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Abstract: CycloAnt is an opioid peptide that produces potent and efficacious antinociception with
significantly reduced side effects upon systemic administration in mice. To verify its CNS-mediated
antinociception, we determined its binding affinity at the opioid receptors, its proteolytic stability
in mouse serum, metabolic stability in mouse liver microsomes, and pharmacokinetics in mice. Cy-
cloAnt exhibited stability toward proteolytic degradation in serum and resistance against metabolism
mediated by cytochrome P450 enzymes (CYP450s) and UDP-glucuronosyl transferases (UGTs) in
mouse liver microsomes. A pharmacokinetic study of CycloAnt in mice confirmed that CycloAnt
crossed the blood–brain barrier (BBB) with a brain-to-plasma ratio of 11.5%, a high extent of BBB
transport for a peptide. To elucidate the structural basis underlying its BBB penetration, we inves-
tigated its conformation in water and DMSO using 1H NMR spectroscopy. The results show that
CycloAnt displays an extended conformation in water with most amide NHs being exposed, while in
less polar DMSO, it adopts a compact conformation with all amide NHs locked in intramolecular
hydrogen bonds. The chameleonic property helps CycloAnt permeate the BBB.

Keywords: cyclic peptide; opioid ligand; conformational plasticity; membrane-permeable peptide

1. Introduction

Current morphinan-based prescriptive opioid pain medications, while effective anal-
gesics, are associated with harmful side effects, including respiratory depression, tolerance,
dependence, and abuse. Use and misuse of prescriptive opioid pain medications initiated
the opioid-overdose crisis, which later has been fueled by illicit manufactured synthetic
opioid fentanyl to become the third leading cause of deaths in the USA [1]. While some
painkillers target alternate mechanisms to produce analgesia, they, too, produce adverse
effects such as sedation, locomotor impairment, and possible habitual use [2,3]. Their
efficacy often falls short of traditional opioids as well [4]. The urgent need for developing a
safe, nonaddictive, highly efficacious analgesic holds the key to addressing the devastation
of opioid misuse while improving pain management outcomes.

The endogenous opioid system uses opioid peptides to interact with the mu (MOR),
delta (DOR), and kappa (KOR) opioid receptors. Over 20 endogenous opioid peptides work
together to activate all three opioid receptors to effectively relief pain without producing
adverse effects [5]. This differs dramatically from the small-molecule opioid pain medica-
tions. In addition, peptides and small-molecule drugs use different signaling mechanisms
to activate the opioid receptors in the intracellular level. Following the initial receptor
activation at the plasma membrane, opioid peptides propagate the receptors to endosomal
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activations. In contrast, small-molecule drugs, in addition to activating receptors at plasma
membrane and endosomes, readily penetrate the cell membrane to drive the internal activa-
tion into the Golgi apparatus [6]. The spatiotemporal specificity affects signal duration and
pathway selection downstream, contributing to distinct downstream physiological effects.
Peptide-based opioid analgesics have, therefore, gained profound interest in the discovery
and development of safer, highly efficacious, and non-/less-addictive analgesics [7–12].

The challenge in developing peptide-based drugs is always their poor proteolytic
stability and low membrane permeability [13]. It is even more challenging for developing
peptide drugs for the use in the central nervous system (CNS), as the blood–brain barrier
(BBB) is a huge obstacle for peptides to cross [14]. This can be seen clearly in the drug
discovery of peptide-based opioid analgesics. Although many peptides have been identified
as potent opioid receptor agonists in vitro, only a few can be used systemically to produce
antinociception in vivo; the number of peptides that can produce CNS-mediated opioid
analgesia is even less [7].

In our previous research, we identified CycloAnt, which is a cyclic peptide that exhibits
mixed-functional MOR agonist/DOR antagonist and produces potent and efficacious
antinociception in mice [15]. Intraperitoneal (i.p.) administration of CycloAnt produces
a dose- and time-dependent antinociception with an ED50 of 0.7 mg/kg in the 55 ◦C
warmwater tail-withdrawal assay (WWTW). Importantly, at high doses up to 15 times of
the ED50 value (ED50×15), CycloAnt does not produce any respiratory depression, while
chronic administration produces significantly reduced physical dependence, shown by
naloxone-precipitated withdrawal testing [15]. In this study, we determine the binding
affinity of CycloAnt at the three opioid receptors to verify its opioid receptor engagement.
We carry out a computational study to predict the site of metabolism (SOM) as well as
evaluate its stability in mouse serum and mouse liver microsomes. We also study the
pharmacokinetics of CycloAnt and confirm its presence in the mouse brain. Investigation
of its conformational dynamics using variant temperature 1H NMR experiment suggests
that this beyond rule-of-5 (bRo5) [16,17] molecule behaves as a chameleonic peptide which
can adjust its conformation in response to solvent change.

