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Abstract 
ROS1 gene fusions are an established oncogenic driver comprising 1%-2% of non–small cell lung cancer (NSCLC). Successful targeting  
of ROS1 fusion oncoprotein with oral small-molecule tyrosine kinase inhibitors (TKIs) has revolutionized the treatment landscape of metastatic 
ROS1 fusion-positive (ROS1+) NSCLC and transformed outcomes for patients. The preferred Food and Drug Administration-approved first-line 
therapies include crizotinib, entrectinib, and repotrectinib, and currently, selection amongst these options requires consideration of the sys-
temic and CNS efficacy, tolerability, and access to therapy. Of note, resistance to ROS1 TKIs invariably develops, limiting the clinical benefit of 
these agents and leading to disease relapse. Progress in understanding the molecular mechanisms of resistance has enabled the development 
of numerous next-generation ROS1 TKIs, which achieve broader coverage of ROS1 resistance mutations and superior CNS penetration than 
first-generation TKIs, as well as other therapeutic strategies to address TKI resistance. The approach to subsequent therapy depends on the 
pace and pattern of progressive disease on the initial ROS1 TKI and, if known, the mechanisms of TKI resistance. Herein, we describe a practical 
approach for the selection of initial and subsequent therapies for metastatic ROS1+ NSCLC based on these clinical considerations. Additionally, 
we explore the evolving evidence for the optimal treatment of earlier-stage, non–metastatic ROS1+ NSCLC, while, in parallel, highlighting 
future research directions with the goal of continuing to build on the tremendous progress in the management of ROS1+ NSCLC and ultimately 
improving the longevity and well-being of people living with this disease.
Key words: ROS1; non–small cell lung cancer; targeted therapy; tyrosine kinase inhibitor; drug resistance.

Implications for Practice
Understanding of the biology of ROS1 fusion-positive (ROS1+) non–small cell lung cancer (NSCLC) and treatment approaches has 
progressed immensely over the past decades, resulting in improved outcomes for patients. This review provides an overview of the 
evolving treatment landscape for ROS1+ NSCLC. The authors discuss the framework for the initial and subsequent treatment of patients 
with metastatic ROS1+ lung cancer and offer clinical considerations for the treatment of patients with earlier-stage, non–metastatic 
disease. Areas that warrant future research to continue to advance outcomes for patients are highlighted.

Introduction
Since the discovery of ROS1 gene fusions in non–small cell 
lung cancer (NSCLC) in 2007, our understanding of dis-
ease biology and therapeutic strategies has evolved remark-
ably, leading to improved patient outcomes.1 ROS1 gene 
fusions are established drivers across diverse types of adult 
and pediatric cancers2 and result in the expression of a chi-
meric oncoprotein in which the tyrosine kinase domain of 
ROS1 is fused to a non-native N-terminal binding part-
ner.3 Aberrant expression and constitutive activation of 
ROS1 lead to unchecked proliferation of tumor cells. The 
approval of effective oral small-molecule inhibitors of 
ROS1 in ROS1 fusion-positive (ROS1+) NSCLC has revo-
lutionized its treatment paradigm.4-6 However, resistance to 
ROS1 tyrosine kinase inhibitors (TKIs) invariably occurs 
and causes disease relapse.7 Understanding the molec-
ular mechanisms of resistance has been crucial in laying 
the groundwork for the development of next-generation 

ROS1 inhibitors and other novel strategies to tackle TKI-
refractory disease.

Here, we provide an up-to-date overview of the arsenal of 
ROS1-targeted therapies that are approved or in clinical devel-
opment. We discuss the approach to selecting agents for initial 
and subsequent treatment of patients with advanced ROS1+ 
lung cancer, and additionally provide a framework for treatment 
of patients with earlier-stage disease, highlighting future direc-
tions for research to facilitate continued progress in this field.

Diagnosis of ROS1 fusion-positive NSCLC
Clinicopathologic features and epidemiology
ROS1 fusions occur in 1%-2% of patients with NSCLC, 
accounting for approximately 18 500-37 000 newly diag-
nosed patients globally each year.8-10 In NSCLC, ROS1 fusions 
are associated with adenocarcinoma histology, younger age at 
diagnosis, and a history of never or light smoking.8,11 Of note, 
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ROS1 fusions rarely overlap with other oncogenic driver 
alterations in de novo disease.12 Most patients (85%) with 
ROS1+ NSCLC present with stage IV cancer and 20%-40% 
have brain metastases at initial diagnosis.13,14

Detection of ROS1 fusions and indications for 
testing
Over 30 ROS1 fusion partner genes have been identi-
fied in NSCLC, most commonly CD74, EZR, SCD4, and 
SLC34A2.1,4,15 Broad molecular testing, including for ROS1 
fusions, is recommended by multiple guidelines including 
the National Comprehensive Cancer Network (NCCN) and 
European Society for Medical Oncology (ESMO) guidelines 
for patients with advanced lung adenocarcinoma, large cell, 
and NSCLC not otherwise specified, and should also be con-
sidered for those with advanced squamous cell carcinoma.16,17

