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Vuksanović, M.M.; Knežević, N.;
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3 “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade,
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Abstract: The adsorption efficiency of Cr(VI) and anionic textile dyes onto MgAl-layered double
hydroxides (LDHs) and MgAl-LDH coated on bio-silica (b-SiO2) nanoparticles (MgAl-LDH@SiO2)
derived from waste rice husks was studied in this work. The material was characterized using field-
emission scanning electron microscopy (FE-SEM/EDS), X-ray diffraction (XRD), Fourier transform
infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopic (XPS) techniques. The adsorption
capacities of MgAl-LDH@SiO2 were increased by 12.2%, 11.7%, 10.6%, and 10.0% in the processes of
Cr(VI), Acid Blue 225 (AB-225), Acid Violet 109 (AV-109), and Acid Green 40 (AG-40) dye removal
versus MgAl-LDH. The obtained results indicated the contribution of b-SiO2 to the development of
active surface functionalities of MgAl-LDH. A kinetic study indicated lower intraparticle diffusional
transport resistance. Physisorption is the dominant mechanism for dye removal, while surface
complexation dominates in the processes of Cr(VI) removal. The disposal of effluent water after
five adsorption/desorption cycles was attained using enzymatic decolorization, photocatalytic
degradation of the dyes, and chromate reduction, satisfying the prescribed national legislation. Under
optimal conditions and using immobilized horseradish peroxidase (HRP), efficient decolorization of
effluent solutions containing AB-225 and AV-109 dyes was achieved. Exhausted MgAl-LDH@SiO2

was processed by dissolution/precipitation of Mg and Al hydroxides, while residual silica was
used as a reinforcing filler in polyester composites. The fire-proofing properties of composites
with Mg and Al hydroxides were also improved, which provides a closed loop with zero waste
generation. The development of wastewater treatment technologies and the production of potentially
marketable composites led to the successful achievement of both low environmental impacts and
circular economy implementation.

Keywords: MgAl-LDH; adsorption; enzymatic decolorization; silica reinforcement; UPR composites

1. Introduction

Water pollution, resulting from industrial activities, necessitates the continuous devel-
opment of new, tailored wastewater treatment methods. Pollutants, such as heavy metals
and organic compounds, e.g., pharmaceuticals1, pesticides, dyes, etc., are undesirable
pollutants. The widely recognized toxic and carcinogenic effects of Cr(VI) [1] underscore
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its significant impact on human health [2]. Chromium, frequently present in industrial
discharge from sectors like chemicals, paints, metal finishes, stainless steel manufacturing,
alloy cast irons, chrome, and wood treatment, poses a significant threat due to its high
mobility in ecosystems and adverse effects on human health [3]. Hexavalent chromium in
aqueous systems exists in various pH-dependent oxoanionic forms, including hydrogen
chromate (HCrO4−), chromate (CrO4

2−), and dichromate (Cr2O7
2−) [4], that are linked to

severe health conditions, such as lung cancer, nasal irritation, nasal ulcers, hypersensitivity
reactions, and contact dermatitis [5]. Recognizing the health risks, the World Health Orga-
nization (WHO) has set a maximum allowable concentration of Cr(VI) in drinking water at
0.05 mg L−1.

Organic dyes play a pivotal role in industries such as paper, paint, plastic, and tex-
tiles, featuring intricate molecular structures like azo, anthraquinonoid, and heterocyclic
groups; however, due to their extensive application and resistance to degradation, they
pose significant hazardous potential [6]. Their environmental persistence results in their
accumulation in the environment, leading to contamination of food chains as potential
threats to humans [7], and the combined presence of heavy metal ions and dyes generally
imparts greater toxicity with respect to living organisms [8].

The current challenge in wastewater treatment lies in the coexistence of different
pollutants, including anionic [9] and cationic [10] pollutants, markedly amplifying the
difficulty and cost of water treatment. Conventional technologies face inefficiencies in
simultaneously removing these diverse pollutants due to their distinct physicochemical
properties, including their molecular size and chemical structure [11]. Therefore, it becomes
imperative to devise effective approaches for the removal of coexisting pollutants.

Various techniques have been explored, including electrochemical precipitation [12],
ion exchange [13], membrane ultrafiltration [14], and adsorption. Adsorption stands out
as a cost-effective technique. Additionally, when coupled with an effective desorption
process, adsorption can address the sludge-related challenges commonly encountered in
precipitation methods. Various adsorbents, including clay [15], zeolite [16], carbon-based
materials [17], and layered double hydroxide (LDH), have been used [18].

Layered double hydroxides represent a versatile class of two-dimensional (2D) inor-
ganic layered matrices, attracting considerable attention owing to their distinctive physical
and chemical properties. These properties have been translated into outstanding perfor-
mance across diverse applications, including catalysis [19], photochemistry [20], electro-
chemistry [21], biotechnology [22], medicine [23], adsorption in wastewater treatment [24],
and support for enzyme immobilization due to good enzyme retention capacity [25]. LDH
helps in the preservation of enzyme activity and supports charge transport in the immobi-
lized system [26]. Three approaches, including coprecipitation methods, direct exchange
methods, and rehydration methods, are commonly applied for LDH synthesis [27].

The main idea and novelties of the study are reflected in the development of sus-
tainable water purification technologies that result in the minimization of negative envi-
ronmental impacts. Using the 3R approach (reduce, reuse, recycle), bio-based materials
replaced commercial ones, adsorbents were reused, and spent adsorbents were repurposed.
The use of silica (SiO2) from waste rice husk as a support for MgAl layered double hy-
droxides precipitation (LDHs are well-known adsorbents for anionic pollutants removal
from water) was used to improve the applicability and adsorption performance of newly
synthesized MgAl-LDH@SiO2 adsorbent. Efficient water purification, desorption, and
the proper disposal of effluent desorption water and discharged adsorbent into valuable
materials were achieved. Adsorption studies were performed in relation to isotherm, ki-
netic, and thermodynamic performances in a batch system at moderate and low initial
pollutants concentration. An adsorption/desorption study in a flow system with subse-
quent environmentally friendly technologies developed for the treatment of effluent waters
was proposed. Cr(VI) was transformed to solidified material, AG-40 was subjected to
photocatalytic decomposition, and the decolorization of effluent water containing AB-225
and AV-109 dyes using immobilized horseradish peroxidase (HRP) was performed. All
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of the parameters of the treated water were below the values prescribed by the national
regulations, as outlined in the “Official Gazette of RS” nos. 67/2011 and 48/2012, regarding
limit values of the emission of pollutants and deadlines for achieving them, as well as the
Water Framework Directive of the European Commission [28]. The implementation of
the principles of sustainable development was realized in a novel way by either provid-
ing valuable products or minimizing the negative environmental impacts of discharged
treated water.