2. Results
2.1. Determination of Binding Affinity to Opioid Receptors

CycloAnt is a lariat peptide that acts in vivo as a bifunctional MOR agonist and DOR
antagonist, which was confirmed in our previous study using opioid receptor individually
knock-out (OP KO) mice [14]. In the current study, the binding affinities of CycloAnt to the
three opioid receptors are determined using cell-based radioligand opioid receptor binding
assays [18]. Using [3H]diprenorphine as the radioligand, we find that CycloAnt binds to
the MOR and DOR with an affinity (Ki) of 2.25 ± 0.44 and 7.85 ± 0.77 nM, respectively. At
the KOR, CycloAnt at 1 µM inhibits 6% and at 10 µM inhibits 26% of [3H]diprenorphine
binding. The in vitro binding affinity data indicate that CycloAnt selectively interacts with
MOR and DOR, agreeing with its in vivo receptor engagement in OP KO mice determined
in our previous study [15].

2.2. Evaluation of the Proteolytic Stability of CycloAnt

Proteolytic instability is a major hurdle limiting the development of peptide drug.
As blood is a major source of proteases that degrade peptides, we evaluated the stability
of CycloAnt in mouse serum. CycloAnt at a final concentration of 20 µM was incubated
with mouse serum (SigmaAldrich) at 37 ◦C for 8 h. At 0, 15, 30, 60, 120, 240, and 480 min,
the incubation was terminated by adding 2 volumes of ice-cold acetonitrile to precipitate
the proteins in the sample. After centrifugation at 10,000 rpm, supernatant was collected.
The processed sample was analyzed by liquid chromatography tandem mass spectrometry
(LC-MS/MS). The percentage of CycloAnt remaining at each time point was calculated
(Figure 1). During the 8 h frame, 82.3% of CycloAnt kept its initial form, indicating that
CycloAnt is stable against enzymatic degradation in mouse serum.
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Metabolism (SOM). The intrinsic reactivity at 3A4 is calculated with a linear free energy 
approach based on the Hannett and Taft scheme [19]. Two atoms, Cβ (3.3) and the C3’ (2.4) 
of the phenyl ring on the Tyr1 residue, were predicted to have weak intrinsic reactivity for 
3A4 (Figure 2a). Induced-fit docking of CycloAnt to 2D6 combined with its intrinsic reac-
tivity showed that 2 atoms, Cβ of Thr4 and Cα of Gly5, have a low overall SOM score (small 
green circle in Figure 2b), indicating low reactivity at 2D6. Induced-fit docking of Cyclo-
Ant to 2C9 combined with its intrinsic reactivity did not identify any atom (no green circle 
in Figure 2c) that may be reactive at the heme site. The results of the computational pre-
diction suggest that CycloAnt may not be a substrate of CYP3A4, 2C9, and 2D6. 
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Figure 1. CycloAnt stability in mouse serum.

2.3. Evaluation of the Metabolic Stability of CycloAnt
2.3.1. Computational Prediction of P450 Site of Metabolism

CycloAnt produces antinociception in mice with a short duration lasting 70 min, de-
termined in our previous study [15]. As CycloAnt is stable against proteolytic degradation
in serum, we speculated whether the short duration of action could be due to its quick
metabolism by P450 enzymes. We first conducted a computational study to identify its
potential sites of metabolism (SOMs) at 3A4, 2C9, and 2D6 using Maestro P450 Site of
Metabolism (SOM). The intrinsic reactivity at 3A4 is calculated with a linear free energy
approach based on the Hannett and Taft scheme [19]. Two atoms, Cβ (3.3) and the C3’ (2.4)
of the phenyl ring on the Tyr1 residue, were predicted to have weak intrinsic reactivity
for 3A4 (Figure 2a). Induced-fit docking of CycloAnt to 2D6 combined with its intrinsic
reactivity showed that 2 atoms, Cβ of Thr4 and Cα of Gly5, have a low overall SOM score
(small green circle in Figure 2b), indicating low reactivity at 2D6. Induced-fit docking of
CycloAnt to 2C9 combined with its intrinsic reactivity did not identify any atom (no green
circle in Figure 2c) that may be reactive at the heme site. The results of the computational
prediction suggest that CycloAnt may not be a substrate of CYP3A4, 2C9, and 2D6.
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2.3.2. Evaluation of the Metabolic Stability of CycloAnt in Mouse Liver Microsomes