Various methodologies are used to detect ROS1 fusions, 
including fluorescent in situ hybridization (FISH), immunohis-
tochemistry (IHC), real-time reverse transcription polymerase 
chain reaction (RT-PCR), and next-generation sequencing 
(NGS), each associated with advantages and limitations. Break-
apart FISH was used in the early studies of ROS1+ NSCLC8,12,18 
but can be technically challenging and lead to false-negative 
and false-positive results.12 While IHC is a faster method 
requiring minimal tissue, interpretation can also be challenging 
due to variations in ROS1 staining patterns and background 
ROS1 staining.19 Given the potential for false-positives, a pos-
itive ROS1 IHC result requires confirmatory testing with an 
orthogonal method.12 As the list of validated biomarkers in 
NSCLC continues to grow, NGS is a preferred method that 
enables probing for a broad panel of known oncogenes and can 
detect fusion partners, whether known or novel.16,17 However, 
NGS requires more tissue and has a slower turnaround time, 
and therefore, in circumstances where tissue is limited, FISH 
or RT-PCR may serve as alternatives. Liquid biopsy offers a 
noninvasive approach for biomarker testing, especially when 
tissue biopsy is not feasible or yields insufficient sample.20 On 
the other hand, tissue NGS has a higher sensitivity than plasma 
NGS, with sensitivity of the latter dependent on the overall 
burden of disease and shedding of circulating tumor DNA 
(ctDNA).20 Thus, it is essential to recognize that liquid biopsy 
can be nondiagnostic, and to consider rebiopsy to obtain ade-
quate tissue for molecular testing when warranted.

Overview of ROS1 Inhibitors
In 2016, crizotinib became the first Food and Drug 
Administration (FDA)-approved targeted therapy for ROS1+ 

NSCLC and a harbinger of the development of additional, 
including next-generation, ROS1 TKIs (Figure 1).21 ROS1 
shares 49% sequence homology to anaplastic lymphoma 
kinase (ALK) in the kinase domain (and 77% identity at the 
ATP-binding site), and this has proven clinically meaningful 
as certain—but not all (eg, alectinib)—ALK inhibitors also 
have anti-ROS1 activity.3,22 In this section, we review the key 
efficacy and safety data for ROS1 inhibitors, with additional 
investigational agents shown in Tables 1 and 2.

Crizotinib
Crizotinib is a multikinase inhibitor (MKI) with activity 
against ROS1, ALK, and mesenchymal-epidermal transition 
(MET).4,37 The FDA approval of crizotinib for the treatment 
of patients with advanced ROS1+ NSCLC was based on the 
results from a multicenter phase I trial PROFILE 1001, which 
demonstrated an objective response rate (ORR) of 72% and 
median progression-free survival (mPFS) of 19.2 months in 
this patient population.4,21 The most frequent adverse events 
(AEs) include visual impairment, nausea, vomiting, diarrhea, 
constipation, edema, and elevated aminotransferase levels. In 
2019, updated results from PROFILE 1001 demonstrated a 
mPFS of 19.3 months and median overall survival (mOS) of 
51.4 months with no new safety signals, confirming its efficacy 
and safety.38 Of note, other phase I/II studies of crizotinib in 
ROS1+ NSCLC (ie, EUCROSS, AcSé, East Asia phase II, and 
METROS) have demonstrated variable PFS with median rang-
ing from 5.5 to 22.8 months but with consistently high ORR’s 
ranging from 65% to 72%.23-26 A major limitation of crizotinib 
is the marginal penetration of the blood-brain barrier, resulting 
in limited CNS activity and frequent CNS disease relapses.14

Entrectinib
Entrectinib, a ROS1, ALK, and TRK inhibitor, was approved 
by the FDA in 2019 for advanced ROS1+ NSCLC.39 An 
integrated analysis of ALKA-372-001, STARTRK-1, and 
STARTRK-2 trials demonstrated an ORR of 68%, mPFS of 
15.7 months and mOS of 47.8 months.5 The most frequent 
entrectinib-associated AEs include dysgeusia, dizziness, and 
constipation. An important distinction from crizotinib is that 
entrectinib has improved CNS penetration and activity. The 
intracranial ORR among 25 patients with measurable baseline 
CNS metastases in the long-term integrated analysis was 80% 
with a median intracranial PFS of 8.8 months (Table 3).27

Lorlatinib
Lorlatinib is a potent and CNS-penetrant ALK and ROS1 
inhibitor evaluated in a phase I/II clinical trial among patients 

