-
cant between all the clusters. For the three determina-
tions, the highest values were found in the second cluster 
(117 nmol/L, 7.1 nmol/L and 107 nmol/L, respectively) 
and the lowest in the first one (42.5 nmol/L, 3.6 nmol/L 
and 36.7 nmol/L). The same trend was observed for 
lVLDLp, but no statistically significant differences were 
found between the third and the first cluster (p = 0.617). 
In regard to the average VLDLZ, the third cluster dis-
played the largest particle size (42.0 nm) and the first one 
the smallest (41.9 nm). In relation to LDLp and its sub-
classes, individuals included in the third cluster displayed 
statistically significant concentrations of LDLp, lLDLp 
and mLDLp (all p < 0.01) than the remaining two clusters. 
In addition, the second cluster had a significantly higher 
amount of LDLp (1442 nmol/L) than the first cluster 
(1279 nmol/L), although no statistically significant dif-
ferences were found for these two clusters with respect 
to lLDLp and mLDLp (p = 0.367 and 0.949). Interestingly, 
sLDLp did not follow the trend observed for the rest of 
the LDL subclasses. In this case, the second cluster dis-
played the highest concentration of sLDLp (925 nmol/L), 
followed first by the third one (828 nmol/L) and then by 
the first (773 nmol/L) cluster. Furthermore, the smallest 
LDLZ was found in the second cluster (20.6 nm), whereas 
the highest was observed in the third one (21.1 nm). In 
respect to HDLp, the first cluster displayed the highest 
concentration (28.9 µmol/L) but no statistically signifi-
cant differences were found between the other two clus-
ters (p = 0.848). Individuals within cluster 1 also showed 
the highest concentration of sHDLp (20.0 µmol/L), fol-
lowed by the second (18.0 µmol/L) and the third (17.2 
µmol/L) clusters. However, the highest concentrations 
of lHDLP and mHDLp were found in the third cluster 
(0.29 µmol/L and 9.2 µmol/L, respectively). In the case 
of lHDLp, the individuals included in the second clus-
ter displayed a higher amount of them (0.28 µmol/L) 
than individuals within the first cluster (0.25 µmol/L). 
However, the opposite effect was observed for mHDLp. 
The LMWM consisting of glucose, lactate, creatine, cre-
atinine, alanine, tyrosine, valine, leucine, isoleucine and 
acetone was also compared between clusters. All of them, 

Variable Cluster 1 (N = 459) Cluster 2 (N = 274) Cluster 3 (N = 654) Cluster 2 vs. 1 Cluster 3 vs. 1 Cluster 3 vs. 2
Creatinine (mmol/L) 0.042 [0.032;0.054] 0.051 [0.04;0.064] 0.042 [0.034;0.055] 1.91E-06 0.226 9.05E-05
Alanine (mmol/L) 0.42 [0.37;0.48] 0.49 [0.43;0.56] 0.43 [0.37;0.49] 6.17E-12 0.569 4.39E-15
Tyrosine (mmol/L) 0.060 [0.051;0.068] 0.064 [0.055;0.075] 0.061 [0.051;0.071] 0.002 0.496 0.011
Valine (mmol/L) 0.22 [0.20;0.25] 0.26 [0.23;0.29] 0.22 [0.20;0.26] 7.52E-12 0.055 2.59E-08
Leucine (mmol/L) 0.12 [0.10;0.15] 0.15 [0.12;0.19] 0.12 [0.10;0.15] 2.04E-21 0.087 7.87E-18
Isoleucine (mmol/L) 0.057 [0.045;0.069] 0.075 [0.061;0.089] 0.056 [0.045;0.071] 1.70E-19 0.617 9.75E-20
Acetone (mmol/L) 0.016 [0.012;0.023] 0.021 [0.015;0.028] 0.016 [0.012;0.024] 1.33E-11 0.958 9.32E-13

Table 1  (continued) 
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except creatinine, which did not show statistically sig-
nificant differences between groups, were found to be 
increased in the second cluster in comparison with the 
remaining two (all p < 0.01). No statistically significant 
differences were observed for any of them between the 
first and the third clusters.