The metabolic stability of CycloAnt was then evaluated in mouse liver microsomes.
CycloAnt at a final concentration of 3.07 µM was mixed with 0.5 mg/mL liver microsomes
in the presence of 1 mM of NADPH and incubated at 37 ◦C for 2 h [20]. At 0, 5, 15, 30, 60,
and 120 min, incubation mixtures were withdrawn and processed. The supernatant was
analyzed by LC-MS/MS. The percentage of CycloAnt remaining at each time point was
calculated (Figure 3a). During the 120 min incubation window, CycloAnt was observed
to have no significant concentration change, indicating that CycloAnt was stable against
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CYP450 metabolism in mouse liver microsomes in vitro. This result also validates the
prediction of the computational SOM simulation.
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Figure 3. Stability of CycloAnt in mouse liver microsomes. The percentage of CycloAnt remaining
after incubation with liver microsomes at 37 ◦C (a) in the presence of NADPH; (b) in the presence
of UDPGA.

Next, we examined the level of glucuronidation of CycloAnt in mouse liver micro-
somes using a method described elsewhere [21]. CycloAnt at a final concentration of
3.07 µM was premixed with 0.5 mg/mL liver microsomes and a channel-forming pep-
tide antibiotic alamethicin at 0 ◦C. After 15 min, the glucuronidation was initiated by
adding the UDP-glucuronosyl transferases (UGTs) substrate uridine-5’-diphospho-α-D-
glucuronic acid (UDPGA) to a final concentration of 5 mM and the mixture was incubated
at 37 ◦C [19]. At 0, 5, 15, 30, and 60 min, the incubation mixture was withdrawn and
processed. The supernatant was collected and analyzed by LC-MS/MS. The percentage
of the remaining CycloAnt was calculated, and the results show that CycloAnt was stable
against glucuronidation over the 60 min incubation period, indicating that CycloAnt was
not metabolized by UGTs as well (Figure 3b).

2.3.3. Examination of the Possible Metabolites Using Mass Spectrometry (MS)

To verify if CycloAnt could be metabolized in vivo, we looked for the possible metabo-
lites (Scheme S1) in a blood sample collected from mice 15 min after i.p. administration of
CycloAnt at a dose of 10 mg/kg. The proteins in the mouse plasma were precipitated by
ice-cold acetonitrile containing internal standard. Following centrifugation, the supernatant
was collected, and analyzed by LC-MS/MS. A total ion current (TIC) scan was conducted
for the mass-to-charge ratio (m/z) in the range of 300–1500 for all ions, followed by the
targeted narrow range scans. The scans in the range of 650–690 and 325–346 are aimed
at detecting the potential [M + 1]+ and [M + 2]2+ ions from the Phase I metabolites, the
enzymatically cleaved peptides, and intact CycloAnt, respectively (Figures S1 and 2); and
the scans in the range of 843–852 and 422–428 are for detecting the potential [M + 1]+ and
[M + 2]2+ ions from the Phase II glucuronidation, respectively (Figure S3). The [M + 1]+

and [M + 2]2+ ions were then extracted from the narrow range scans for the potential
enzymatically cleaved products (Figure S1), the Phase I metabolites (Figure S2), and the
Phase II UGT metabolites (Figure S3). The relative abundance of the tallest peak was
assigned as 100. The data show that the m/z intensity of any possible metabolites is within
the range of 1E3 to 1E4 (Figures S1–S3, top and middle panels); however, the m/z intensity
of CycloAnt in the plasma sample reaches 1E7 (Figure S1–S3, bottom panel). The MS data
suggest that any metabolites generated from the potential metabolic reactions should have
concentrations 103- to-104-fold lower than CycloAnt. In combination with the results from
the in vitro stability study, we are confident that CycloAnt is stable in plasma and resistant
to liver metabolism in mice.