Figure 1. Timeline of advances in ROS1 fusion-positive non–small cell lung cancer (NSCLC), including the discovery of ROS1 gene fusions, approval 
of ROS1 tyrosine kinase inhibitors, and development of investigational ROS1 inhibitors. Crizotinib and entrectinib are also approved by the European 
Medicines Agency (EMA) and globally. *Lorlatinib is not approved by the FDA for the treatment of patients with metastatic ROS1 fusion-positive NSCLC 
but is recommended as a subsequent treatment option by the NCCN guidelines and included in the ESMO guidelines.
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with metastatic ROS1+ NSCLC (30% TKI-naïve and 70% 
TKI-pretreated).31 Among TKI-naïve patients, the ORR was 
62% and mPFS 21 months. Among crizotinib-pretreated 
patients, the ORR was 35% and mPFS 8.5 months. The most 
common AEs included hypercholesterolemia, hypertriglyceri-
demia, edema, neuropathy, cognitive effects, mood effects, and 
weight increase. Consistent with the robust CNS penetration 
of this TKI, the intracranial ORR was 64% for TKI-naïve and 
50% for crizotinib-pretreated patients with baseline brain 
metastases, respectively, with median duration of intracranial 
response not reached. While the FDA-approved indication of 
lorlatinib is for advanced ALK-positive (ALK+) NSCLC, the 
NCCN guidelines include lorlatinib as a treatment option for 
patients with ROS1+ NSCLC and progression on a prior TKI 
based on these phase I/II trial data.17,41

Repotrectinib
Repotrectinib is a next-generation ROS1 and TRK inhibi-
tor.42 In the registrational phase I/II clinical trial TRIDENT-1, 
repotrectinib showed an ORR of 79%, intracranial ORR of 
89%, and a mPFS of 35.7 months among ROS1 TKI-naïve 
patients.6 Among patients who had received one previous 
ROS1 TKI and no chemotherapy, the ORR was 38% and 
the intracranial ORR was 38%, with a mPFS of 9.0 months 
and mOS of 25.1 months. The most frequent AEs included 
dizziness, dysgeusia, paresthesias, constipation, and anemia. 
Of note, neurological toxicities of repotrectinib (and entrec-
tinib) are attributed to the inhibition of TRK, which is widely 
expressed and involved in the central and peripheral nervous 
systems.2 Based on TRIDENT-1, the FDA approved repotrec-
tinib in 2023 for line-agnostic treatment for locally advanced 
or metastatic ROS1+ NSCLC.43

Taletrectinib (DS-6051b)
Taletrectinib is an investigational next-generation ROS1 
inhibitor.33 In the Chinese phase II trial TRUST-I, taletrectinib 
demonstrated an ORR of 90.6% among ROS1 TKI-naïve 
patients (mPFS not reached), and an ORR of 51.5% and mPFS 
of 7.6 months among crizotinib-pretreated patients, with an 
intracranial ORR of 87.5% among TKI-naïve patients and 
73.3% among crizotinib-pretreated patients with measur-
able brain metastases.33,34 In a pooled analysis of the Chinese 
phase I/II studies, the mPFS among TKI-naïve patients was 
33.2 months. The most common AEs included increased AST, 
increased ALT, and diarrhea. Taletrectinib is being evalu-
ated in the global phase II trial TRUST-II (NCT04919811) 
with early preliminary data showing an ORR of 92.0% and 
57.1% in ROS1 TKI-naïve and TKI-pretreated patients, 
respectively.35,44,45

Zidesamtinib (NVL-520)
Zidesamtinib is an investigational next-generation, brain- 
penetrant TKI that is ROS1-selective with activity against 
ROS1 resistance mutations.46 Of note, zidesamtinib was 
developed to avoid TRK inhibition and associated neurolog-
ical toxicities.46 Preliminary data from the phase I dose esca-
lation portion of the global ARROS-1 trial (NCT05118789) 
demonstrated favorable tolerability of zidesamtinib concor-
dant with its highly ROS1-selective design, with an ORR of 
48% in heavily TKI-pretreated patients and documented CNS 
responses in patients with baseline brain metastases.36,47,48 
In February 2024, the FDA granted breakthrough therapy 
designation to zidesamtinib for treatment of patients with Ta
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metastatic ROS1+ NSCLC after at least 2 ROS1 TKIs.48,49 
The ARROS-1 trial has now transitioned to phase II and will 
evaluate the efficacy and safety in both TKI-naïve and TKI-
pretreated patients.