Associations of different clusters with future development 
of cardiometabolic disease
Once the clusters had been described, a CA was com-
puted to evaluate the association of the clusters with 
the development of several cardiometabolic conditions 
in the follow-up (Fig. 2 ). It was observed that the third 
cluster was located closer to conditions associated with 
CVD, especially to the development of a CV event, in the 
reduced dimensions space. On the other hand, DM was 
separated from the other three CVD-related conditions. 
In this case, the second cluster was found to be associ-
ated with the development of this disease in the follow-
up. Finally, the first cluster was the most isolated one. 
Thus, it was the one showing the weakest association 
with any of the conditions considered, even though some 
association with DM development was observed.

Prediction of future cardiometabolic disease in individuals 
with obesity
The last analysis of this study consisted of building sev-
eral multivariate statistical models to predict the future 
development of cardiometabolic disease in the follow-
up (Fig.  3 ). The aim of this analysis was to determine 
whether the presented H-NMR-metabolomics approach 
could improve the assessment of the obesity-derived risk 
of developing any cardiometabolic disease in the future. 

At first, a total of two models were trained and tested, 
using BMI and WHR respectively to predict the future 
development of cardiometabolic disease. The models dis-
played AUC values of 0.63 and 0.68, respectively (Fig. 3, 
A-B). Although these models displayed AUC far away 
from the chance level (AUC of 0.5) and showed to be 
very specific, their sensitivity was low (Supplementary 
Table 2). Then, a third model based on NMR metabo-
lomics, i.e., including PC1 and PC2 as predictors was 
trained. The AUC obtained was 0.71, which was slightly 
higher than the AUC values showed by the previous 
models (Fig. 3, C). Two additional models were trained 
and tested combining each anthropometric measure with 
the information resulting from the classification based on 
H-NMR metabolomics presented in this study. In both 
cases, the incorporation of H-NMR metabolomics to the 
models notably improved the predictive performance of 
the models. The AUC increased from 0.63 to 0.75 when 
BMI and NMR-metabolomics were combined and from 
0.68 to 0.74 when WHR and BMI were used together as 
predictors. Moreover, the improvement of the predic-
tive performance of the models was due to an increase of 
their sensitivity without losing specificity (Fig. 3, D-E and 
Supplementary Table 2 ).

Discussion
The current study aimed to define obesity beyond BMI to 
better capture the metabolic diversity behind this com-
plex condition and to better assess the risk of developing 
future cardiometabolic disease. In order to do that, the 
K-means clustering algorithm was deployed and three 
metabolomics-based clusters were defined within a sub-
set of the general population cohort Di@bet.es, that only 
included individuals with obesity. These clusters were 
designed to maximize the differences of several well-
known obesity associated predictors among individuals. 
On the one hand, the traditional lipid profiling consist-
ing of TG, LDLC and HDLC was considered for cluster-
ing, since its association with obesity has been clearly 
described in several clinical guidelines [6–36]. On the 
other hand, glucose was added to the model to account 
for the association between obesity and IR [2, 3, 8]. In 
addition, novel H-NMR metabolomics-based predic-
tors were also considered. First, ratios of small lipopro-
teins to the total circulating particle number (s/t-VLDLp, 
s/t-LDLp and s/t-HDLp) were computed to incorporate 
information about lipoprotein number and size into the 
clustering algorithm, since both have been associated 
with obesity [2, 37–38]. Furthermore, the functionality 
of the main lipoprotein classes (VLDL, IDL, LDL and 
HDL) was also considered, by including the TG/C ratios 
for each class in the clustering algorithm. The presence of 
dysfunctional TG-enriched HDL lipoproteins, in combi-
nation with high concentrations of TG-rich lipoproteins 