2.4. Evaluation of Pharmacokinetics of CycloAnt in Mice

CycloAnt is a cyclic peptide that exhibits mixed-functional MOR agonist/DOR antag-
onist and produces potent and efficacious antinociceptive effects in mice. We have reported
that i.p. preadministration of CycloAnt to MOR-KO mice dose-dependently blocked the
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antinociceptive effect produced by a DOR agonist, SNC-80, administrated intracerebroven-
tricularly (i.c.v.) [15]. This effect indicates that CycloAnt enters into the brain to antagonize
the antinociceptive effect of SNC-80. As CycloAnt is a potent MOR agonist in vitro and is
stable in mouse serum and liver microsomes, we believe that the pharmacological effects
produced by i.p. administrated CycloAnt are not caused by its hydrolyzed fragments or
metabolites, but the intact CycloAnt molecule.

To evaluate the amount of CycloAnt in mouse brain, we performed a pharmacokinetic
experiment in mice [22]. Mice were given CycloAnt at 3 mg/kg i.p.; blood was collected at
0, 15, 30, and 60 min post-injection. Immediately after the blood was collected, the mouse
was intracardially perfused through the left ventricle with 20 mL PBS. The whole brain
was isolated and homogenized. The blood and brain samples were processed by protein
precipitation and centrifugation. The supernatants of the blood and brain samples were
collected and analyzed by LC-MS/MS.

The LC-MS/MS detection shows that CycloAnt is present in blood and brain; at
15 min post-injection it reaches the maximum concentrations in blood as well as in the brain.
The maximum concentration of CycloAnt in mouse plasma (Cmax,pl) was calculated to be
411 ng/mL and the maximum concentration of CycloAnt in brain (Cmax,br) was 46 ng/g, or
70 nM, assuming that the density of brain tissue is 1 g/mL (Figure 4). This study confirmed
that CycloAnt penetrated the BBB after systemic administration. The brain-to-plasma ratio
of CycloAnt is 11.5%, determined by the ratio of the areas under the curves (AUC), which
is a high extent of BBB transport in terms of a peptide [23].
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2.5. NMR Characterization of CycloAnt for Its Conformational Plasticity with
Environmental Change

CycloAnt has 10 HB donors, 27 rotating bonds, a molecular weight of 654.7, and a
cLogP value of −0.7323. It is a bRo5 molecule that classically is considered membrane
impermeable. Even though its backbone is constrained, limiting the possible rotations
around the peptide bonds, it still adopts multiple conformations. To understand how
CycloAnt penetrates the BBB, we conducted variant-temperature NMR experiments in
solvents of varying polarity, i.e., water (dielectric constant, ε ≈ 80) and less polar solvent
DMSO (ε = 47) (Figures S4 and S5), to assess its conformation in the two solvents. The
dielectric constant of DMSO is between water (ε ≈ 80) and nonpolar interior of membrane
(ε ≈ 2–3); therefore, it is suggested to mimic the interface between water and membrane, or
where peptide initially interacts with membrane [24]. The 1H NMR peaks recorded in the
two solvents at 298 K were assigned to each amide proton (HN) on CycloAnt (Figure 5). The
temperature shift coefficient (∆δ/∆T) of each HN was then calculated (Table 1) to evaluate
their involvement in forming an intramolecular hydrogen bond (HB) in the two solvents
(Figures S6 and S7).



Int. J. Mol. Sci. 2024, 25, 11389 6 of 11

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 11 
 

 

(ε ≈ 2–3); therefore, it is suggested to mimic the interface between water and membrane, 
or where peptide initially interacts with membrane [24]. The 1H NMR peaks recorded in 
the two solvents at 298 K were assigned to each amide proton (HN) on CycloAnt (Figure 
5). The temperature shift coefficient (Δδ/ΔT) of each HN was then calculated (Table 1) to 
evaluate their involvement in forming an intramolecular hydrogen bond (HB) in the two 
solvents (Figures S6 and S7).  

 
Figure 5. 1H NMR peak assignment of CycloAnt recorded in DMSO and H2O at 298 K. 

Table 1. Temperature coefficient (Δδ/ΔT) of amide proton HN of CycloAnt in DMSO and H2O. 