Approach to selection of initial therapy for 
metastatic disease
With the emerging data on next-generation ROS1 TKIs, the 
first-line treatment landscape for metastatic ROS1+ NSCLC is 
evolving. Following the recent FDA approval of repotrectinib, 
the NCCN guidelines have been updated to include crizo-
tinib, entrectinib, or repotrectinib as preferred first-line ther-
apy for metastatic ROS1+ NSCLC (Figure 2).17,43 Prospective 
trial data comparing each of these first-line options are not 
yet available; however, ongoing phase III trials are comparing 
crizotinib versus entrectinib (NCT04603807) and crizotinib 
versus repotrectinib (NCT06140836; TRIDENT-3).50,51

While awaiting the results of these direct comparison stud-
ies, the selection of first-line therapy requires weighing several 
factors including the systemic and CNS efficacy, tolerability, 
and access (eg, regulatory approval and drug reimbursement). 
Given the poor CNS penetration as a limitation of crizotinib, 
CNS-active TKIs entrectinib and repotrectinib are favored 
for patients with known brain metastases. Despite the lack 
of phase III trial results at this time, based on the available 
data, next-generation ROS1 TKIs such as repotrectinib and 
taletrectinib do appear to result in systemic PFS that is longer 
(median 33.2 to 35.7 months) than that historically reported 
for first-generation ROS1 TKIs crizotinib and entrectinib 
(median 15.7 to 19.2 months in global studies).4-6,25,33 This is 
reminiscent of what has been observed in randomized phase 
III trials of first- versus next-generation TKIs in ALK+ and 
EGFR-mutated NSCLC.52-59 Overall, next-generation ALK/
EGFR TKIs demonstrated a clinically meaningful increase 
in mPFS compared to first-generation agents, resulting in 
their supplantation of earlier-generation TKIs as standard-of-
care.52-60 Thus, across driver genotypes of NSCLC, the evolv-
ing treatment paradigm has reflected the shift of more potent, 
next-generation targeted therapies toward upfront rather 
than later-line use.

As additional next-generation ROS1 TKIs are evaluated in 
the first-line setting, the focus will be on whether there are 
key differences amongst the next-generation agents (eg, repo-
trectinib, taletrectinib, and zidesamtinib) in the systemic and 
CNS activity and tolerability. The initial treatment paradigm 
will continue to be refined as these questions are answered.

Resistance to ROS1 inhibitors and selection of 
subsequent therapies
The approach to the selection of subsequent therapies should 
be determined based on the pace and pattern of progressive 
disease (PD) as well as on mechanisms of resistance to ther-
apy, if known. Here, we provide a practical overview of treat-
ment approaches in the setting of oligoprogression, isolated 
CNS progression, and systemic progression (Figure 2).

Oligoprogression
Oligoprogression in therapy, defined as PD involving a lim-
ited number of sites with ongoing disease control elsewhere, is 
a well-recognized phenomenon.61 Several retrospective stud-
ies have demonstrated a role for local therapy (eg, radiation, 

surgery, and ablation) to address the oligo-PD in patients in 
EGFR-mutated or fusion oncogene-driven NSCLC on tar-
geted therapy.61,62 For example, in one study that evaluated 
61 patients with advanced ALK (n = 37), ROS1 (n = 12), or 
RET (n = 12) fusion-positive lung adenocarcinomas treated 
with genotype-matched TKI, the receipt of local therapy for 
solitary or oligo-PD yielded a median of 6.8 months from 
local therapy to subsequent progression and a median of 10 
months from local therapy to next systemic therapy.62 A pro-
spective phase II randomized trial (CURB) demonstrated that 
stereotactic body radiotherapy (SBRT) to treat oligoprogres-
sive metastatic NSCLC resulted in a more than 4-fold PFS 
benefit.63 Collectively, these data support that for patients 
who develop solitary or oligo-PD while on a ROS1 inhibitor, 
local therapy to the progressive lesions can be considered and 
may enable extended duration on a given TKI.

Isolated CNS progression
CNS-only progression is another frequently observed pat-
tern of PD on a ROS1 inhibitor. Indeed, in half of patients 
treated with crizotinib, CNS represents the sole site of PD.14 
In general, the optimal approach to addressing CNS-only PD 
varies depending on the (1) TKI being used, (2) the pattern 
and extent of CNS involvement, and (3) symptoms from CNS 
disease, and requires multidisciplinary evaluation. For limited 
CNS PD, local therapy with focal brain-directed radiotherapy 
or neurosurgical resection may be used, but for multifocal 
CNS PD, a switch in systemic therapy (such as to a ROS1 TKI 
with a higher level of CNS penetrance, if available) or whole 
brain radiotherapy are considered.