2. Results and Discussion
2.1. Characterization of MgAl-LDH and MgAl-LDH@SiO2 Particles
2.1.1. Morphological Study

The morphological features of bio-silica, MgAl-LDH, and MgAl-LDH@SiO2 particles
were analyzed according to results of SEM microscopy (Figure 1).
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obtained from EDS analysis on a significant portion of the SEM sample (Figures 2 and S1). 

Figure 1. Morphology of (a) SiO2, (b) MgAl-LDH, (c) and MgAl-LDH@SiO2 particles and (d) TEM
images of MgAl-LDH@SiO2.

Figure 1a shows that the silica particles have an irregular shape, while the MgAl-LDH
and MgAl-LDH@SiO2 particles are in the form of flakes (Figure 1b,c).

A mapping image of the elemental composition of MgAl-LDH@SiO2 particles was
obtained from EDS analysis on a significant portion of the SEM sample (Figures 1 and S1).
The EDS analysis (Figure 2) shows that the elemental content is as follows: Si 70.8%, O
25.9%, Mg 2.5%, and Al 0.8%. The diameter distribution of MgAl-LDH@SiO2 (Figure S2)
indicates that the mean diameter is 42 ± 9 nm.
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Figure 2. (a) SEM images of MgAl-LDH@SiO2 particles, (b) merged image of MgAl-LDH@SiO2,
(c) EDS mapping results, and (d–g) elemental mapping of Si, O, Mg, and Al.

2.1.2. XRD and FTIR Structural Characterization

The XRD pattern and FTIR spectra of bio-silica, MgAl-LDH, and MgAl-LDH@SiO2
are given in Figure 3. In addition, FTIR spectra of MgAl-LDH@SiO2 after dyes adsorption
are given in Figure S3.
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Figure 3. (a) XRD patterns of bio-silica, MgAl-LDH, and MgAl-LDH@SiO2 particles and related
(b) FTIR spectra.

The SiO2 diffraction pattern displays the amorphous silica’s reflecting property [29].
The MgAl-LDH diffraction peaks correspond to planes (003), (006), (009), (015), (012),
(110), and (113), which indicate a layered structure. Because the MgAl-LDH@SiO2 was
synthesized intentionally with 7.6 wt.% of LDH deposit on low-crystalline SiO2, the peaks
for the LDH structure are smaller in Figure 3a. In addition, because the layer is small, the
crystals are also small [30].

Two bands, observed at 3423 and 1644 cm−1 in the FTIR spectrum of MgAl-LDH
(Figure 3b), are related to the stretching and bending vibrations of hydroxyl groups in the
MgAl hydroxide layer and water in the interlayer, respectively. Vibrations of the Mg-O and
Al-O groups were noticed in the range 550–760 cm−1 [31]. After coprecipitation at b-SiO2,
the new peaks observed at 1048, 801, 586, and 443 cm−1 are assigned to the stretching
vibrations of Si-O-Si, Si-O, Mg-O-Mg/Al-O-Al/Si-O-Si, and O-Si-O in MgAl-LDH@SiO2,
respectively [31,32]. The spectrum of amino-MgAl-LDH@SiO2 showed additional bands at
2921–2850 and 1482–1360 cm−1 related to C-H stretching and the deformation of methyl
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and methylene groups. In addition, bands at 1570 and 690 cm−1 were assigned to N-H
bending and deformations of amino groups, respectively.

2.1.3. XPS Analysis

The XPS spectra of the MgAl-LDH@SiO2 adsorbent before and after adsorption are
given in Figure 4 and Figures S4–S6, respectively. The survey spectrum of MgAl-LDH@SiO2
(Figure S4) displayed the presence of Mg, O, C, Al, and Si in 1s, 2s, and 2p orbit states,
and two additional S 2p and N 1s XPS signals are observed in the survey spectra after dye
adsorption. The Mg 1s, Mg 2p, and Al 2p spectra (Figure 4a,c) demonstrate the presence of
Mg2+ (1302.4 and 1305.4 eV), Mg2+ (49.1 and 51.8 eV), and Al3+ (73.2 and 75.3 eV) valent
states, respectively, corresponding to Mg(Al)-OH/Mg(Al)-O [33]. In addition, the Si 2p
spectrum (Figure 4e) is characterized by three deconvoluted peaks at 97.9, 100.9, and
103.8 eV binding energy, which are related to elementary Si and its oxide [33]. The O
1s spectrum (Figure 4g) was deconvoluted into three overlapping peaks at 528.0, 531.8,
and 533.3 eV, associated with Mg(Al)-O, Mg(Al)-OH/Si-O, and Si-OH/OH(adsorbed
H2O) eV, [31] respectively, while the small C1s spectrum (Figure 4i) was deconvoluted into
three peaks at 284.4, 285.8, and 289.2 eV corresponding to C-Si/C-C, C-C/C-H, and C=O
functional groups, respectively.

In the spectra after adsorption (Figures 4, S5 and S6), a shift in the binding energy
and a change in the shape and intensity of the deconvolution peaks were observed. In
addition, the appearance of new peaks in the following spectra were noticed: Mg 2p at
50.3 eV (Figure 4b) and 50.9 (Figures S5a and S6c); Al 2p at 71.2 eV (Figure 4d), 72.7/77.7 eV
(Figure S5b), and 72.9eV (Figure S6b); and Si 2p at 100.1/104.0/104.9 eV (Figure 4f), 104.8 eV,
(Figure S5c) and 102.4 eV (Figure S6c) attributable to Mg(Al, Si)-O, Al-Metal, and Al-O. This
indicates that these functional groups that contain Mg/Al/Si participate in the interactions
between the adsorbent and dye.