Δδ/ΔT (ppb/K) HN Gly5 HN Thr4 HαN Dap3 HγN Dap3 HαN D-Lys2 HεN D-Lys2 
In DMSO −3.8 −1.3 −3.1 −3.7 −4.0 −3.9 

In H2O −6.8 −3.9 −3.9 −8.0 −6.3 −6.7 

The temperature shift coefficient of each amide HN measured in water differed sig-
nificantly from that in DMSO. When CycloAnt is in DMSO, all HNs have a higher temper-
ature shift coefficient (less negative) value than in water. Specifically, in DMSO, all amide 
HNs have a Δδ/ΔT value equal to or larger than −4.0 ppb/K, with the HN of Thr4 and the 
HαN of Dap3 being −1.3 and −3.1 ppb/K. In water, the Δδ/ΔT values of the HNs of Thr4 and 
the HαN of Dap3 are −3.9 ppb/K, but the rest of the HNs all have a much lower Δδ/ΔT value 
in the range of −6.3 to −8.0 ppb/K.  

3. Discussion 
Peptides have a large polar surface area with a high number of free rotatable bonds; 

they are classic bRo5 molecules unfavored for membrane permeation. However, peptides 
may utilize various mechanisms to penetrate the membrane, such as endocytosis and di-
rect membrane translocation, or active transport [23,25–28]. Some natural cyclic peptides, 
e.g., cyclosporin A, have high membrane permeability. Cyclosporin A has multiple N-
methylated amide bonds; N-methylation improves its hydrophobic and passive mem-
brane permeability [25]. Cyclosporin A can also adjust its conformation in response to 
environmental changes. This chameleonic property facilitates the membrane translocation 
of cyclosporin A [27]. Cyclic pentapeptide cilengitide (cyclo[RGDfNMeV]) and its amide-
to-ester substituted analogs, which are similar in size to CycloAnt, have also been reported 
to display conformational plasticity [29]. 

Conformationally plasticity is a key determinant of membrane permeability of cyclic 
peptides [30]. Our variant temperature NMR experiments confirmed that the temperature 
shift coefficient of each amide HN of CycloAnt changed with varying solvent polarity/en-
vironment. Temperature shift coefficient has been used to distinguish the hydrogen-
bonded or nonhydrogen-bonded protons in protein and peptide. Using a cutoff value of 
−4.5 ppb/K for hydrogen-bonded amide [31], in DMSO, all the amide HNs of CycloAnt are 
intramolecularly hydrogen bonded and the HN of Thr and the HαN of Dap are locked in 
strong intramolecular HBs, while in water, only HN of Thr and the HαN of Dap are intra-
molecularly hydrogen bonded. The other 4 amide HNs are exposed to the solvent without  
forming intramolecular HBs. The difference of the amide involvement in the 

Figure 5. 1H NMR peak assignment of CycloAnt recorded in DMSO and H2O at 298 K.

Table 1. Temperature coefficient (∆δ/∆T) of amide proton HN of CycloAnt in DMSO and H2O.

∆δ/∆T
(ppb/K) HN Gly5 HN Thr4 HαN Dap3 HγN Dap3 HαN

D-Lys2
HεN

D-Lys2

In DMSO −3.8 −1.3 −3.1 −3.7 −4.0 −3.9
In H2O −6.8 −3.9 −3.9 −8.0 −6.3 −6.7

The temperature shift coefficient of each amide HN measured in water differed signifi-
cantly from that in DMSO. When CycloAnt is in DMSO, all HNs have a higher temperature
shift coefficient (less negative) value than in water. Specifically, in DMSO, all amide HNs
have a ∆δ/∆T value equal to or larger than −4.0 ppb/K, with the HN of Thr4 and the HαN

of Dap3 being −1.3 and −3.1 ppb/K. In water, the ∆δ/∆T values of the HNs of Thr4 and
the HαN of Dap3 are −3.9 ppb/K, but the rest of the HNs all have a much lower ∆δ/∆T
value in the range of −6.3 to −8.0 ppb/K.

3. Discussion

Peptides have a large polar surface area with a high number of free rotatable bonds;
they are classic bRo5 molecules unfavored for membrane permeation. However, peptides
may utilize various mechanisms to penetrate the membrane, such as endocytosis and
direct membrane translocation, or active transport [23,25–28]. Some natural cyclic pep-
tides, e.g., cyclosporin A, have high membrane permeability. Cyclosporin A has multiple
N-methylated amide bonds; N-methylation improves its hydrophobic and passive mem-
brane permeability [25]. Cyclosporin A can also adjust its conformation in response to
environmental changes. This chameleonic property facilitates the membrane translocation
of cyclosporin A [27]. Cyclic pentapeptide cilengitide (cyclo[RGDfNMeV]) and its amide-
to-ester substituted analogs, which are similar in size to CycloAnt, have also been reported
to display conformational plasticity [29].

