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Abstract: Reliable predictors of long-term all-cause mortality are needed for middle-aged and
older populations. Previous metabolomics mortality studies have limitations: a low number of
participants and metabolites measured, measurements mainly using nuclear magnetic spectroscopy,
and the use only of conventional statistical methods. To overcome these challenges, we applied
liquid chromatography–tandem mass spectrometry and measured >1000 metabolites in the METSIM
study including 10,197 men. We applied the machine learning approach together with conventional
statistical methods to identify metabolites associated with all-cause mortality. The three independent
machine learning methods (logistic regression, XGBoost, and Welch’s t-test) identified 32 metabolites
having the most impactful associations with all-cause mortality (25 increasing and 7 decreasing
the risk). From these metabolites, 20 were novel and encompassed various metabolic pathways,
impacting the cardiovascular, renal, respiratory, endocrine, and central nervous systems. In the
Cox regression analyses (hazard ratios and their 95% confidence intervals), clinical and laboratory
risk factors increased the risk of all-cause mortality by 1.76 (1.60–1.94), the 25 metabolites by 1.89
(1.68–2.12), and clinical and laboratory risk factors combined with the 25 metabolites by 2.00 (1.81–
2.22). In our study, the main causes of death were cancers (28%) and cardiovascular diseases (25%).
We did not identify any metabolites associated with cancer but found 13 metabolites associated with
an increased risk of cardiovascular diseases. Our study reports several novel metabolites associated
with an increased risk of mortality and shows that these 25 metabolites improved the prediction of
all-cause mortality beyond and above clinical and laboratory measurements.

Keywords: mortality; metabolites; metabolism; artificial intelligence; aging

1. Introduction

Identifying predictors for all-cause mortality is essential to improve the risk assessment
in medical decision-making and elucidate the pathways leading to disease outcomes.
Studies with detailed longitudinal clinical data surrounding death give the opportunity to
better understand the risk factors of mortality. Metabolic biomarkers for all-cause mortality
reflect multimorbidity among middle-aged and older people, and not only for specific
diseases [1]. However, our understanding of metabolic changes underlying mortality and
aging remains incomplete.

Previous studies on all-cause mortality have focused mainly on clinical and laboratory
measurements or the identification of metabolic biomarkers for specific diseases and condi-
tions, including cardiovascular diseases, type 2 diabetes, and chronic kidney disease [2–6].
Three previous studies identified metabolic biomarkers for all-cause mortality by applying
nuclear magnetic resonance (NMR) spectroscopy. The strength of these studies lies in their
large sample sizes, which allows the replication of findings in other cohorts. The limitation
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of these studies is that the number of metabolites measured was low, from 98 to 226 [7–9].
The sensitivity of NMR is low compared to the liquid chromatography mass spectrometry
(LC-MS/MS) method. The LC-MS/MS method detects a large pool of metabolites (>1000),
and therefore it plays a dominant role in the metabolomics field. Mass spectrometry is
intrinsically a highly sensitive method for the detection, quantitation, and structure elu-
cidation of metabolites [10]. Wang et al. were the first to apply the LC/MS approach to
investigate the association of 243 metabolites with mortality in 13,512 individuals, and
found that high levels of N2, N2-dimethylguanosine, pseudo uridine, N4-acetylcytidine,
4-acetamidobutanoic acid, N1-acetylspermidine, and lipids with fewer double bonds were
associated with an increased risk of all-cause mortality [3].

Previous studies trying to find metabolic biomarkers for mortality have applied con-
ventional statistics, which have limitations due to high internal correlations, class diversity,
and exposure–outcome disparities. Artificial intelligence includes several technologies of
the machine learning (ML) approach and, therefore, it is well suited to mortality studies.
It focuses on the empirical prediction of an outcome in contrast to traditional statistical
methods [11]. Several methods, including ML tools, have been applied to metabolomics
to create clinical prediction models. ML methods can analyze thousands of predictors
effectively by optimizing predictive performance while capturing complicated patterns in
the data, including non-linear relationships. It is especially well suited to studies applying
metabolomics in mortality data, as the mechanisms of action and interactions between the
metabolites are biologically diverse and interconnected [11].

Previously published studies have several limitations, especially the low number of
participants and metabolites measured, the lack of modern statistical methods to analyze
the data, and innovations and contributions to generate risk models for clinical practice.
We hypothesized that identifying metabolites by the LC-MS/MS platform and applying
parallel, conventional statistical methods with ML tools can improve the identification
of metabolites associated with all-cause mortality. This approach also gives us tools to
generate risk scores to identify people at high risk of mortality. Our study is the first to
apply the LC-MS/MS metabolomics-based method together with ML tools to investigate
metabolites associated with all-cause mortality in a large population-based cohort including
10,197 Finnish men.

2. Results
2.1. Baseline Characteristics of the Study Population

Table 1 shows the baseline characteristics of the participants of the METSIM study
(METabolic Syndrome In Men) who are alive (n = 8851) and the participants who died
during the follow-up (n = 1346). Compared to the living participants, the participants
who died during the follow-up were older, had higher body mass index (BMI) and waist
circumference, were more often smokers, had higher systolic blood pressure, lower low-
density lipoprotein cholesterol (LDLC) levels, higher total triglycerides, higher fasting
glucose levels, higher high-sensitivity C-reactive protein (hs-CRP) levels, higher rates of
type 2 diabetes (T2D), higher creatinine levels, higher urinary albumin excretion (UAE)
rates, and lower estimated glomerular filtration rates (eGFRs). No difference between the
two groups was observed for alanine transferase (ALT).