Studies performed to date have focused on addressing CNS 
relapse in patients treated with crizotinib. While entrectinib 
is a CNS-active TKI, the intracranial efficacy was modest in 
patients experiencing CNS-only progression on crizotinib 
with an intracranial ORR of 19% and median intracranial 
PFS of 4.5 months.27 In contrast, in a phase II trial, lorlatinib 
induced deep, durable intracranial responses in patients with 
CNS-only progression on crizotinib (12-week intracranial 
ORR of 87%, complete intracranial response rate of 60%, 
median intracranial PFS of 38.8 months).40 More recently, 
next-generation ROS1 TKIs repotrectinib, taletrectinib, and 
zidesamtinib have shown encouraging CNS activity (Table 
3).6,33,36 Thus, for patients experiencing multifocal CNS PD 
on a first-generation ROS1 inhibitor, switching to a next- 
generation ROS1 TKI with known CNS penetrance is favored. 
Our understanding of the CNS efficacy of next-generation 
agents following CNS PD on entrectinib or another CNS-
penetrant next-generation TKI needs to be better delineated 
to optimize TKI sequencing strategies.

Systemic progression
Extrapolating from data in EGFR-mutated NSCLC, it is 
worth noting that for slow, asymptomatic progression, 
immediate change in therapy is not always required and 
patients may be able to continue a given ROS1 TKI while 
being cautiously monitored for change in the pace of PD or 
development of disease-related symptoms.64,65 In the face of 
significant systemic progression necessitating a switch in ther-
apy, knowledge of the molecular mechanism of drug resis-
tance (Figure 3) can inform subsequent treatment selection. 
Rebiopsy is ideal if safe and feasible, as it enables assessment 
for evidence of histologic transformation and genotyping for 
acquired alterations. Liquid biopsy with ctDNA NGS can 
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also be considered, acknowledging that (1) sensitivity may 
be limited due to variable degrees of ctDNA shedding, (2) 
histologic transformations cannot be identified with liquid 
biopsies, and (3) detection of copy number changes may not 
always be reliable.74

On-target resistance
The emergence of on-target resistance is a recurrent theme 
across cancers in which the selective pressure of targeted 
therapy induces on-target genomic alterations to confer drug 
resistance. Various secondary point mutations in the ROS1 
kinase domain at frequencies ranging from 8% to 46% 
have been described in ROS1+ NSCLC treated with ROS1 
TKIs.7,66 The G2032R solvent front mutation is the most 
common ROS1 resistance mutation (described in up to 41% 
of patients post-crizotinib and 32% post-lorlatinib), which 
causes steric interference to TKI binding.7,66 While crizo-
tinib, entrectinib, and lorlatinib are not active against ROS1 
G2032R, next-generation ROS1 TKIs (repotrectinib, taletrec-
tinib, and zidesamtinib) have demonstrated activity against 
this mutation.6,33,36,46,75 A spectrum of other acquired ROS1 
resistance mutations have been described, including D2033N, 
L2026M, L1951R, L2086F, L2000V, S1986Y/F, L2155S, and 
F2004C/I/V.46,67

In patients with ROS1 TKI-resistant tumors harboring 
acquired ROS1 resistance mutations such as G2032R, a rea-
sonable strategy is to switch to a next-generation TKI known 
to cover the specific mutation(s) (Figure 2). Importantly, the 
landscape of mechanisms of resistance following first-line 

use of a next-generation ROS1 TKI such as repotrectinib 
remains to be determined. In an early exploratory analysis 
of paired baseline and post-progression ctDNA samples from 
TRIDENT-1, no acquired ROS1 resistance mutations were 
reported among TKI-naïve patients treated with repotrec-
tinib.6 Based on the experiences with third-generation EGFR 
and ALK TKIs, the use of more potent ROS1 TKIs upfront 
may result in diminished emergence of on-target resistance.76,77 
Nevertheless, certain ROS1 resistance mutations will remain 
refractory to the currently available next-generation ROS1 
TKIs and are anticipated to emerge even with first-line use of 
next-generation agents. In particular, ROS1 L2086F is known 
to be resistant to all type 1 ROS1 TKIs including repotrectinib, 
taletrectinib, and zidesamtinib.7,46,78 Here, TKI-type switching 
to a type 2 inhibitor like cabozantinib or a type 1 FLT3 inhib-
itor like gilteritinib has been identified as a potential strategy, 
with clinical responses to cabozantinib reported.7,78

Off-target resistance with bypass pathway activation
Various ROS1-extrinsic mechanisms of resistance have been 
described as drivers of ROS1 TKI-refractory disease. Broadly, 
these include off-target activation of signaling pathways or 
histologic transformation (Figure 3).