Conformationally plasticity is a key determinant of membrane permeability of cyclic
peptides [30]. Our variant temperature NMR experiments confirmed that the tempera-
ture shift coefficient of each amide HN of CycloAnt changed with varying solvent polar-
ity/environment. Temperature shift coefficient has been used to distinguish the hydrogen-
bonded or nonhydrogen-bonded protons in protein and peptide. Using a cutoff value of
−4.5 ppb/K for hydrogen-bonded amide [31], in DMSO, all the amide HNs of CycloAnt
are intramolecularly hydrogen bonded and the HN of Thr and the HαN of Dap are locked
in strong intramolecular HBs, while in water, only HN of Thr and the HαN of Dap are
intramolecularly hydrogen bonded. The other 4 amide HNs are exposed to the solvent
without forming intramolecular HBs. The difference of the amide involvement in the
intramolecular hydrogen bonding clearly indicates that CycloAnt adopts different confor-
mations in DMSO and water, showing the chameleonic behavior. In water, these amide HNs
are void of intramolecular HBs, suggesting that CycloAnt has an extended conformation
with most amide HNs being exposed to water, making it water soluble. In a non-/less polar
environment, all amide HNs of CycloAnt are shielded by involving intramolecular HBs,
thus driving CycloAnt into a compact conformation [32]. The chameleonic property ex-
plains how CycloAnt, a lariat opioid peptide, can adjust its conformation in response to the
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solvent/environmental change, which helps it permeate the BBB to produce CNS-mediated
antinociception.

Opioid peptides have been accepted as promising candidates for the development
of safer and more efficacious analgesics owing to their unique advantages over small
molecules in the context of safer opioid analgesics, such as simultaneously engaging
the receptors at the orthosteric binding pocket and the extracellular loops, activating
the receptors at both plasma membrane and endosomes, etc. [7]. However, developing
opioid peptides for CNS application is a significant challenge since peptides are generally
subjected to enzymatic degradation and impermeable to BBB. CycloAnt, a lead cyclic
peptide synthesized and identified in our drug discovery research, can be administrated
systemically to produce potent and efficacious CNS-mediated analgesia without significant
opioid receptor-mediated side effects. Our studies on proteolytic stability, metabolic
stability, and pharmacokinetics confirm that CycloAnt is not only stable in mouse serum and
liver microsomes, but also crosses the BBB in mice. Our conformational complexity study
indicates that CycloAnt adjusts its conformation in response to the environmental/solvent
change. Though this study did not eliminate the possibility that CycloAnt may also employ
the active transport mechanism to enter the brain, its chameleonic property can certainly
benefit its BBB permeation. Further modification of this proteolytically and metabolically
stable, brain-permeable cyclic peptide may grant opportunity to develop cyclic peptides
with higher stability and BBB permeability for the development of safer opioid analgesics.

4. Materials and Methods

Materials. CycloAnt was synthesized in house by the method described in [15].
Mouse serum, NADPH, and uridine 5’-diphosphoglucuronic acid trisodium salt were pur-
chased from SigmaAldrich (St. Louis, MO, USA). Mouse liver microsomes were purchased
from Gibco and alamethicin was purchased from Fisher Scientific (Waltham, MA, USA).
[3H]diprenorphine was purchased from Revvity (Waltham, MA, USA).

LC-MS/MS was recorded on Waters Quattro Premier XE triple quadrupole MS system
with a Waters Acquity UPLC. NMR spectra were recorded on a Bruker Avance III-HD 400
instrument (Germany) at 400 MHz for 1H NMR. NMR chemical shifts are expressed in
ppm relative to internal solvent peak, and coupling constants were calculated in hertz.