Table 1. Baseline characteristics of the participants of the METSIM study.

Alive Deceased

Variable n Mean ± SD n Mean ± SD p

Age (years) 8851 56.9 ± 6.9 1346 62.5 ± 6.5 2.0 × 10−161

Body mass index (kg/m2) 8849 27.2 ± 4.0 1344 28.2 ± 5.0 3.1 × 10−15

Waist (cm) 8848 98.2 ± 11.1 1343 102.3 ± 11.5 3.4 × 10−31
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Table 1. Cont.

Alive Deceased

Variable n Mean ± SD n Mean ± SD p

Smoking (%) * 8851 16.8 1344 26.4 1.5 × 10−16

Systolic blood pressure (mmHg) 8851 137.5 ± 16.4 1345 143.3 ± 18.0 7.0 × 10−31

Type 2 diabetes (%) * 8851 11.9 1345 27.2 1.3 × 10−44

LDLC (mmol/L) 8847 3.34 ± 0.89 1346 3.10 ± 0.92 2.0 × 10−19

Triglycerides (mmol/L) 8850 1.45 ± 0.97 1346 1.58 ± 1.23 4.8 × 10−07

Fasting glucose (mmol/L) 8851 5.92 ± 0.98 1346 6.30 ± 1.70 6.5 × 10−27

hS-CRP (mg/L) 8850 2.01 ± 4.27) 1345 3.44 ± 5.62 2.5 × 10−43

Creatinine (umol/L) 8851 83.5 ± 13.4 1346 86.7 ± 24.5 5.1 × 10−8

Urinary albumin excretion rate (ug/min) 8740 17.7 ± 95.5 1311 69.1 ± 31.9 1.0 × 10−33

eGFR (mL/min/1.73 m2) 8850 88.7 ± 12.1 1345 83.4 ± 14.9 6.4 × 10−52

ALT (U/L) 8851 32.5 ± 21.2 1346 32.1 ± 22.0 0.562

* Chi-square test.

2.2. Most Impactful Metabolite Predictors of Mortality Identified by ML Tools

Figure S1 shows the post-processing of the data from the original dataset (n = 1540) to
the identification of the most impactful metabolites predicting mortality based on each of
the three ML methods: Welch’s t-test, XGBoost (eXtreme Gradient Boosting), and Logistic
Regression. We obtained the final set of 32 metabolites shared by all three ML models.
Figure S2 shows the relative importance of the metabolites on mortality prediction by abso-
lute SHAP (SHapley Additive exPlanations) values. The SVM (support vector machine)
model for binary classification of mortality prediction yielded the following performance
metrics: precision 0.87, accuracy 0.84, and ROC-AUC 0.75 (area under the curve of the
receiver operating characteristic curve). The ROC-AUC values were evaluated from an
independent test set. In the logistic regression model of the 32 metabolites, the perfor-
mance of the corresponding metrics was as follows: precision 0.81, accuracy 0.85, and
ROC-AUC 0.77, and for the XGBoost binary classifier model, precision 0.65, accuracy 0.72,
and ROC-AUC 0.79. Figure 1 shows the ROC-AUC curves for the three models. The results
were very similar across the three models.

Figure 2 shows a SHAP summary plot of the 32 most impactful metabolite predictors
of mortality at the population level. Positive SHAP values indicate an increased risk for
mortality and negative SHAP values, a protective effect. Each dot corresponds to a single
observation. Increased metabolites are shown in red and decreased metabolites in blue.
For example, SHAP values indicate that N-acetylcarnosine decreases the risk of mortality
equally in the study population. The 5-(galactosylhydroxy)-L-lysine prediction pattern plot
has a long tail, where low levels indicate an increased risk of mortality, whereas increased
levels indicate a similar increased risk of mortality in the entire population. The SHAP
summary plot gives an explanative pattern for the prediction for each metabolite.

We applied ML methods, logistic regression, Welch’s t-test, and XGBoost, to iden-
tify the most impactful metabolites for short-, intermediate-, and long-term mortality
(Figures S3–S5). Short-term mortality included 185 mortality cases with a follow-up time
of 2.41 ± 1.35 years, intermediate-term mortality included 495 cases with a follow-up time
of 6.09 ± 1.98 years, and long-term mortality included 666 cases with a follow-up time of
11.04 ± 1.97 years.

In the short-term mortality group, the three most impactful metabolites were
9-hydroxystearate, N1-methyladenosine, and lactate. In the intermediate-term mortal-
ity group, the three most impactful metabolites were 3-ureidopropionate, o-cresol sulfate,
and C-glycosyltryptophan. In the long-term mortality group, the three most impactful
metabolites were behenoyl dihydrosphingomyelin (d18:0/22:0), dehydroepiandrosterone
sulfate (DHEA-S), and malate. The Veen diagram (Figure S6) shows that none of the
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metabolites were shared between the short-, intermediate-, and long-term mortality groups.
The short- and intermediate-term mortality groups shared three metabolites, intermediate-
and long-term mortality shared five metabolites, and short- and long-term mortality shared
three metabolites.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  3  of  14 
 

 