Genomic aberrations in the MET gene, in the form of 
amplifications or mutations, represent a shared off-target 
resistance mechanism across subsets of NSCLC including 
EGFR-mutated or ALK, ROS1, RET fusion-driven NSCLC. 
MET amplification has been identified after treatment with 
various ROS1 inhibitors including crizotinib, entrectinib, and 

Initial Diagnosis 
of Metastatic 

ROS1+ NSCLC

• Entrectinib5

• Repotrectinib6

Oligoprogression

Isolated CNS progression**

Systemic progression

Brain metastases*

No brain metastases*

Disease 
progression

Multifocal CNS progressionSolitary or oligo-CNS progression

ROS1-dependent
resistance

ROS1-independent
resistance

No known actionable 
resistance mechanism****

• Crizotinib4

• Entrectinib5

• Repotrectinib6

• Consider local ablative therapy with 
continuation of ROS1 TKI61-63

• Consider local therapy with 
continuation of ROS1 TKI17,61-63

• Switch to a next-generation ROS1 
TKI with superior CNS 
penetration6,31,33-36,40

• ROS1 G2032R or others
• Repotrectinib6

• Investigational ROS1 TKI 
with G2032R or known 
ROS1 resistance mutation 
coverage (e.g., taletrectinib, 
zidesamtinib)33-36

• ROS1 L2086F
• TKI-type switch (e.g. 

cabozantinib)7,78

• Actionable bypass 
resistance driver
• Investigational combination 

strategy (e.g. ROS1 TKI + 
MET TKI for MET
amplification80-83

• Histologic transformation
• Histology-specific 

chemotherapy***17,88

• Chemotherapy17

• Consider continuing 
CNS-penetrant ROS1 
TKI90

• Clinical trials

Re-biopsy for histopathology confirmation 
and genotyping

Figure 2. Approach to treatment of metastatic ROS1 fusion-positive non–small cell lung cancer. Preferred FDA-approved first-line therapy options 
include crizotinib, entrectinib, or repotrectinib. *Investigational next-generation ROS1 inhibitors taletrectinib and zidesamtinib can also be considered in 
the first-line setting. At disease progression, the selection of subsequent treatment should be determined based on the pattern of progressive disease 
and (for addressing systemic progression with switch in systemic therapy) mechanism of drug resistance, if known through rebiopsy. **In addressing 
CNS progression on a ROS1 inhibitor, multidisciplinary evaluation to assess the optimal use of surgery, radiation, versus switch in systemic therapy 
is essential. ***Consider continuing ROS1 TKI for nontransformed clones. ****Consider also for polyclonal resistance or concurrent on- and off-target 
resistance. Abbreviations: TKI, tyrosine kinase inhibitor; ROS1+, ROS1 fusion-positive; CNS, central nervous system.
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lorlatinib.7,68,69 Importantly, acquired resistance driven by 
MET amplification is potentially actionable using a ROS1/
MET co-inhibition strategy. Although prospective trials eval-
uating combinations of ROS1 and MET inhibitors have not 
been performed, clinical responses to crizotinib monother-
apy (as an anti-ROS1/MET multikinase inhibitor) and to 
lorlatinib plus capmatinib combination have been reported 
in patients with ROS1+ NSCLC and acquired MET ampli-
fication.68,79 In patients with EGFR-mutated NSCLC and 
MET amplification-driven resistance to EGFR TKI, the com-
bination of EGFR TKI plus MET TKI has demonstrated 
ORRs ranging 27%-67%.80,81 In ALK+ NSCLC with MET  
amplification-driven resistance to ALK TKI, a retrospective 
case series reported an ORR of 42% achieved with combined 
ALK and MET inhibition, concordant with efficacy seen in 
the prospective EGFR trials and supportive of the combina-
tion strategy.68,82,83

A panoply of additional off-target resistance mechanisms 
have been described after treatment with ROS1 TKIs, includ-
ing KRAS mutations and amplifications, NRAS mutation, 
NF1 loss, MAP2K1 mutation, and activating mutations in 
KIT and EGFR.7,67,70-72 As next-generation ROS1 TKIs move 
into first-line, an increasing prevalence of off-target mecha-
nisms of resistance is anticipated, underscoring the impor-
tance of defining additional bypass pathways and evaluating 
potential targeted therapeutic strategies.

Off-target resistance with histologic transformation
Although a rare occurrence in ROS1+ NSCLC, small cell 
transformation has been described in approximately 2% of 
patients with ROS1 TKI-resistant disease, with inactivation 
of RB1 and TP53 and loss of ROS1 fusion RNA and pro-
tein expression.73 This is similar to small cell transformation 
in EGFR-mutated NSCLC, where dependence on EGFR 
is lost. In EGFR-mutated NSCLC, baseline inactivation 

of RB1 and TP53 are associated with a 43-fold increase in 
the risk of small cell transformation, although the mecha-
nisms underlying transformation are yet to be elucidated.84,85 
Transformation from EGFR-mutated and ALK+ lung ade-
nocarcinoma to squamous cell carcinoma has also been 
described.86,87 Histologic transformation, albeit infrequent, 
underscores the importance of obtaining a tissue biopsy at 
disease progression to understand disease biology and deter-
mine treatment options.