Opioid receptor radioligand binding assay. Membranes of CHO cells stably expressing
the rat MOR, mouse DOR, or human KOR were used in the experiments. [3H]diprenorphine
(PerkinElmer, Waltham, MA, at the time of experiment calculated to have specific activity
35 Ci/mmol) was used as the radioligand for the MOR, DOR, and KOR. Competition inhi-
bition of [3H]diprenorphine (0.3–0.4 nM) binding to the MOR or DOR was conducted in
50 mM Tris-HCl buffer (pH 7.4) with an adequate number of cell membranes for each recep-
tor and 10−1 to 10−5 M of CycloAnt. The amounts of cell membranes used were 10–30 µg
membrane protein/mL, which were sufficient to give 2000–2500 dpm specific binding. Non-
specific binding, defined as the binding in the presence of 10 µM naloxone, was <300 dpm.
The numbers of the receptors were 20–30 fmole receptor/mL in the assay. The mixture
was incubated at room temperature for one hour. Binding reactions were terminated by
rapid filtration under vacuum over GF/B filters presoaked in 0.1% polyethyleneimine,
and the bound radioactivity was counted by liquid scintillation counting. CycloAnt was
examined for its competitive inhibition of [3H]diprenorphine (0.3–0.4 nM) to the KOR at
two concentrations of 1 and 10 µM. Binding data were analyzed using GraphPad Prism
software (version 10.2.3) and IC50 values (the concentration necessary to inhibit 50 per-
cent of radioligand binding) and Ki values were calculated. Data were obtained from
3 independent experiments, each in duplicate.

Stability in mouse serum. CycloAnt was dissolved in pH 7.2 phosphate buffer saline
(PBS). A total of 175 µL of CycloAnt at a final concentration of 20 µM was mixed with
2.625 mL of 100% mouse serum (SigmaAldrich) and incubated at 37 ◦C. The mixture was
analyzed over a time course of 8 h. At the time points of 0, 15, 30, 60, 120, 240, and 480 min,
150 µL of sample were withdrawal and the reaction was terminated with 300 µL of ice-cold
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acetonitrile containing internal standard (IS, Tyr-[D-Lys-Phe-Tyr-Gly] at 200 ng/mL). The
mixture was centrifuged at 10,000 rpm at 4 ◦C for 10 min. An aliquot of 300 µL supernatant
was collected and dried under vacuum, followed by reconstitution of the sample in 20%
acetonitrile. The sample was then centrifuged at 13,000 rpm at 4 ◦C for 5 min to remove the
lipid content. The supernatant was collected for LC-MS/MS analysis. The percentage of
peptide remaining at each time point was calculated relative to 0 min. The experiment was
performed in duplicate.

Metabolism by CYP450 in liver microsomes. CycloAnt dissolved in pH 7.2 PBS
was diluted to 8 µM. Six hundred microliters of CycloAnt were incubated with 800 µL of
0.975 mg/mL mouse liver microsomes and 160 µL of 10 mM NADPH at 37 ◦C for 0, 5,
15, 30, 60, and 120 min. The final concentrations of CycloAnt, mouse liver microsomes,
and NADPH in the incubation mixture were 3.07 µM, 0.5 mg/mL, and 1 mM, respectively.
At the designated time points, 100 µL of the incubation mixture were withdrawn and
mixed with 200 µL ice-cold acetonitrile containing internal standard (IS, Tyr-[D-Lys-Phe-
Tyr-Gly]), followed by centrifugation at 10,000× g at 4 ◦C for 10 min. An aliquot of 250 µL
of supernatant was collected and dried in vacuum. The dried sample was reconstituted in
100 µL of 20% acetonitrile and stored at −20 ◦C before analyzed by LC-MS/MS on the next
day. The experiment was performed in duplicate.

Metabolism by UDP-glucuronosyl transferases (UGTs) in liver microsomes. Cy-
cloAnt dissolved in pH 7.2 PBS was diluted to 8 µM. Six hundred microliters of diluted Cy-
cloAnt, 800 µL of 0.975 mg/mL mouse liver microsomes, and 14 µL of 0.5 mM alamethicin
containing 10 mM MgCl2, were mixed and preincubated on ice for 15 min. The reaction
was then initiated by adding 74 µL of 100 mM uridine-5’-diphospho-α-D-glucuronic acid
(UDPGA) and incubated at 37 ◦C for 0, 5, 15, 30, and 60 min. At the designated time points,
100 µL of the incubation mixture were withdrawn, followed by adding 200 µL ice-cold
acetonitrile containing 200 ng/mL of an internal standard (IS, Tyr-[D-Lys-Phe-Tyr-Gly]).
The sample was then centrifuged at 10,000× g, 4 ◦C for 10 min. An aliquot of 250 µL of
supernatant was withdrawn and dried in vacuum. The dried sample was reconstituted in
100 µL of 20% acetonitrile and stored at −20 ◦C before analyzed by LC-MS/MS on the next
day. The experiment was performed in duplicate.