Systolic blood pressure (mmHg)  8851  137.5 ± 16.4  1345  143.3 ± 18.0  7.0 × 10−31 

Type 2 diabetes (%) *  8851  11.9  1345  27.2  1.3 × 10−44 

LDLC (mmol/L)  8847  3.34 ± 0.89  1346  3.10 ± 0.92  2.0 × 10−19 

Triglycerides (mmol/L)  8850  1.45 ± 0.97  1346  1.58 ± 1.23  4.8 × 10−07 

Fasting glucose (mmol/L)  8851  5.92 ± 0.98  1346  6.30 ± 1.70  6.5 × 10−27 

hS-CRP (mg/L)  8850  2.01 ± 4.27)  1345  3.44 ± 5.62  2.5 × 10−43 

Creatinine (umol/L)  8851  83.5 ± 13.4  1346  86.7 ± 24.5  5.1 × 10−8 

Urinary albumin excretion rate (ug/min)  8740  17.7 ± 95.5  1311  69.1 ± 31.9  1.0 × 10−33 

eGFR (mL/min/1.73 m2)  8850  88.7 ± 12.1  1345  83.4 ± 14.9  6.4 × 10−52 

ALT (U/L)  8851  32.5 ± 21.2  1346  32.1 ± 22.0  0.562 
* Chi-square test. 

2.2. Most Impactful Metabolite Predictors of Mortality Identified by ML Tools 

Figure S1 shows the post-processing of the data from the original dataset (n = 1540) 

to the identification of the most impactful metabolites predicting mortality based on each 

of the three ML methods: Welch’s t-test, XGBoost (eXtreme Gradient Boosting), and Lo-

gistic Regression. We obtained the final set of 32 metabolites shared by all three ML mod-

els. Figure S2 shows the relative importance of the metabolites on mortality prediction by 

absolute SHAP  (SHapley Additive exPlanations) values. The SVM  (support vector ma-

chine) model for binary classification of mortality prediction yielded the following perfor-

mance metrics: precision 0.87, accuracy 0.84, and ROC-AUC 0.75 (area under the curve of 

the receiver operating characteristic curve). The ROC-AUC values were evaluated from 

an independent test set. In the logistic regression model of the 32 metabolites, the perfor-

mance of  the  corresponding metrics was as  follows: precision 0.81, accuracy 0.85, and 

ROC-AUC 0.77, and for the XGBoost binary classifier model, precision 0.65, accuracy 0.72, 

and ROC-AUC 0.79. Figure 1 shows the ROC-AUC curves for the three models. The re-

sults were very similar across the three models. 

 

Figure 1. ROC-AUC curves for XGBoost, Logistic Regression, and SVM models. Figure 1. ROC-AUC curves for XGBoost, Logistic Regression, and SVM models.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  4  of  14 
 

 

Figure 2 shows a SHAP summary plot of the 32 most impactful metabolite predictors 

of mortality at the population level. Positive SHAP values indicate an increased risk for 

mortality and negative SHAP values, a protective effect. Each dot corresponds to a single 

observation. Increased metabolites are shown in red and decreased metabolites in blue. 

For example, SHAP values indicate that N-acetylcarnosine decreases the risk of mortality 

equally  in  the  study population. The 5-(galactosylhydroxy)-L-lysine prediction pattern 

plot has a long tail, where low levels indicate an increased risk of mortality, whereas in-

creased levels indicate a similar increased risk of mortality in the entire population. The 

SHAP summary plot gives an explanative pattern for the prediction for each metabolite. 

 

Figure 2. SHAP summary plot of the 32 most impactful predictors of mortality. A positive SHAP 

value means an increased risk prediction on mortality and a negative SHAP value indicates a pro-

tective effect. Each dot corresponds  to a single observation and higher values of  the variable are 

shown in red and lower values in blue. * indicates a tentatively identified metabolite; ** signify a 

well-characterized compound with minor identification uncertainty. 

We applied ML methods, logistic regression, Welch’s t-test, and XGBoost, to identify 

the most impactful metabolites for short-, intermediate-, and long-term mortality (Figures 

S3–S5). Short-term mortality included 185 mortality cases with a follow-up time of 2.41 ± 

1.35 years, intermediate-term mortality included 495 cases with a follow-up time of 6.09 ± 

1.98 years, and long-term mortality included 666 cases with a follow-up time of 11.04 ± 

1.97 years. 

In the short-term mortality group, the three most impactful metabolites were 9-hy-

droxystearate,  N1-methyladenosine,  and  lactate.  In  the  intermediate-term  mortality 

group,  the  three most  impactful metabolites were 3-ureidopropionate, o-cresol  sulfate, 

and C-glycosyltryptophan.  In  the  long-term mortality group,  the  three most  impactful 

metabolites were behenoyl dihydrosphingomyelin (d18:0/22:0), dehydroepiandrosterone 

sulfate (DHEA-S), and malate. The Veen diagram (Figure S6) shows that none of the me-

tabolites were shared between the short-, intermediate-, and long-term mortality groups. 

The short- and intermediate-term mortality groups shared three metabolites, intermedi-

ate- and long-term mortality shared five metabolites, and short- and long-term mortality 

shared three metabolites. 

Figure 2. SHAP summary plot of the 32 most impactful predictors of mortality. A positive SHAP value
means an increased risk prediction on mortality and a negative SHAP value indicates a protective
effect. Each dot corresponds to a single observation and higher values of the variable are shown in red
and lower values in blue. * indicates a tentatively identified metabolite; ** signify a well-characterized
compound with minor identification uncertainty.