Fig. 2   Corresponding analysis. Associations of each cluster with future 
events of cardiometabolic disease
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(TRL) have been found to be associated with a higher risk 
of CVD [24, 37–38]. GlycA was the last predictor incor-
porated into the clustering algorithm, since this param-
eter is a robust biomarker of systemic inflammation 
[32–34, 39]. Based on all the parameters described, three 
different clusters were defined. Even though statistically 

significant differences were not observed for BMI and 
abdominal obesity between clusters, several meta-
bolic differences were found among them. Each of them 
seemed to be describing different subtypes of obesity, 
that had already been mentioned in the first section of 
this document: (1) MUO with predominant atherogenic 

Fig. 3   Logistic regression analysis. Several logistic regressions were fitted to predict future development of obesity-associated cardiometabolic disease 
in the follow-up. The confusion matrix computed in the testing of each model is also displayed. The y-axis shows the true classes, with 0 corresponding to 
no development of cardiometabolic disease in the follow-up and 1 corresponding to the development of cardiometabolic disease in the follow-up. The 
x-axis displays the label predicted by the model
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dyslipidemia, (2) MUO with predominant HC and (3) 
MHO. However, the current analysis enabled a detailed 
description of several pathogenic mechanisms that were 
taking place in addition to dyslipidemia and evaluated the 
differential cardiometabolic risk derived from each of the 
profiles found.

On the one hand, atherogenic dyslipidemia was found 
to be present on the second cluster. All its classical signs, 
consisting of HTG, low HDLC accompanied by TG-
enriched HDLP and a high amount of sLDLp despite hav-
ing moderate LDLC values [2, 38–39] were observed in 
this cluster. This lipid profile has been often described 
in individuals with obesity in whom IR was also pres-
ent [18]. Coherently, several markers of IR such as glu-
cose, lactate, alanine and branched-chain amino acids 
(BCAA) [8] reached their highest concentration values 
in this cluster. In addition, the highest concentrations of 
remnant cholesterol (i.e. VLDLC and IDLC) were also 
observed in this cluster. A recent study attributed a fun-
damental role to remnant cholesterol in the development 
of type 2 DM, especially in individuals with moderate lev-
els of LDLC as the ones included in this cluster [40]. On 
top of the described metabolic disturbances, the presence 
of a high inflammatory state was assessed by the elevated 
levels of GlycA and GlycB found in this cluster [32–34, 
41]. All the pathogenic alterations described pointed in 
the direction of a predisposition of individuals with this 
specific obesity profile to develop type 2 DM. The analy-
sis of the follow-up data showed an association between 
this cluster and the future development of type 2 DM, 
thereby confirming the previous hypothesis.

On the other hand, predominant HC was found to be 
present in the third cluster. This cluster displayed the 
highest TC and LDLC concentrations. Accordingly, this 
cluster was found to have the largest amount of LDLp. 
However, the lLDLp and mLDLp were the most increased 
fractions. It is well known that LDLC-driven HC is one 
of the major risk factors of cardiovascular disease, ath-
erosclerosis and CHD [42, 43]. Coherently with this, our 
results showed this cluster to be the most associated one 
with future CV events, including CHD among other con-
ditions. Another interesting characteristic of this clus-
ter was the GlycA-driven inflammation, in absence of 
increased GlycB levels. Our previous work showed that 
increased values of GlycA in combination with mod-
erately increased values of GlycB were associated with 
a higher risk of developing type 2 DM in hyperglyce-
mic individuals with similar TC and LDLC concentra-
tions [44]. Thus, GlycB-derived glycosylation might be 
associated with TG metabolism rather than with serum 
cholesterol levels, and thereby, might be more strongly 
contributing to IR and type 2 DM than to CV events.

The last cluster defined, the one named as cluster 1, was 
the closest to MHO. The lowest concentrations of TC and 