 

 

(a) (b) 

  

(c) (d) 
 Figure 4. Cont.
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Further, in the O 1s spectra after adsorption, a notable decrease in the intensity of the
deconvoluted peaks is observed, and the peaks are significantly shifted to higher binding
energy values, suggesting an interaction between dyes and sorbent. The peaks at 530.7,
533.1, and 534.7 eV after AG-40 adsorption (Figure 4h); 531.0, 533.3, and 534.9 after AB-225
adsorption (Figure S5d); and 531.0, 532.9, and 534.2 after AV-109 adsorption (Figure S6d)
are attributed to Mg(Al)-hydroxide, Si-hydroxide/O-C-OH/C-O, and O-C=O/OH (ad-
sorbed H2O), respectively [31,33]. Deconvolution of the C1s spectrum of MgAl-LDH@SiO2
after adsorption indicates the presence of considerable functional groups from the dyes,
including C-N, (285.6 eV) (Figures 4j, S5e and S6e), N-C=O (288.2 eV) (Figures S5e and S6e),
C-Cl (287.4 eV) (Figure 4j), C-Br (286.2/286.3 eV) (Figures S5e and S6e), and C=C from
the aromatic structure of dyes at ~284 eV, which overlaps with C-Si from the sorbent
(Figures 4j, S5e and S6e). Finally, the S2p [31,32] in the spectra of all adsorbent samples can
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be fitted by four deconvoluted peaks (Figures 4k, S5g and S6g), and a peak for N 1s around
~400 is also observed (Figures 4l, S5f and S6f). These results indicate the interaction of the
sulfonate groups from the dyes with the MgAl-LDH@SiO2 surface.

2.1.4. Determination of Zero Point Charge (pHPZC)

The values of pHpzc at different ionic strengths (Figure S7) were found to be 7.9 and
8.1 for MgAl-LDH and MgAl-LDH@SiO2, respectively. The extent of positive charge at
pH < pHpzc at each adsorbent surface depends on operative pH and surface properties,
but has a low dependence on ionic strength. This parameter strongly indicates the high
applicability of both adsorbents for anionic pollutant removal at pH < pHpzc.

2.2. Adsorption Studies
2.2.1. Adsorption Isotherm Study

The results of the processing of adsorption data using the Langmuir (Equation (S1)) and
Freundlich isotherm models (Equation (S2)) are given in Tables 1, S1–S3 and Figure S8 [9].

Table 1. The results of Langmuir non-linear fitting for Cr(VI) (Ci = 10 mg dm−3) and dyes
(Ci = 25 mg dm−3) adsorption onto MgAl-LDH@SiO2.

Langmuir Model qm (mg g−1) KL (dm3 mg−1) R2

Cr(VI)
25 ◦C 100.3 ± 13.5 2.31 ± 0.76 0.927
35 ◦C 105.4 ± 14.9 2.41 ± 0.82 0.927
45 ◦C 111.3 ± 16.9 2.56 ± 0.92 0.925

AB-225
25 ◦C 307.5 ± 32.5 3.11 ± 0.76 0.958
35 ◦C 306.6 ± 32.3 3.51 ± 0.85 0.958
45 ◦C 304.7 ± 32.4 4.03 ± 1.01 0.956

AV-109
25 ◦C 243.3 ± 33.1 1.69 ± 0.62 0.905
35 ◦C 244.0 ± 32.0 1.86 ± 0.67 0.901
45 ◦C 244.4 ± 30.9 2.08 ± 0.73 0.911

AG-40
25 ◦C 537.2 ± 63.8 4.18 ± 1.30 0.938
35 ◦C 548.4 ± 65.4 4.49 ± 1.42 0.941
45 ◦C 560.2 ± 66.9 4.90 ± 1.53 0.944

The capacities of single-layer coverage (qm) for chromate and dyes increase as the
temperature increased (Table 1) and confirm the high applicability of MgAl-LDH@SiO2 for
anionic pollutant removal. The results obtained indicate that the synergetic effect of the
specific morphology of b-SiO2, despite its lower surface area, combined with the deposition
of MgAl-LDH, provides an active surface. This configuration offers a high availability
of surface-active sites able to interact with anionic pollutants (see Section S3.2.2). The
comparative study of the adsorption results for MgAl-LDH@SiO2 (Table 1) and MgAl-LDH
(Table S1) showed an almost linear relationship in qm values for these two adsorbents,
demonstrating the value of the applied methodology. In addition, the results demonstrate
an appropriate relation between qm and the structural properties of the dyes, specifically
the availability of the basic/proton donating sites. This indicates a higher availability
of the sulfonate group in AG-40 dye for interactions with adsorbent’s surface charge
and functionalities (Figure S8). Otherwise, higher steric hindrance of the neighboring
groups in AB-225 and AV-109 contribute to the decrease in the sulfonate group availability.
Additionally, the adsorption study results at Ci = 1 mg dm−3 are given in Table S4.

2.2.2. Thermodynamic Study

To analyze the thermodynamic aspect of the adsorption process, the Gibbs free energy
(∆GΘ), enthalpy (∆HΘ), and entropy (∆SΘ) were calculated using Van’t Hoff equations, i.e.,
Equations (S3) and (S4) [34]. The obtained results are given in Tables 2 and S5.
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Table 2. Calculated thermodynamic parameters for Cr(VI), AB-225, AV-109, and AG-40 adsorption
onto MgAl-LDH@SiO2.

Pollutant 25 ◦C ∆GΘ (kJ mol−1)
35 ◦C

45 ◦C ∆HΘ

(kJ mol−1)
∆SΘ

(J mol−1 K−1)
R2

Cr(VI) −38.95 −40.37 −41.84 4.16 144.5 0.994

AB-225 −39.69 −41.32 −43.03 10.15 167.1 0.996

AV-109 −37.17 −39.71 −41.29 8.30 155.9 0.998

AG-40 −40.42 −41.96 −43.55 6.25 156.5 0.994

The negative ∆GΘ values at all temperatures demonstrate the feasibility and spon-
taneity of the adsorption processes (Tables 2 and S5). The dependence of ∆GΘ and ∆HΘ

values versus temperature confirms more effective desolvation of the studied ion/dyes and
diffusional processes. Low influences of the structural and physico-chemical properties of
Cr(VI) oxyanions and dye molecules on the state of equilibrium can be observed.