Int. J. Mol. Sci. 2024, 25, 11636 5 of 14

2.3. Clustered Heatmap of the 32 Metabolites

The heatmap shows the correlation of the 32 most impactful metabolites in mortality
prediction (Figure S7). The five most significant metabolites predicting mortality were
2-hydroxyfluorene sulfate, N-acetylcarnosine, pregnenetriol sulfate, lignoceroyl sphin-
gomyelin, and 5-(galactosyl-hydroxy)-L-lysine. Hierarchical clustering shows that metabo-
lites having similar biological functions cluster together, especially metabolites belonging to
the amino acid pathway or sphingomyelins. Metabolites that increase the risk of mortality
cluster together, suggesting similar prediction patterns for mortality. Correspondingly,
metabolites decreasing the risk of mortality clustered together and had an inverse correla-
tion with the metabolites increasing the risk of mortality.

2.4. Cox Regression Analysis of Metabolites Associated with Mortality Risk

We performed a Cox proportional hazards regression analysis for the metabolites
identified by the machine learning models (Table 2). The analysis was used to estimate the
hazard ratios (HRs) and 95% confidence intervals (CIs) for each metabolite with all-cause
mortality. The Cox regression model was adjusted for age. Metabolite concentrations were
standardized prior to analysis.

Table 2. Cox regression analysis of metabolites associated with the risk of mortality.

HMDB Metabolite Cases Total HR (95% CI) p Novel

Amino Acids

HMDB0341329 Hydroxyasparagine 1345 10,169 1.23 (1.16–1.29) 2.1 × 10−15 Yes
HMDB0000177 Histidine 1345 10,188 0.85 (0.81–0.88) 3.2 × 10−15 No
HMDB0000670 Homoarginine 1345 10,188 0.87 (0.82–0.91) 1.8 × 10−8 No
HMDB0002820 1-methyl-4-imidazoleacetate 1333 10,125 1.25 (1.19–1.29) <1.0 × 10−20 Yes
HMDB0000600 5-(galactosylhydroxy)-L-lysine 1165 8180 1.17 (1.10–1.24) 3.8 × 10−7 Yes
HMDB0000512 N-acetylphenylalanine 1317 9959 1.26 (1.19–1.32) 3.0 × 10−17 No
HMDB0240296 C-glycosyltryptophan 1345 10,188 1.26 (1.20–1.33) <1.0 × 10−20 Yes
HMDB0000679 Homocitrulline 1304 9837 1.19 (1.13–1.26) 5.5 × 10−11 No
HMDB0000323 3-amino-2-piperidone 1344 10,180 1.15 (1.10–1.21) 4.4 × 10−9 Yes
HMDB0002201 Carboxyehtyl-GABA 1308 9898 1.14 (1.08–1.21) 4.2 × 10−6 Yes

Peptide

HMDB0012881 N-acetylcarnosine 1340 10,162 0.87 (0.83–0.92) 2.3 × 10−7 No

Nucleotides

HMDB0000026 3-ureidopropionate 1236 9104 1.27 (1.12–1.33) <1.0 × 10−20 No

Fatty acids

HMDB0000345 3-hydroxyadipate 1054 7933 1.25 (1.18–1.18) 1.1 × 10−13 Yes
HMDB0061661 9-hydroxystearate 1191 9011 1.37 (1.30–1.44) <1.0 × 10−20 Yes

- 2-hydroxynervonate 1317 9773 1.37 (1.28–1.46) <1.0 × 10−20 Yes
HMDB0000409 5-hydroxyhexanoate 1125 7220 1.23 (1.16–1.31) 3.4 × 10−12 No
HMDB0000511 Caprate (10:0) 1345 10,188 1.22 (1.16–1.28) 1.3 × 10−14 No

Sphingolipids

HMDB0000269 Sphinganine 1257 8796 1.22 (1.15–1.29) 1.7 × 10−11 Yes
HMDB0011697 Lignoceroyl sphingomyelin 1136 7896 0.88 (0.31–0.93) 9.9 × 10−6 Yes
HMDB0240671 Sphingomyelin (d18:1/25:0) 1136 7893 0.85 (0.80–0.90) 6.8 × 10−9 Yes
HMDB0012091 Behenoyl dihydrosphingomyelin 1337 10,008 0.89 (0.51–0.94) 1.1 × 10−5 Yes
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Table 2. Cont.

HMDB Metabolite Cases Total HR (95% CI) p Novel

Acylcarnitines

- Suberoylcarnitine (C8-DC) 1163 8684 1.31 (1.24–1.39) <1.0 × 10−20 No
HMDB0013127 (R)-3-hydroxybutyrylcarnitine 1292 9620 1.22 (1.15–1.38) 8.9 × 10−13 Yes

- (S)-3-hydroxybutyrylcarnitine 1334 10,014 1.20 (1.14–1.26) 1.0 × 10−11 Yes

Steroids

- Pregnenetriol sulfate 1345 10,187 0.89 (0.85–0.94) 9.8 × 10−6 Yes

Carbohydrates

HMDB0000212
HMDB0000215

N-acetylglucosamine/N
N-acetylgalactosamine 1334 10,053 1.30 (1.23–1.38) <1.0 × 10−20 No

HMDB0000169 Mannose 1345 10,185 1.22 (1.16–1.29) 9.9 × 10−13 Yes

Energy

HMDB0031518 Malate 1345 10,188 1.33 (1.26–1.39) <1.0 × 10−20 No

Endocannab.