Further research is needed on the optimal treatment of 
small cell- or squamous cell-transformed ROS1+ lung can-
cer. Currently, there are no biology-directed therapeutic 
interventions for histology-transformed tumors, and treat-
ments are confined to histology-specific chemotherapies and 
clinical trials. In patients with small cell-transformed EGFR-
mutated lung cancer, variable degrees of clinical benefit from  
platinum-etoposide or taxane have been reported.88

No known targetable resistance driver
For patients without a known targetable resistance mech-
anism after a ROS1 TKI, the standard-of-care remains 
histology-specific chemotherapy. Whether to continue a CNS-
penetrant ROS1 TKI when initiating chemotherapy remains 
an open question. In EGFR-mutated NSCLC, the prospective 
randomized COMPEL trial (NCT04765059) is examining 
the continuation of osimertinib versus placebo with chemo-
therapy after first-line osimertinib.89 In ALK+ NSCLC, retro-
spective analysis has suggested a significant benefit when a 
CNS-active ALK TKI is continued with chemotherapy after 
disease progression on next-generation ALK TKIs.90

Anti-PD(L)1 immune checkpoint inhibitor (ICI) monother-
apy does not offer significant benefit for patients with ROS1+ 
NSCLC. Studies have demonstrated a modest ORR of 13%-
17% with single-agent ICI.91–93 Furthermore, prior exposure 
to an ICI can augment toxicities with subsequent targeted 

Figure 3. Mechanisms of resistance to ROS1 inhibitors. The mechanisms of resistance are broadly categorized as on-target (ie, ROS1 resistance 
mutations7,46,66,67) and off-target resistance (ie, bypass pathway activation or histologic transformation7,67-73). Polyclonal resistance (or concurrent on- and/
or off-target mechanisms of resistance) may also occur. Abbreviation: TKI, tyrosine kinase inhibitor. Created with BioRender.com.
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therapies across NSCLC, and the safety impact of sequen-
tial ICI and next-generation ROS1 TKI remains to be char-
acterized fully.94,95 Thus, single-agent immunotherapy is not 
a favored treatment strategy and should only rarely be con-
sidered when other treatment options have been exhausted, 
with vigilant monitoring for toxicities if patients are subse-
quently reintroduced to a ROS1 TKI. The role of combined 
chemoimmunotherapy in this patient population is not well 
defined. In one multi-institutional retrospective study, chemo-
immunotherapy yielded objective responses in 5 of 6 patients 
(ORR 83%) with ROS1+ NSCLC.93 Randomized phase III 
trials exploring the question of chemoimmunotherapy ver-
sus chemotherapy alone in EGFR-mutated NSCLC after 
EGFR TKI demonstrated no substantial PFS or OS benefit 
(ie, KEYNOTE-789, CheckMate-722, and ORIENT-31).96–100 
In contrast, combining chemoimmunotherapy together with 
an anti-angiogenic agent such as bevacizumab has yielded 
conflicting data in trials that largely evaluated patients with 
EGFR-mutated NSCLC (ie, IMpower150 subgroup analysis, 
IMpower151, ATTLAS, and ORIENT-31).98,101–103

In general, clinical trials should be explored for patients 
progressing on ROS1 TKIs with no targetable mechanisms 
of resistance. Antibody-drug conjugates represent an emerg-
ing therapeutic modality that has demonstrated some activity 
in patients with fusion oncogene-driven (including ROS1+) 
NSCLC, with responses observed irrespective of the mech-
anism of TKI resistance.104–106 Further development of resis-
tance mechanism-agnostic treatment strategies for patients 
with ROS1 TKI-resistant NSCLC is warranted.

Approach to non–metastatic ROS1 fusion-
positive NSCLC
Across NSCLC with actionable oncogenic drivers, targeted 
therapies have started to move into earlier-stage disease. 
Below, we review the current treatment paradigm for non–
metastatic ROS1+ NSCLC, recognizing the limitation that it 
is one that has been mostly informed by emerging data in 
EGFR-mutated and ALK+ NSCLC.

Adjuvant therapy after surgical resection
The phase III ADAURA trial heralded targeted therapy in 
surgically resected disease, demonstrating the significantly 
prolonged disease-free survival (DFS; hazard ratio [HR] 
0.20) and OS (HR 0.49) associated with adjuvant EGFR 
TKI osimertinib compared to placebo in patients with com-
pletely resected EGFR-mutated stage IB-IIIA NSCLC.107,108 
Subsequently, the phase III ALINA trial demonstrated the 
substantial improvement in DFS (HR 0.24) achieved with 
adjuvant ALK TKI alectinib compared to platinum-doublet 
chemotherapy in patients with resected ALK+ stage IB-IIIA 
NSCLC, indicating that the expanded role for targeted ther-
apy may be generalizable across biomarkers.109 The dramatic 
benefit achieved with adjuvant osimertinib and alectinib and 
their FDA approvals established adjuvant targeted therapy 
rather than ICI as standard-of-care for these disease subsets 
regardless of PD-L1 expression (ie, even for PD-L1 ≥ 50%), 
despite the genotype-agnostic approvals of atezolizumab and 
pembrolizumab (based on IMpower010 and KEYNOTE-091, 
respectively).110,111

Prospective data evaluating adjuvant ROS1 TKI in sur-
gically resected ROS1+ NSCLC are lacking, and there are 
currently no ongoing clinical trials assessing this question. 