2.2.3. Adsorption Kinetics

Process kinetics were analyzed using pseudo-first order (PFO), pseudo-second order
(PSO), i.e., the Ho–Mackay model, and a second-order model [35], and the results of
the statistically reliable PSO model fitting and the activation energy (Ea) are shown in
Tables 3 and S6.

Table 3. PSO model parameters and activation energy (Ea) for the adsorption of Cr(VI), AB-225,
AV-109, and AG-40 onto MgAl-LDH@SiO2 at 25, 35, and 45 ◦C.

T (◦C) qe (mg g−1) k2 (g (mg min)−1) R2 Ea (KJ mol−1)

Cr(VI)
25 ◦C 90.01 ± 2.61 0.00179 ± 0.0001 0.998
35 ◦C 91.60 ± 2.62 0.00202 ± 0.0002 0.998 9.13
45 ◦C 93.26 ± 2.87 0.00226 ± 0.0001 0.999

AB-225
25 ◦C 254.5 ± 10.4 0.00120 ± 0.0002 0.999
35 ◦C 252.8 ± 9.09 0.00150 ± 0.0001 0.999 18.4
45 ◦C 251.4 ± 8.96 0.00192 ± 0.0002 0.999

AV-109
25 ◦C 232.5 ± 7.86 0.00117 ± 0.0001 0.988
35 ◦C 232.9 ± 8.32 0.00126 ± 0.0001 0.998 6.18
45 ◦C 233.3 ± 8.51 0.00137 ± 0.0001 0.998

AG-40
25 ◦C 468.5 ± 6.15 0.00129 ± 0.0001 0.999
35 ◦C 469.9 ± 6.06 0.00134 ± 0.0001 0.999 5.61
45 ◦C 470.4 ± 5.91 0.00149 ± 0.0001 0.999

Diffusional resistance was evaluated by fitting kinetic data with the Weber–Morris
(W–M) model, the Dunwald–Wagner model (D-W), and the homogeneous diffusion model
(HSDM) [9] (Tables 4 and S7). The LDH structure exhibits a gallery pathway that facilitates
carrier diffusion and transportation throughout the entire particle bulk [36].

Table 4. Kinetic parameters of the W–M, D–W, and HSDM models for the adsorption of Cr(VI) and
dyes onto MgAl-LDH@SiO2.

Model Parameter Cr(VI) AB-225 AV-109 AG-40

W–M
(Step 1)

kp1 (mg g−1 min−0.5) 9.726 ± 0.30 23.39 ± 0.94 21.07 ± 1.05 47.59 ± 1.88
C (mg g−1) 21.81 110.9 97.47 248.23

R2 0.999 0.999 0.999 0.998
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Table 4. Cont.

Model Parameter Cr(VI) AB-225 AV-109 AG-40

W–M
(Step 2)

kp2 (mg g−1 min−0.5) 0.435 ± 0.01 0.264 ± 0.02 0.352 ± 0.02 0.527 ± 0.0
C (mg g−1) 79.08 237.1 214.3 467.9

R2 0.998 0.998 0.998 0.998

D–W
K 0.0215 ± 0.00 0.0319 ± 0.00 0.0312 ± 0.00

0.0217 0.0348 ± 0.00

R2 0.845 0.819 0.826 0.736

HSDM
Ds 2.48 × 10−11 ± 0.00 3.52 × 10−11 ± 0.00 3.46 × 10−11 ± 0.00 3.72 × 10−11 ± 0.00
R2 0.835 0.816 0.824 0.731

2.2.4. Continuous Flow Experiments

The calculated column parameters (see theoretical background in S2.2.4) using the Bohart–
Adams (B–A) [37] and Yoon–Nelson (Y–N) [38] models are given in Tables 5, S8 and S9 and
Figure S9.

Table 5. Results of pollutant removal using MgAl-LDH@SiO2 (Ci[AB-225] = Ci[AG-40] = Ci[AV-109]
= 25 mg dm−3, Ci[Cr(VI)] = 10 mg dm−3, mads = 0.782 g, T = 25 ◦C, pH = 6).

Model and Parameters
Q (cm3 min−1)

0.5 1.0 1.5

B–A

KBA (dm3 mg−1 min−1)
Cr(VI)

0.028 ± 6.99 × 10−4 0.053 ± 0.002 0.091 ± 0.003
qo (mg g−1) 90.02 ± 0.65 74.15 ± 0.93 60.83 ± 0.89

R2 0.999 0.997 0.997

KBA (dm3 mg−1 min−1)
AB-225

0.011 ± 4.45 × 10−4 0.021 ± 8.69 × 10−4 0.032 ± 0.00
qo (mg g−1) 294.7 ± 2.46 271.2 ± 2.84 226.6 ± 2.32

R2 0.992 0.990 0.993

KBA (dm3 mg−1 min−1)
AV-109

0.014 ± 3.54 × 10−4 0.027 ± 9.33 × 10−4 0.040 ± 0.001
qo (mg g−1) 233.9 ± 1.34 207.4 ± 1.85 178.8 ± 1.52

R2 0.997 0.995 0.997

KBA (dm3 mg−1 min−1) 0.007 ± 2.07 × 10−4 0.014 ± 4.34 × 10−4 0.020 ± 3.22 × 10−4

qo (mg g−1) AG-40 555.5 ± 2.99 503.5 ± 3.23 438.0 ± 1.75
R2 0.992 0.992 0.998

kYN (min−1) 0.564 ± 0.01 0.533 ± 0.02 0.603 ± 0.02
θ (min) Cr(VI) 6.952 ± 0.05 5.787 ± 0.07 4.744 ± 0.07

R2 0.999 0.997 0.996

KYN (min−1) 0.566 ± 0.02 0.527 ± 0.02 0.529 ± 0.02
θ (min) AB-225 9.194 ± 0.08 8.377 ± 0.09 7.071 ± 0.07