HMDB0002088 Oleoylethanolamide 1109 7189 1.18 (1.11–1.26) 7.2 × 10−8 Yes

Organic
compound

HMDB0304531 Vanillylmandelate 1202 8816 1.12 (1.06–1.19) 1.2 × 10−4 No

Xenobiotics

- 5-hydroxymethyl-2-furoylcarnitine 953 7071 1.22 (1.14–1.30) 1.6 × 10−9 Yes
- 2-hydroxyfluorene sulfate 932 6556 1.30 (1.22–1.38) 8.5 × 10−16 Yes

We conducted Cox regression analyses to assess the effects of the clinical and labo-
ratory measurements and the 25 metabolites on the risk of mortality, both individually
and in combination. Clinical and laboratory measurements including age, BMI, waist
circumference, smoking, systolic blood pressure, LDLC, total triglycerides, fasting glucose,
hs-CRP, creatinine, T2D, and UAE significantly increased the risk of mortality (HR 1.76,
1.60–1.94, p = 1.7 × 10−29). The 25 metabolites alone also increased the risk of mortality
significantly (HR 1.89, 1.68–2.12, p = 5.2 × 10−27). In the model including both the clinical
and laboratory measurements and the 25 metabolites, the risk of mortality further increased
(HR 2.00, 1.81–2.22, p = 3.4 × 10−42), suggesting that the 25 metabolites increased the risk
of mortality beyond the clinical and laboratory risk factors for mortality.

3. Discussion

Previous studies of all-cause mortality applying the metabolomics approach have
been heterogeneous in the size of the studies, the number of metabolites included in the
studies, the platforms to measure metabolites, and the statistical methods. We applied ML
tools (SVM, XGBoost, and logistic regression) to identify the most impactful metabolites
associated with mortality, and identified 32 metabolites, 25 metabolites increasing and
7 metabolites decreasing the risk of mortality. Twenty of these metabolites were novel,
covering several metabolic pathways, lipids, amino acids, carbohydrates, xenobiotics,
energy metabolism, nucleotides, endocannabinoids, and peptides. These metabolites are
known to be associated with damage in the key human body systems, including the
cardiovascular, renal, respiratory, endocrine, and central nervous systems (Figure 3).

When we compared our findings with the previous two large studies, we found that
only one metabolite, histidine, was previously reported to be associated with decreased
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mortality in the study of Deelen et al. [9], and another metabolite, 3-ureidopropionate,
was associated with increased mortality in the study of Wang et al. [4]. The number
of metabolites measured varied significantly across these studies. Our study included
>1000 metabolites whereas the Deelen et al. study [9] included 226 metabolites and Wang
et al.’s study [4], 243 metabolites.

In our study, seven of the metabolites damaged multiple body systems, including
three novel metabolites (3-amino-2-piperidone, C-glycosyltryptophan, and 5-(galactosyl)-L-
lysine), and four previously reported metabolites (N-acetylphenylalanine, homocitrulline,
homoarginine, and 5-hydroxyhexanoate) [12–15]. Disruptions in the ornithine cycle result
in an increased abundance of 3-amino-2-piperidone (Figure S8A), resulting in enhanced
coagulation [16]. Hypercoagulation increases the risk of myocardial infarction and stroke,
pulmonary embolism, pulmonary infarction, and renal thrombosis [17].

N-acetylphenylalanine and C-glycosyltryptophan have been associated with albumin-
uria [18] and cardiovascular mortality. C-glycosyltryptophan accelerates peripheral artery
disease in patients with type 2 diabetes and is associated with a decrease in kidney function,
pulmonary hypertension, and impaired lung function [19,20]. Increased concentrations of
5-(galactosylhydroxyl)-L-lysine, a glycosylation product of hydroxylysine (Figure S8A),
have been found in patients with pulmonary artery hypertension and in patients with
impaired kidney function [20,21].