Nevertheless, extrapolating from the adjuvant TKI trials in 
EGFR/ALK subsets and the evidence that immunotherapy 
confers minimal benefit in the metastatic setting, the use of 
adjuvant anti-PD(L)1 ICI is not favored for resected ROS1+ 
NSCLC.92 Understanding the efficacy and long-term tolera-
bility of next-generation ROS1 TKIs will help inform their 
optimal placement in the non–metastatic treatment landscape.

Neoadjuvant or perioperative therapy in resectable 
cancer
For patients with resectable stage IB-IIIA and IIIB [T3, N2] 
NSCLC, NCCN guidelines recommend testing for PD-L1 
status, EGFR mutation, and ALK rearrangement to guide 
neoadjuvant or perioperative systemic therapy.17 While 
numerous randomized phase III studies (eg, KEYNOTE-671, 
CheckMate-816, CheckMate-77T, Neotorch, and AEGEAN), 
have established the role of perioperative chemoimmuno-
therapy in resectable NSCLC, these studies have excluded 
patients with EGFR-mutant or ALK-rearranged NSCLC or 
included small numbers, limiting interpretation for patients 
with actionable drivers.112–116 Thus, the role of neoadjuvant 
or perioperative immunotherapy for patients with resectable 
ROS1+ NSCLC is unclear. The role of ROS1 TKI in the neo-
adjuvant or perioperative setting for patients with resectable 
stage IB-III disease is being explored in the NAUTIKA1 phase 
II trial (NCT04302025).117

Consolidation therapy after concurrent 
chemoradiation in unresectable cancer
The standard-of-care for patients with unresectable stage III 
NSCLC following definitive concurrent chemoradiation is 
consolidation immunotherapy with durvalumab given the 
DFS and OS benefit demonstrated by the phase III PACIFIC 
study and resultant genotype-agnostic FDA and EMA approv-
als.118–120 However, among patients enrolled in PACIFIC, only 
6% had a known EGFR mutation and other oncogenic driv-
ers were not characterized. A post hoc PACIFIC subgroup 
analysis and additional retrospective studies subsequently 
showed that patients with EGFR-mutated NSCLC do not 
derive significant DFS or OS benefit from consolidation 
durvalumab.121–124 Furthermore, the phase III LAURA study 
of maintenance osimertinib versus placebo in patients with 
unresectable stage III EGFR-mutated NSCLC treated with 
definitive chemoradiation demonstrated a PFS benefit (OS 
data immature).125 Extrapolating to ROS1+ NSCLC, robust 
data to support the use of consolidation durvalumab are lack-
ing, and exploration of a role for maintenance ROS1 TKI fol-
lowing concurrent chemoradiation is warranted.

Conclusions and future directions
Over the past two decades, our understanding of the biology 
and successful targeting of NSCLC harboring ROS1 fusions 
has progressed tremendously, transforming care for patients. 
Each critical advance—from the discovery of ROS1 fusions 
as a biomarker in NSCLC and the approval of crizotinib 
as the first ROS1-targeted therapy to the characteriza-
tion of resistance mechanisms and development of next- 
generation ROS1 inhibitors—has tangibly improved  
outcomes. Going forward, building upon these advances will 
require focused efforts to (1) refine the optimal sequencing 
of ROS1 TKIs and resistance landscape as next-generation 
inhibitors move into first-line use, (2) develop approaches 
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to overcome off-target resistance, including mechanism- 
agnostic strategies, (3) employ strategies to ablate drug- 
tolerant persister cells and residual disease on targeted  
therapy to delay or prevent the emergence of drug resistance 
and prolong time on TKI,126,127 (4) move ROS1-directed 
therapies into the non–metastatic setting, (5) deepen our 
understanding of risk factors for developing ROS1+ NSCLC 
to inform early detection and risk reduction strategies, and 
(6) optimize integration of palliative and survivorship care 
to improve quality of life.128–130

The evolving landscape for the treatment of ROS1+ NSCLC 
is reason for hope for patients, caregivers, and clinicians, and 
much more hope lies ahead. We anticipate that continued 
research and advances in both therapeutics and early detec-
tion will improve the longevity and well-being of people liv-
ing with ROS1+ lung cancer.
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