R2 0.992 0.990 0.993

Y–N KYN (min−1) 0.688 ± 0.02 0.674 ± 0.02 0.680 ± 0.02
θ (min) AV-109 7.299 ± 0.04 6.470 ± 0.06 5.525 ± 0.05

R2 0.997 0.995 0.997

KYN (min−1) 0.347 ± 0.01 0.349 ± 0.01 0.332 ± 0.01
θ (min) AG-40 17.33 ± 0.09 15.55 ± 0.01 13.67 ± 0.05

R2 0.992 0.992 0.998

2.3. Desorption Study in a Column System

Adsorption/desorption cyclability provides a relevant indicator of adsorbent longevity
and cost-effectiveness, which are crucial criteria for assessing potential applicability. The
type and strength of adsorbate/adsorbent interactions, as well as the regenerant’s displace-
ment power, primarily govern the efficacy of adsorption/desorption processes. Meanwhile,
the choice of regenerant dictates the degree of material erosion.
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Due to sensitivity of the MgAl-LDH deposit to strong acidic medium, a brief study
related to regenerant type and desorption condition selection (desorption efficiency versus
concentration and time) was performed (SM S2.3). Accordingly, two adsorption/desorption
technologies were developed:

- A method using a moderate dye inlet concentration (25 mg dm−3) (S2.4.2) with a low
volume of regenerator (Table S10) was developed to promote dye regeneration (less
favorable).

- A method using a low dye inlet concentration (1 mg dm−3) (Table 6) with a larger vol-
ume of desorption solution at higher desorption efficiency (Table S10) was developed
with potential for wastewater purification (highly favorable).

Table 6. The results of adsorption/desorption of the studied pollutants onto/from MgAl-LDH@SiO2

(Ci = 1 mg L−1, Qdes = 0.50 cm3 min−1; mads ~ 0.40 g) using 3.0 and 1 dm3 of 1 wt.% NaOH/2 wt.%
NaCl for dyes and Cr(VI) desorption, respectively.

Pollutants Adsorption
(mg g−1) *

Desorption
(mg g−1) *

Desorption
Efficiency (%) C (mg dm−3) ** ∆q, (mg g−1) *** Σ ***

I
Cr(VI)

71.3 70.1 98.2 28.1 1.3
13.5III 63.3 61.0 96.4 24.4 2.3

V 48.1 44.9 93.4 17.9 3.2

I
AB-225

204.1 198.3 97.2 26.4 5.7
43.9III 189.1 179.8 95.1 23.9 9.3

V 168.9 157.7 93.4 21.1 11.2

I
AV-109

189.8 181.8 95.8 24.3 7.9
48.6III 175.5 166.5 94.9 22.2 8.9

V 168.2 156.1 92.8 20.8 12.1

I
AG-40

374.2 368.2 98.4 49.1 5.9
52.9III 357.9 347.8 97.2 46.4 10.1

V 332.4 317.2 95.4 42.3 15.3

* Adsorbed and desorbed pollutants; ** concentration of the pollutant in effluent water; *** quantity of the
irreversibly bonded pollutants in the 1st, 3rd, and 5th cycles, and overall for five cycles, respectively.

The establishment of circular technologies, after pollutant desorption, was achieved
using different treatments of the effluent water: enzymatic decolorization of AV-109 and
AB-225 (Section 2.4) as well as photocatalytic degradation of AG-40 (Section 2.5).

2.4. Decolorization of Wastewater Using Immobilized HRP on an Amino-MgAl-LDH@SiO2 Support
2.4.1. Immobilization of HRP on an Amino-MGAl-LDH@SiO2 Support

First, HPR immobilization on amino-modified MgAl-LDH@SiO2 particles was exam-
ined in order to determine if this support has potential for use for enzyme immobilization.
Herein, the initial enzyme concentration was varied to examine the support capacity for
enzyme attachment and the activity of immobilized preparations. The impact of the ini-
tial enzyme concentration on the mass of bound protein and the activity of immobilized
peroxidase during the time period are presented in Figure 5.

Immobilization was performed at different initial enzyme concentrations, ranging
from 1.3 to 57 mg/g of support. The enzyme was immobilized in a Na-phosphate buffer at
pH 7 because, at this pH, the amino groups on the enzyme are expected to be positively
charged. In contrast, the enzyme molecules will carry an overall negative charge at pH
values above the isoelectric point. This difference in charge promotes attractive interactions
between the enzyme molecules and the support [39].
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Figure 5. (a) Influence of the initial enzyme concentration on protein loading (mg/g of support)
and (b) protein immobilization yield (%), and (c) the effect of immobilization time on the activity
of immobilized peroxidase at different protein concentrations. The activity of immobilized HPR on
amino-MgAl-LDH@SiO2 was determined based on a reaction with commercial substrate pyrogallol.

Increasing the initial enzyme concentration up to 57 mg/g of support resulted in an
increase in protein loading to 5 mg/g of support (Figure 5a). Immobilized peroxidase
exhibited the lowest activity of 1189.6 IU/g after 24 h at an initial protein content of
1.3 mg/g of support (Figure 5b). The enzyme activity of the immobilized preparation
was in the range of 1750 to 2158 IU/g at the initial protein concentrations above 14 mg/g
of support, indicating that the optimal immobilization time is 4 h and the optimal initial
enzyme concentration is 29 mg/g of support. The plot (Figure 5c) shows that at the
optimal initial enzyme concentration of 29 mg/g of support, the immobilized enzyme
expressed a maximum immobilized enzyme activity of 2158 IU/g of support, a protein
immobilization yield of 15% (Figure 5b), and a specific activity of 431.6 IU/mg of protein
(Table S11). The presented results have shown that HRP immobilized on mesoporous
silica via adsorption exhibits higher activities at lower enzyme loadings, suggesting that
amino-MgAl-LDH@SiO2 has the potential to be used as support for HPR immobilization.