Homocitrulline, a carbamylation product, has been reported to be associated with
morbidity and mortality from chronic heart failure, coronary artery disease, and chronic
kidney disease [22,23]. Cyanate-induced carbamylation generates homocitrulline from
lysine (Figure S8A). Elevated cyanate concentrations related to impaired kidney function
and inflammation increase homocitrulline concentration [24]. Carbamylation prevents
LDLC binding to its receptor, resulting in cholesterol accumulation, macrophage foam-cell
formation, and an increased risk of coronary artery disease [25].
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Figure 3. The impact of machine learning-identified metabolites on multiple body systems. Metabo-
lites damaging cardiovascular system when levels are decreased: lignoceroylsphingomyelin, sphin-
gomyelin (d18:1/25:0), behenoyldihydrosphingomyelin, and homoarginine. Metabolites damaging
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renal system when levels are increased: 3-amino-2-piperidone, N-acetylphenylalanine, C-
glycosyltryptophan, 5-galactosyllysine, hydroxyasparagine, 3-ureidopropionate, and homocitrulline.
Metabolites damaging renal system when levels are decreased: homoarginine. Metabolites dam-
aging respiratory system when levels are increased: 3-amino-2-piperidone, C-glycosyltryptophan,
5-galactosyllysine, 1-methyl-4-imidazoleacetate, and 2-hydroxyfluorene sulfate. Metabolites damag-
ing central nervous system when levels are increased: 3-amino-2-piperidone, oleoylethanolamide,
and 5-hydroxyhexanoate. Metabolites damaging endocrine system when levels are increased: (S)/(R)-
hydroxybutyrate, N-acetylglucosamine, and mannose. Metabolites damaging antioxidant system
when levels are decreased: N-acetylcarnosine. Detailed information about mechanisms exerted
by these metabolites can be found in Figures S10–S12. Abbreviations: CA, carnitine; H, hydroxy;
HM, hydroxybutyrate; ILA, imidazoleacetate; OEA, oleylethanolamide; SM, sphingomyelin; UPA,
ureidopropionate. Metabolites damaging cardiovascular system when levels are increased: 3-amino-
2-piperidone, N-acetylphenylalanine, C-glycosyltryptophan, subeoylcarnitine, 9-hydroxystearate,
3-hydroxyadipate, sphinganine, malate, 5-hydroxymethyl-2-furoylcarnitine, caprate, and homoc-
itrulline. Lysine can replace ornithine in the urea cycle and combine with arginine to form homoargi-
nine (Figure S8A). An increase in homoarginine was inversely associated with mortality in our study,
in agreement with the findings in the LURIC and 4D studies [26]. Homoarginine acts as a nitric oxide
precursor, enhancing endothelial function [26]. Elevated homocitrulline and decreased homoarginine
result in disruption of the lysine pathway and increases the risk of mortality [15].

We found 22 metabolites known to impair specific body systems, 7 novel metabolites
contributing to coronary artery disease (9-hydroxystearate, 3-hydroxyadipate, sphinga-
nine, lignoceroyl-SM, SM (d18:1/25:0), behenoyl dihydro-SM, and suberoylcarnitine),
and 1 previously reported metabolite, caprate [15] (Figure S9). Hydrofluoroalkanes, 9-
hydroxystearate, and 3-hydroxyadipate can be incorporated into chylomicrons, which
contribute to an increase in very low-density lipoprotein particles. Additionally, oxidized
LDLC plays an important role in atherosclerosis by inducing monocyte chemotactic protein
1 and scavenger receptors [27], resulting in pro-inflammatory mechanisms.

Sphinganine, a ceramide precursor (Figure S8B), inhibits LDLC esterification and
contributes to the accumulation of free cholesterol in perinuclear vesicles resulting in
cellular toxicity and death [28]. Cholesterol accumulation releases proteases, cytokines,
and prothrombotic molecules, contributing to plaque instability, rupture, and vascu-
lar occlusion [29]. Three sphingomyelins (lignoceroyl-sphingomyeline, sphingomyeline
(d18:1/25:0), and behenoyl dihydro-sphingomyeline) were associated with decreased all-
cause mortality in our study. Sphingomyelins are crucial for cell membrane structure and
they prevent the deleterious effects of ceramides on endothelial dysfunction, cell apoptosis,
and atherosclerosis [30].

Suberoylcarnitine, a medium-chain dicarboxylic acylcarnitine, increases the risk of
coronary artery disease attributable to altered mitochondrial fatty acid oxidation and
omega-oxidation [31]. Caprate, a saturated fatty acid, has been reported to be associated
with increased mortality [32]. Saturated fatty acids increase coagulation, inflammation,
insulin resistance, and the risk of type 2 diabetes, cardiovascular diseases, cancer, frailty,
and all-cause mortality [33].

We found two metabolites linked to the cardiovascular system, one novel association
with 5-hydroxymethyl-2-furoylcarnitine and one previously reported association with
malate [12] (Figure S9). 5-hydroxymethyl-2-furoylcarnitine, a dietary component, has been
associated with ischemic heart disease [34]. Two metabolites in our study impair the renal
system (Figure S10), one novel association with hydroxyasparagine and one previously
reported association with 3-ureidopropionate (3-UPA) [22]. 3-UPA (Figure S8C) increases
mortality independently of kidney disease in patients with liver cirrhosis [35].

We confirmed that N-acetylcarnosine and histidine decreased the risk of mortal-
ity [26,36]. N-acetylcarnosine and histidine are carnosine metabolites (Figure S8C) known
for their antioxidative properties [37]. These metabolites effectively inhibit glucose-induced
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oxidation and glycation in human LDL, countering aging-related changes in protein oxida-
tion, glycation, and advanced glycation end-product (AGE) formation [38].

We discovered two novel metabolites linked to respiratory system damage, 1-methyl-4-
imidazoleacetate and 2-hydroxyfluorene sulfate (Figure S11). 1-methyl-4-imidazoleacetate
is the main histamine metabolite (Figure S8C) and increases significantly during asthma
attacks [39]. Tobacco smoking increases the concentration of 2-hydroxyfluorene sul-
fate, which is a potent carcinogen in tobacco [40]. We identified a novel metabolite
oleoylethanolamide, an important metabolite impacting the central nervous system
(Figure S6). Oleoylethanolamide induces anorexia by stimulating vagal sensory nerves
and activating PPAR-alpha [41]. Anorexia is associated with an elevated risk of all-cause
mortality [42].