TG in all the lipoprotein classes were found in this clus-
ter, except for HDL. Indeed, the highest HDLC together 
with the lowest HDLTG concentrations were displayed 
by this cluster. These findings reflected a healthy HDL 
function that has been associated with a better cardiovas-
cular health [39]. Accordingly, the individuals within this 
cluster displayed the lowest amount of ApoB-contain-
ing atherogenic lipoproteins (VLDL and LDL) and the 
highest concentrations of apoA-containing lipoproteins 
(HDLP). These findings, together with the absence of 
IR, AHT and dyslipidemia have been described in MHO 
phenotype [8–11]. Interestingly, our results showed a 
higher amount sHLDp and the smallest HDLP diameter 
to be present in this cluster. This contradicts previous 
literature describing larger HDLP in MHO [38, 41]. It 
must be noted that the MHO is still an ambiguous phe-
notype, whose definition is not currently standardized 
[8–11] and that the particle size thresholds vary between 
different techniques. Although this cluster showed the 
lowest association with future cardiometabolic disease, 
this association was not negligible. Several studies have 
discussed the fluctuant character of MHO, arguing that 
the lower association of this phenotype with type 2 DM 
could just be a matter of time [9, 11]. Moreover, specific 
associations between MHO and future type 2 DM have 
been found and attributed to abnormalities in Bromodo-
main and extra terminal (BET) proteins which promote 
pancreatic β-cell function and proliferation [8, 45].

All that has been discussed above made it clear that 
obesity is a complex disease that cannot be explained 
using just anthropometric measures, such as BMI or 
WHR. Nevertheless, it is not our aim to state that these 
traditionally used methods are useless but to demonstrate 
that complementing them with information derived from 
H-NMR metabolomics can improve the characteriza-
tion of this complex disease. Indeed, it was observed, that 
metabolomics alone was not able to significantly improve 
the performance of the models relying on BMI and 
WHR. Nevertheless, it was demonstrated that includ-
ing H-NMR-metabolomics information together with 
BMI and WHR improved the prediction of the devel-
opment of future cardiovascular disease in a 12% and a 
6%, respectively. Moreover, the inclusion of metabolo-
mics data increased the specificity of the models by 24% 
and 8%, when it was used together with BMI and WHR. 
This showed that the incorporation of H-NMR metabo-
lomics into the predictive models enabled a better iden-
tification of those individuals being at risk of developing 
cardiometabolic disease in the future. Although further 
validation of the clusters defined in this study is needed, 
the current results suggested potential benefits of using 
H-NMR metabolomics as a complementary tool of the 
currently available clinical measures of obesity.
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This study presents several strengths. First of all, a 
large sample that comprised men and women with obe-
sity in a wide age range, was used for the definition of the 
clusters. Treated individuals were also included, thereby 
reflecting in a more accurate way the general population. 
Although different treatments might have a different 
impact on metabolism, the exclusion of treated individu-
als would bias the results since the population obtained 
would not be representative of the general population. In 
addition, H-NMR was used to conduct the metabolomics 
measurements. This is a non-destructive technology that 
requires a minimum sample processing to quantify the 
most abundant metabolites and macromolecules pres-
ent in different biological matrices, even if these analytes 
have identical molecular masses [46]. In addition, NMR 
spectroscopy is unbiased, fast, very reproducible and 
highly automatable [14]. However, some limitations must 
be also acknowledged in this study. First, the validation 
of the results in a completely independent large cohort 
was not possible due to the lack of another cohort equally 
profiled. In addition, the number of individuals devel-
oping different kinds of cardiometabolic diseases in the 
follow-up was limited. To overcome this issue, the differ-
ent conditions were grouped under the broader category 
of cardiometabolic disease, so balanced groups could be 
obtained for the predictive models.

Conclusion
In this study, three clusters describing three obesity sub-
types with very different metabolomics profiles were 
defined. Each subtype was deeply characterized and 
found to be associated with a different type of cardio-
metabolic risk. It was demonstrated that metabolomics 
added an additional layer of information regarding the 
development of obesity-derived comorbidities that BMI 
and WHR are unable to capture. This study is a first step 
in defining novel endotypes within obesity that should be 
further evaluated in cohorts including a larger number of 
cases of the diseases comprised by the term cardiometa-
bolic disease in this study. Indeed, we believe that the use 
of metabolomics profiling in combination with the cur-
rently available anthropometric measures in the clini-
cal definition of such a complex disease like obesity, will 
improve the assessment of the future cardiometabolic 
risk and enable an earlier and more precise clinical man-
agement of it.
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