2.4.2. Activation of Support with Glutaraldehyde

After demonstrating that amino-MgAl-LDH@SiO2 can be used for the immobilization
of HRP via adsorption, the amino group was activated with glutaraldehyde (GA) to obtain a
more stable immobilized preparation by forming covalent bonds between the GA-activated
support and the amino groups of enzyme molecules. For support activation, a 1% solution
of GA was used (SM S3.5). The effect of the GA activation on protein loading and enzyme
activity was examined (Table S11). The results indicated that activating the support led to a
22% decrease in activity and a 28% reduction in protein loading. However, activation of
the support with GA did not result in the deactivation of the enzyme molecules during
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immobilization, which could have occurred [40], as evidenced by the fact that the specific
activity remained unchanged after activation.

On the other hand, a desorption assay with 1 M CaCl2 and 1% triton demonstrated that
covalent bonds between the enzyme molecules and GA activated amino-MgAl-LDH@SiO2
are formed. In the case of the HPR-immobilized preparation, 86% of all bonds formed
between HPR and GA-amino-MgAl-LDH@SiO2 were be covalent. It can be presumed that
the stable covalent immobilized preparation will have much more prospects for use in the
decolorization of wastewater in comparison with the enzyme immobilized by adsorption.

2.4.3. Decolorization Efficiency and Reusability Study

To fully exploit the potential of the immobilized peroxidase produced in the decoloriza-
tion reaction, the decolorization of AV-109 dye was conducted using both GA-activated
and non-activated supports (Figure 6a). The decolorization efficiency of the obtained
HPR-immobilized preparations was examined (Figure 6a) under reaction conditions of the
textile dye AV-109 at a concentration of 25 mg L−1 and pH 4.0 in the presence of H2O2
(concentration of 0.08%) [41] (Table S12). The anthraquinone dye AV-109 was chosen as
the model dye in order to preliminary determine if the immobilized preparations could
be used for wastewater treatment. Subsequently, AG-40 dye, AB-225 dye, and a mix-
ture of dyes (AV-109, AG-40, AB-225) were treated with HPR covalently immobilized on
GA-amino-MgAl-LDH@SiO2 (Figure 6b).
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Figure 6. (a) Decolorization efficiency of HPR immobilized on amino-MgAl-LDH@SiO2 and GA-
amino-MgAl-LDH@SiO2. (b) Decolorization of AG-40 and AB-225 dye and a mixture of dyes using
HPR-immobilized GA-amino-MgAl-LDH@SiO2 support. (c) Reusability of the produced GA-amino-
MgAl-LDH@SiO2-HPR preparation in the decolorization of the textile dye AV-109 and the adsorption
of AV-109 dye on GA-amino-MgAl-LDH@SiO2.

The highest decolorization efficiency (90%) was achieved within 300 min with HPR
immobilized on GA-activated support (GA-amino-MgAl-LDH@SiO2) (Figure 6a). On the
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other hand, degradation with HPR immobilized on amino-MgAl-LDH@SiO2 remained
stable after 50 min of treatment, with a maximum decolorization efficiency of only 30%.

Preliminary experiments showed that the adsorption capacity of both supports is up
to a maximum of 50% for 5 h in the case of the AV-109 dye. This indicates that the greater
than 50% decolorization efficiency of the immobilized enzyme could be ascribed only to
the enzyme’s activity, with the highest impact observed after 125 min in case of the HPR
immobilized on the GA-activated support.

A comparison of the results for GA-activated and amino supports clearly demonstrates
that activation with GA positively impacted the affinity of peroxidase toward AV-109 de-
colorization. Therefore, the decolorization potential of HPR immobilized on GA-activated
support was examined in reactions with two more anthraquinone dyes as well as a mixture
of dyes under similar reaction conditions as noted for the AV-109 dye.

The results showed that GA-amino-MgAl-LDH@SiO2 is capable of decolorizing the
AB-225 dye by 92% within 175 min (Figure 6b), while it decolorized the mixed dye solution
by 49% in the same timeframe. For AG-40 dye, a low decolorization efficiency of ~10%
over 240 min was detected. Based on the presented results, it can be concluded that
HPR immobilized on GA-amino-MgAl-LDH@SiO2 could be used for the degradation of
AV-109 and AB-225 with high efficiency. In the case of the dye mixture, the efficiency
is approximately 50% due to the presence of AG-40. The poor performance of the HPR
immobilized preparation with AG-40 dye can be attributed to the dye’s chemical structure,
which affects its ability to approach the enzyme’s active site effectively. Since HPR is unable
to degrade AG-40 dye, photodegradation will be applied.

Based on reusability research, the potential for using the derived biocatalyst on an
industrial scale was also assessed. The findings are displayed in Figure 6c.

The biocatalyst applied under optimal reaction conditions was separated from the
reaction mixture after each cycle, and its remaining catalytic activity was assessed in
comparison to the first cycle (100%). Over the course of five cycles, the HRP immobilized
preparation maintained a decolorization efficiency above 90%. However, a gradual decrease
in decolorization efficiency was noted in the 5th and 6th cycles. In contrast, for the GA-
activated support, dye adsorption was observed only after the initial cycle. Given that 50%
of the dye is adsorbed after the initial cycle and only 5% is adsorbed in the subsequent five
cycles, it can be concluded that the performance of immobilized HPR preparation in dye
decolorization during reuse is solely due to the enzyme.

2.5. Photodegradation of Effluent Water Containing AG-40

Photocatalytic tests were conducted using zinc oxide at 0.08 g L−1 and an initial dye
concentration (effluent solution, Table 6) of 22.7 mg/L for 210 min (S2.5). The decrease in
absorbance at 615 nm versus time is given in Figure 7.
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The efficiency of photodegradation, demonstrating a rate of 82.5% after 210 min,
depends on the reaction conditions, dye structure, and irradiation efficiency [42]. The rate of
the photocatalytic reaction is determined by pseudo-first-order kinetics: k1 = 0.0073 min−1

and t1/2 = 94.9 min [43,44]. The determination of the COD value was performed to evaluate
the potential environmental threat of the effluent and treated water (S2.5) providing one
general parameter of water quality (Table S13). The trend of COD values showed a nearly
linear decrease, reaching 178 mg O2/L after 210 min and 126 mg O2/L after 4 h of irradiation.
Both values are lower than 200 mg O2/L, as prescribed by the Serbian national regulation
on sewage water from the textile industry (S2.5). Results from photolysis experiments
and quantum yield determination (S2.5; Table S14) confirm the photocatalytic degradation
potential for future optimization in real water. The effective treatment and purification of
water provide effluent waters that are able to be safely discharged into water-courses.