We found three novel metabolites impacting the endocrine system, S- and R-3-
hydroxybutyrylcarnitine (S-3HB and R-3HB) and mannose (Figure S10), confirming previ-
ously the reported association with N-acetylglucosamine [43]. R-3HB-carnitine contributes
to insulin resistance in mice and can cause hypoketotic-hypoglycemia, metabolic acidosis,
hyperammonemia, and fatty liver disease [44]. Mannose glycates proteins and enhances the
formation of AGEs in several diseases, including diabetic nephropathy, atherosclerosis, and
neurodegenerative diseases [45]. N-acetylglucosamine/N-acetylgalactosamine generates
GlycA, which is associated with cardiovascular diseases and diabetes [46].

We found that the metabolite signatures regulating short-term, intermediate-term, and
long-term mortality were very different. Only three metabolites were shared between short-
term and long-term mortality. Metabolites associated with short-term mortality reflect
acute stress and energy metabolism. N1-methyladenosine is required for RNA methylation
and rapid cellular stress adaptation [47].

Lactate and succinate are involved in acute stress responses and fast metabolic en-
ergy [48]. Succinate, a key metabolite in the Krebs cycle, activates hypoxia signaling [49]
whereas the metabolites associated with long-term mortality, such as dehydroepiandros-
terone sulfate (DHEA-S) and beta-cryptoxanthin, regulate chronic inflammation and oxida-
tive stress. A decrease in DHEA-S concentration increases inflammation and has an impact
on long-term health [50]. Beta-cryptoxanthin has antioxidant effects and is protective
against oxidative stress [51].

The main causes of death in our study were cancers (28%) and cardiovascular diseases
(25%). Interestingly, we did not find any metabolite associated with the risk of cancer
but instead, 13 metabolites were associated with cardiovascular diseases (myocardial
infarction, coronary artery disease, heart failure, and pulmonary artery hypertension).
This gives an excellent possibility to use these metabolites as markers for the risk of
cardiovascular diseases.

In summary, ML successfully identified a precise set of metabolites associated with
an increased risk of all-cause mortality, emphasizing the significant role of metabolism in
aging and different diseases. Most of the 32 metabolites we discovered were novel and
regulated coagulation, cytokine release, lipid oxidation, inflammation, cellular toxicity,
insulin resistance, urea and malate–aspartate cycle dysregulation, and especially the risk of
cardiovascular diseases. Several of these metabolites can simultaneously harm multiple
body systems (Figure S12). These metabolites offer a more accurate representation of
general health compared to traditional clinical parameters and laboratory measurements.

4. Materials and Methods
4.1. Study Population

Our study population, the METSIM study, is a randomly selected population-based
cohort comprising 10,197 men, aged from 45 to 73 years at baseline, and recruited from
Kuopio and the surrounding communities in Eastern Finland [52]. A total of 7090 individu-
als participated in a 12-year follow-up study. The mean age of death in the participants was
76.0 ± 6.7 years (mean ± standard deviation, SD). The main causes of death were cancers
(28%), cardiovascular diseases (25%), and neurological diseases (11%). The METSIM study
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was approved by the Ethics Committee of the University of Eastern Finland and Kuopio
University Hospital and was conducted in accordance with the Declaration of Helsinki. All
participants gave written informed consent.

4.2. Clinical and Laboratory Measurements

BMI was calculated as weight in kilograms divided by height in meters squared. Waist
circumference was measured to the nearest 0.5 cm. LDLC and total triglycerides were
measured by enzymatic colorimetric tests (Konelab System Reagents). Plasma glucose
was measured by enzymatic hexokinase photometric assay (Konelab Systems reagents;
Thermo Fischer Scientific, Vantaa, Finland). hs-CRP was determined by an Immulite 2000
High Sensitivity CRP assay (Diagnostic Products Corp., Los Angeles, CA, USA). Creati-
nine was determined by the Jaffe method. ALT was assessed by enzymatic photometric
test. UAE rate was determined by the Immunoturbidimetric method (Konelab Albu-
min/Microalbuminuria system reagents, REF no 981660, Thermo Electron Corp, Vantaa,
Finland) from the first urine sample in the morning (µg/minute). The eGFR was calculated
with the Cockroft–Gault formula [52].

4.3. Metabolomics

Non-targeted metabolomics profiling was performed at Metabolon, Inc. (Morrisville,
NC, USA) on EDTA plasma samples obtained after overnight fasting from 10,188 partic-
ipants at baseline, as previously described in detail [53]. The Metabolon DiscoveryHD4
platform was applied to identify the metabolites. All samples were processed together for
peak quantification and data scaling. We quantified raw mass spectrometry peaks for each
metabolite using the area under the curve and evaluated the overall process variability
by the median relative standard deviation for the endogenous metabolites present in all
20 technical replicates in each batch. We adjusted for variation caused by day-to-day instru-
ment tuning differences and columns used for biochemical extraction by scaling the raw
peak quantifications to the median for each metabolite by the Metabolon batch. Instrument
variability was assessed by calculating the median relative standard deviation (RSD) for
internal standards added to each sample before injection into the mass spectrometers. The
acceptance criterion for instrument variability was a median RSD of 5% or lower, which
was obtained in our study. Overall process variability was determined by calculating the
median RSD for all endogenous metabolites in technical replicates, with an acceptance
criterion of a median RSD of 15% or lower. Our study achieved a median RSD of 8% which
meets Metabolon’s acceptance criteria ensuring high data quality.