Pharmacokinetic study. Standard curve. Following euthanasia, mouse blood was
collected in a heparin anticoagulation tube and the whole brain was isolated. For determi-
nation of the standard curve in mouse blood, 300 µL of blood was spiked with 0, 10, 100,
and 1000 ng of CycloAnt, respectively, followed by adding 600 µL of ice-cold acetonitrile
containing the internal standard (IS, Tyr-[D-Lys-Phe-Tyr-Gly]) at 200 ng/mL. The blood
samples were thoroughly mixed and centrifuged at 10,000 rpm at 4 ◦C for 10 min. An
aliquot of 600 µL of supernatant from each sample was collected and dried under vacuum,
followed by reconstitution of the dried blood sample in 100 µL 20% acetonitrile. The
reconstituted sample was centrifuged at 13,000 rpm, 4 ◦C for 5 min to remove the lipid
content. The supernatant was collected for LC-MS/MS analysis. For mouse brain, the
brain was homogenized with 250 µL of PBS at 0 ◦C, followed by adding 1 mL of ice-cold
acetonitrile containing the IS. The brain sample was then spiked with 0, 10, 100, and 1000 ng
of CycloAnt, respectively, and thoroughly mixed and centrifuged at 10,000 rpm, 4 ◦C for
10 min. An aliquot of 1000 µL of supernatant was collected and dried under vacuum,
followed by adding 100 µL 20% acetonitrile to reconstitute the dried brain sample. The
reconstituted sample was mixed and centrifugating at 13,000 rpm, 4 ◦C for 5 min to remove
the lipid content. The supernatant was collected and analyzed by LC-MS/MS.

The peak areas of CycloAnt and IS were recorded; the relative measured concentration
of CycloAnt was calculated using the ratio of CycloAnt peak area vs. IS peak area. A
standard concentration curve (Figure S8) was then generated for CycloAnt in the matrix of
blood and brain, respectively.

Pharmacokinetics. Eight-week-old male C57BL/6 mice (Jackson Laboratories, Bar
Harbor, ME, USA) were used for pharmacokinetic studies. CycloAnt was given to mice
(n = 2) i.p. at a dose of 3 mg/kg. At 15, 30, and 60 min post-administration, mouse blood
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was collected in a heparin anticoagulation tube. After blood collection, the mouse was
intracardially perfused through the left ventricle with 20 mL PBS, followed by isolation
of the whole brain. To process the blood sample, 300 µL blood was mixed with 600 µL
of ice-cold acetonitrile containing the IS at 200 ng/mL, followed by centrifugation at
10,000 rpm, 4 ◦C for 10 min. To process the brain sample, 250 µL of ice-cold PBS was added
to the isolated brain and homogenized at 0 ◦C, followed by mixing with 1 mL of ice-cold
acetonitrile containing the IS. The brain sample was then centrifuged at 10,000 rpm, 4 ◦C
for 10 min. The supernatants were collected from the blood sample (600 µL) and the brain
sample (1 mL), respectively, and dried under vacuum. The blood and brain samples were
reconstituted in 100 µL of 20% acetonitrile. The samples were then centrifuged at 13,000
rpm, 4 ◦C for 5 min to remove the lipid content. The supernatants were collected from the
blood and brain samples and analyzed by LC-MS/MS.

Computational prediction of P450 Site of Metabolism. The P450 Site of Metabolism
prediction was performed using Maestro (Schrödinger). CycloAnt was prepared in LigPrep
using OPLS4 force field. Induced fit docking plus intrinsic reactivity were performed at
2C9 and at 2D6. Intrinsic reactivity calculation was performed at 3A4.

Variant Temperature NMR study. CycloAnt was dissolved in DMSO-d6 at a con-
centration of 10 mg/mL (15.3 mM) and the 1H NMR experiments were conducted at
7 temperature points at 298, 305, 310, 315, 320, 325, and 330 K. The chemical shift of DMSO
(2.50 ppm) was used as a standard for calibration. For the 1H NMR experiment in water,
CycloAnt was dissolved in a mixture of 85%H2O:10%D2O:5%DMSO-d6 at a concentration
of 10 mg/mL (15.3 mM). The experiments were carried out at 283 K with an elevation of
5 K at each point to the highest temperature of 303 K. The chemical shift was calibrated
using DMSO as a standard, which has a chemical shift of 2.71 ppm in water [33].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms252111389/s1.
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