2.6. Recycling of Exhausted MgAl-LDH@SiO2

Exhausted MgAl-LDH@SiO2 particles were transformed into a native form of bio-silica
through acid washing and used as reinforcements in b-UPR [45]. A SEM micrograph of
recycled bio-silica is given in Figure S10. Acidic washing was further processed by selective
precipitation of Al-hydroxide and Mg(OH)2 (Figure S11) (S2.6). The XRDs of those materials
are given in Figure S12. The obtained composite Al-based materials, named c-Al(OH)3,
and Mg(OH)2 were used as fire retardant fillers in b-UPR at 20, 40, and 60 wt.% addition.

2.6.1. Mechanical Properties of the b-UPR/bio-Silica Composites

The highest reinforcing effect of bio-silica addition was obtained at 2.5 wt.% of both un-
modified and vinyl (SiO2-V) modified bio-silica (S2.6.1), while the Charpy impact strength
peaked at 1 wt.% of SiO2-V addition. The colored test specimens are given in Figure S13.
The values of tensile strength, elongation, and modulus of elasticity are provided in Figure 8
and Table S15.
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The SEM micrograph of b-UPR/2.5 wt.% SiO2 composites is given in Figure S14.
Moreover, the results of the mechanical properties of b-UPR/c-Al(OH)3 are given in Figure 9
and Table S16.
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Similar results were obtained for b-UPR/Mg(OH)2 composites (Table S17).

2.6.2. Thermal Stability of b-UPR-Based Composites

The rating of the thermal stability of the produced composites, including b-UPR/SiO2,
b-UPR/c-Al(OH)3, and b-UPR/Mg(OH)2, was determined according to the UL-94 stan-
dard vertical test (Table 7) using the apparatus presented in Figures S15 and S18. In the
flammability test, after exposing the samples to a flame [9], the dripping was more domi-
nant during the exposure of neat b-UPR. The speed of dripping, i.e., the sample bursting,
differed depending on the ratio of cross-linked b-UPR and fire-retardant addition.

Table 7. Results of the flammability test UL-94V.

Sample b-UPR with Filler First Flaming Second Flaming Cotton Indicator Ignited Category

Clean b-UPR 42 59 Yes V-2

20 wt.% c-Al(OH)3 18 27

No

V-120 wt.% Mg(OH)2 23 30

40 wt.% c-Al(OH)3 3 6

V-0
40 wt.% Mg(OH)2 5 10
60 wt.% c-Al(OH)3 2 3
60 wt.% Mg(OH)2 2 5

When materials reach the end of their useful lives after several cycles, they can be
used again as either non-reactive fillers in freshly developed UPR matrices or by evaluating
the biodegradability of the composites they form.

2.7. Literature Survey of Adsorption Data for LDH-Based Adsorbents

The efficiency of the MgAl-LDH and MgAl-LDH@SiO2 particles for dyes removal are
similar or higher than those of other LDH-based adsorbents (Table S18) [33,46–54].

3. Materials and Methods
3.1. Materials

Supplementary Material S3.1 lists all of the materials employed.
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3.2. Syntheses of the MgAl-LDH and MgAl-LDH@SiO2

The methods used for the preparation of bio-silica particles and MgAl-LDH and
modification of MgAl-LDH@SiO2 with amino-silane are given in S3.2.1, S3.2.2, and S3.2.4,
respectively [55].

Optimization of MgAl-LDH@SiO2 Synthesis

The optimization goal was to produce an optimal amount of uniform coating of MgAl-
LDH onto the bio-silica surface. The synthesis process was conducted using six consecutive
steps [56]. The first modification step was as follows: bio-silica (100 g) was wetted with
an aqueous solution of MgCl2 × 4H2O (33 mmol) and Al2(OH)5Cl × 2.5 H2O (11 mmol)
in 30 cm3 deionized water and added to the reactor [56]. The test tube was filled with
xylene as a non-solvent, and gentle mixing of the media was achieved by nitrogen/air
bubbling in an upstream flow (for 30 min). Aqueous solutions of 1M NaOH were used
to adjust the pH to 10, and the solution was left overnight. The obtained material was
washed with deionized water until a neutral pH of washing was obtained and used in
subsequent deposition experiment (five cycles). All materials obtained were used in the
adsorption study. The optimal mass ratio of bio-silica to MgAl-LDH was ~12:1 (~7.6 wt.%)
(Figure S17).

3.3. Synthesis of Bio-Based Unsaturated Polyester Resin (b-UPR)

The methods for the production of bio-based unsaturated polyester resin, b-UPR, as
the matrix for composites preparation are given in S3.3 [57].

3.4. Adsorption/Desorption Study in a Batch and Fixed-Bed Column System

Details of the adsorption/desorption experiments are provided in S3.4 [58].

3.5. Technologies Developed for Desorbed Pollutant and Exhausted Adsorbent Disposal

To ensure environmentally friendly disposal of the effluent/treated water after des-
orption and exhaustion of the adsorbent, several methods for stabilizing spent adsorbent
and aqueous solutions containing pollutants have been developed (S3.5).

3.5.1. Disposal of Exhausted Adsorbent

After five adsorption/desorption cycles, the exhausted adsorbent was subjected to
acid washing to remove the MgAl-LDH deposit, leaving b-SiO2 nanofiller that was used as
reinforcement for biobased unsaturated polyester resin (b-UPR) (S3.5.1) [45].

3.5.2. Preparation of Immobilized Enzyme on Amino-MgAl-LDH@SiO2 Support

After introducing amino groups onto MgAl-LDH@SiO2 [29], immobilization of HPR
onto amino-MgAl-LDH@SiO2 was performed. In order to obtain a more stable immobilized
preparation, amino-MgAl-LDH@SiO2 was activated with glutaraldehyde (GA). The protein
concentration was determined using the Bradford method, and the activities of free and
immobilized peroxidase were calculated. All methods, including the decolorization of dyes
and the HPR recycling potential in consecutive cycles, are described in S3.5.2 [59–63].