4.4. Machine Learning

We included 1540 metabolites in our study (Figure S1). We filtered out 596 metabolites,
of which 416 metabolites had more than 50% of missing values, and 180 metabolites had
no identification available. We included 945 normalized metabolites in statistical analyses.
Missing values were set to NaN to utilize the XGBoost’s built-in function for handling
missingness. We addressed the class imbalances in mortality events by reducing the size
of the dataset from 10,000 to 6683 to ensure that our machine learning models perform
effectively. The final dataset consisted of 945 metabolites as variables and 6683 samples as
datapoints (Figure S1).

We applied three distinct methods, logistic regression, Welch t-test, and XGBoost, to
the entire preprocessed dataset to perform feature selection and rank the most significant
metabolites predicting mortality (Figure S1). This approach has previously been used to
identify the most impactful metabolites associated with a disease or condition [54]. We
performed Welch’s t-test for each metabolite to determine how well it discriminates between
the individuals who died during the follow-up period. The 200 most discriminating
metabolites with the lowest q-value according to the Welch t-test were selected. We
examined all metabolites individually with logistic regression for their discrimination
ability. Metabolites were ranked based on the magnitude of the ROC-AUC curve (area
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under the receiver operating characteristic curve) with logistic regression, and the top
200 metabolites were selected. We performed XGBoost tree binary classification for the
entire dataset of 945 metabolites (Figure S1). We sorted the metabolites in the order of
magnitude according to their importance value produced by the XGboost model. A total
of 154 metabolites were selected based on a SHAP feature importance value greater than
0.012. The final set of the most impactful 32 metabolites was selected from the intersection
of the top-ranked metabolites identified by these three methods.

We built the three prediction models to evaluate the predictive power of 32 selected
metabolites for all-cause mortality: the support vector machine (SVM) model, logistic
regression model, and XGBoost binary classifier model. The feature selection process, im-
plementation, and evaluation of the ML models were performed by Python 3.8.10 version.
The Python XGBoost function (version 1.3.3) XGBClassifier and SHAP version (0.38.1) were
used to build the explainable ML model of mortality. XGBoost is an implementation of
the gradient-boosted decision tree, and the algorithm is designed for speed and perfor-
mance. Shapley Additive exPlanation (SHAP) values are based on classic game-theoretic
Shapley values [55] which are used to explain predictions generated by machine learning
models [55]. The final set of hyperparameters used in the XGBoost mortality prediction
model is presented in Table S1.

We applied hyperparameter tuning to regulate the overfitting caused by complex tree-
based algorithms with numerous variables. Model complexity was reduced by restricting
maximum tree depth (max depth) and increasing the minimum sum of instance weights
(min_child_weight), which both lead to a more conservative model. The randomness of
the model was evaluated by the colsample bytree parameter which restricts the number
of variables used in one tree to make training more robust. We used the Python seaborn
clustermap function with the clustering method Nearest Point Algorithm “single” and
Euclidean distance to perform the hierarchical clustering algorithm.

4.5. Statistical Analyses

We conducted statistical analyses using IBM SPSS Statistics, version 25. We log-
transformed all continuous variables having skewed distribution. We applied the Cox
regression analysis to associate the metabolites with all-cause mortality and presented the
results as hazard ratios (HRs) and their 95% confidence intervals (CIs). When analyzing the
25 metabolites, the predictors of the mortality scores were derived by adding metabolites
weighted by their regression coefficients. We tested the Cox proportionality assumption for
the metabolites using the survival and survminer packages in R and found that a fitted Cox
regression model adequately described the data. p < 4.06 × 10−5 (Bonferroni correction for
1.232 metabolites) was considered statistically significant. We used one-way ANOVA and
Chi-square tests to assess the differences in clinical traits and metabolites between the cases
(deceased) and the controls (alive).

5. Conclusions

Our study has several strengths, including a large METSIM cohort, a validated
metabolomics platform including >1000 metabolites, several novel findings, and robust
data analysis. Our study applied ML methods to identify the metabolites associated with
all-cause mortality. Most of the metabolites were novel and regulate coagulation, lipid
oxidation, endothelial dysfunction, and inflammation, highlighting the role of metabolic
changes related to aging and different diseases, particularly to cardiovascular compli-
cations. Our study shows that metabolomics studies need to include a high number of
participants and metabolite measures to identify novel metabolites and metabolic pathways.
Our findings offer valuable insights into metabolic pathways and potential biomarkers for
future research.

Our study has implications for clinical practice. Using Cox regression analyses, we
were able to compare the effects of clinical and laboratory measurements and the 25 most
impactful metabolites and their combination on the risk of all-cause mortality. We found
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that clinical and laboratory measurements increased the risk of mortality by 1.76-fold, the
25 metabolites by 1.89-fold, and the combination of these two by 2.00-fold. Our study
shows that the metabolites increasing the risk of all-cause mortality significantly improves
the prediction of mortality beyond and above clinical and laboratory measurements. Most
of the novel metabolites were associated with an increased risk of cardiovascular diseases.
Therefore, our method to calculate a risk score by combining metabolites and clinical
and laboratory measurements is especially suited to identify patients with a high risk of
cardiovascular diseases. The limitations of our study are that it included only middle-
aged Finnish men, and therefore our results need to be confirmed in females and non-
Finnish populations.
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