3.5.3. Dye Decolorization Procedure

A description of the decolorization procedure is given in S3.5.3.

3.5.4. Photocatalytic Experiment

The photocatalytic protocol is presented in S3.5.4 [64–68].

3.5.5. Disposal of Cr(VI)

The procedures for heavily soluble Cr(III)-oxide formation are given in S4.5.5 [69–71].
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3.6. Characterization Methods

Comprehensive details regarding the characterization methods used are provided in
S3.6 [72,73].

4. Conclusions

The sustainable development agenda related to the preservation of the planet is a
rapidly evolving area, and a wealth of results have been achieved. Nevertheless, there are
still many challenges, such as increasing the use of bio-based raw materials, decreasing
energy consumption, simplifying technologies, enhancing end-of-life material recycling,
and improving environmental friendliness, that should be addressed. In line with this,
herein, information on the achievement of some these goals through the development of
sustainable technologies for wastewater purification and the valorization of generated
waste materials into useful products is presented. Three main goals were achieved:

- The production of effective MgAl-LDH and MgAl-LDH@SiO2 useful for anionic
pollutant removal was attained. Adsorption capacities of 89.39, 275.4, 219.9, and
488.4 mg g−1 as well as 100.3, 307.6, 243.3, and 537.2 mg g−1 for Cr(VI), Acid Blue 225
(AB-225), Acid Violet 109 (AV-109), and Acid Green 40 (AG-40) dye removal using
MgAl-LDH and MgAl-LDH@SiO2 adsorbent, respectively, were obtained.

- Effluent water obtained from desorption was successfully treated either by photocat-
alytic or enzymatic methods using regenerated bio-silica as support.

- The COD values decreased nearly linearly, reaching 178 mg O2/L after 210 min and
126 mg O2/L after 4 h of irradiation.

- Exhausted adsorbent MgAl-LDH@SiO2 was transformed to bio-silica reinforcement,
and c-Al(OH)3 and Mg(OH)2 fire retardants were used in the production of b-UPR-
based composites with improved mechanical and fire-proofing properties.

- The addition of 2.5% silica particles raises the composite’s tensile strength by 61.6%
compared to the pure matrix. Young’s modulus exhibits a similar increasing trend,
reaching 37.3% of that of the pure matrix. Adding c-Al(OH)3 to the polymer matrix
reduces the composite’s mechanical characteristics. Tensile strength is reduced by
43.6% with the addition of 60 wt.% c-Al(OH)3.

At the same time, it is necessary to continue work on the development of low-cost,
high-efficiency, and pollution-free technologies, promoting their widespread application in
industrial production, in line with sustainable development goals.
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Material Based on Poly(Methyl Methacrylate) with Magnesium-Aluminum Layered Double Hydroxide (MgAl-LDH) on Bio-Silica
Particles. Mater. Lett. 2024, 354, 135354. [CrossRef]

30. Vuksanovic, M.; Mladenovic, I.; Tomic, N.; Petrovic, M.; Radojevic, V.; Marinkovic, A.; Jancic-Heinemann, R. Mechanical
Properties of Biomass-Derived Silica Nanoparticles Reinforced PMMA Composite Material. Sci. Sinter. 2022, 54, 211–221.
[CrossRef]

31. Yang, D.; Song, S.; Zou, Y.; Wang, X.; Yu, S.; Wen, T.; Wang, H.; Hayat, T.; Alsaedi, A.; Wang, X. Rational Design and Synthesis
of Monodispersed Hierarchical SiO2 @layered Double Hydroxide Nanocomposites for Efficient Removal of Pollutants from
Aqueous Solution. Chem. Eng. J. 2017, 323, 143–152. [CrossRef]

32. Zheng, G.; Wu, C.; Wang, J.; Mo, S.; Zou, Z.; Zhou, B.; Long, F. Space-Confined Effect One-Pot Synthesis of γ-AlO(OH)/MgAl-LDH
Heterostructures with Excellent Adsorption Performance. Nanoscale Res. Lett. 2019, 14, 281. [CrossRef] [PubMed]

33. Dai, X.; Jing, C.; Li, K.; Zhang, X.; Song, D.; Feng, L.; Liu, X.; Ding, H.; Ran, H.; Zhu, K.; et al. Enhanced Bifunctional Adsorption
of Anionic and Cationic Pollutants by MgAl LDH Nanosheets Modified Montmorillonite via Acid-Salt Activation. Appl. Clay Sci.
2023, 233, 106815. [CrossRef]

34. Lombardo, S.; Thielemans, W. Thermodynamics of Adsorption on Nanocellulose Surfaces. Cellulose 2019, 26, 249–279. [CrossRef]
35. Major, G.H.; Chatterjee, S.; Linford, M.R. Resolving a Mathematical Inconsistency in the Ho and McKay Adsorption Equation.

Appl. Surf. Sci. 2020, 504, 144157. [CrossRef]
36. Xu, D.-M.; Guan, M.-Y.; Xu, Q.-H.; Guo, Y. Multilayer Films of Layered Double Hydroxide/Polyaniline and Their Ammonia

Sensing Behavior. J. Hazard. Mater. 2013, 262, 64–70. [CrossRef]
37. Bohart, G.S.; Adams, E.Q. Some aspects of the behavior of charcoal with respect to chlorine 1. J. Am. Chem. Soc. 1920, 42, 523–544.

[CrossRef]
38. Yoon, Y.H.; Nelson, J.H. Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life. Am.

Ind. Hyg. Assoc. J. 1984, 45, 509–516. [CrossRef]
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onto Magnetite Modified Fly Ash. J. Environ. Manag. 2018, 224, 263–276. [CrossRef]

57. Jia, W.; Si, Z.; Feng, Y.; Zhang, X.; Zhao, X.; Sun, Y.; Tang, X.; Zeng, X.; Lin, L. Oxidation of 5-[(Formyloxy)Methyl]Furfural to
Maleic Anhydride with Atmospheric Oxygen Using α-MnO2/Cu(NO3)2 as Catalysts. ACS Sustain. Chem. Eng. 2020, 8, 7901–7908.
[CrossRef]
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