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Abstract: Identifying biomarkers for Alzheimer’s disease (AD) is crucial, due to its complex pathology,
which involves dysfunction in lipid transport, contributing to neuroinflammation, synaptic loss, and
impaired amyloid-β clearance. Nuclear magnetic resonance (NMR) is able to quantify and stratify
lipoproteins. The study investigated lipoproteins in blood from AD patients, aiming to evaluate
their diagnostic potential. Serum and plasma were collected from AD patients (n = 25) and healthy
individuals (n = 25). We conducted a comprehensive lipoprotein profiling on serum samples using
NMR spectroscopy, analysing 112 lipoprotein subfractions. In plasma, we measured unspecific
markers of neuronal damage and AD hallmark proteins using single molecule array technology.
Additionally, clinical data and cerebrospinal fluid biomarker levels were also collected to enrich our
data. Our findings, after adjusting for age and sex differences, highlight significant alterations in
two specific lipoproteins; high-density lipoprotein (HDL)-1 Apo-A2 (H1A2) and HDL-2 Apo-A2 (H2A2),
both with area under the curve (AUC) values of 0.67, 95% confidence interval (CI) = 0.52–0.82). These
results indicate that these lipoprotein subfractions may have potential as indicators of AD-related
metabolic changes.

Keywords: Alzheimer’s disease; lipoproteins; blood; serum; nuclear magnetic resonance; biomarker

1. Introduction

Alzheimer’s disease (AD) stands as the foremost cause of dementia worldwide, con-
tributing to a significant proportion of the global healthcare cost, mortality, and mor-
bidity [1]. Therapeutic interventions have predominantly centred around the amyloid
hypothesis [2], yet despite these efforts, clinical trials continue to encounter challenges
and show inadequate outcomes [3]. Consequently, it has become imperative to explore
new avenues and pathways to understand this disease better and effectively respond to
the increasing demand to identify biomarkers associated with the disease [4,5]. Current
diagnostics involve a battery of cognitive assessments, imaging techniques, and analysis of
cerebrospinal fluid (CSF) biomarkers such as amyloid-β (Aβ) and tau isoforms. These meth-
ods enable the investigation of structural, functional, and molecular alterations associated
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with the disease [6,7]. In some instances, this diagnostic battery has been supplemented
with measuring neurofilament light (Nf-L) levels in the CSF, which serve as a non-specific
indicator for neuronal damage in neurodegenerative diseases [8]. Despite notable progress
in terms of sensitivity, there are still several drawbacks that need to be addressed. These
drawbacks encompass patient compliance issues regarding the collection of CSF through
lumbar puncture and the availability of scanning equipment for general practitioners. For
these diagnostic tools to be utilized effectively as screening measures, it is imperative to
address and overcome these limitations [9,10]. Blood sampling is easily performed in
relevant settings [11] and minimally invasive [12]. Furthermore, blood is in proximity to
every organ, allowing organ markers to be detected, and therefore blood samples could be
a valuable screening tool [12].

Recent insights into the role of lipid metabolism in AD pathogenesis highlight the
potential of lipoproteins as biomarkers. Lipoproteins are vital in lipid transportation,
constructed of a single outer phospholipid-cholesterol monolayer, with the hydrophilic
end oriented outward. Their density and size stratify them in an opposite manner,
where very low-density lipoproteins (VLDL) are the largest particles, with a density of
0.93–1.006 g/mL, and high-density lipoproteins (HDL) are the smallest particles, with a
density of 1.063–1.21 g/mL. The embedded apolipoproteins in their membrane determine
their functions [13,14]. Lipoproteins do not typically traverse the blood–brain barrier (BBB).
However, cells within the brain can generate lipoproteins, primarily containing apolipopro-
teins (Apo) E and J. Lipoproteins in the circulatory system contain other apolipoproteins,
such as ApoB-100 and ApoA-I [15]. As part of the pathogenesis of AD, the disruption of
the BBB facilitates the identification of circulatory lipoproteins in CSF [16].

Additionally, studies in animal models have observed that the accumulation of lipid
droplets in the AD brain occurs prior to amyloid aggregation, highlighting the potential
significance of dysregulated lipoprotein metabolism in neurodegenerative disorders [17].
Furthermore, cholesterol and low-density lipoprotein (LDL) have been identified as risk
factors for AD. In contrast, HDL has been proposed to have a protective role, as higher
levels of this lipoprotein have resulted in better cognitive outcomes [18] and are inversely
correlated with cerebral Aβ deposits [19]. However, studies have also indicated that
the functionality of HDL may not solely rely on its quantity but rather its associated
apolipoproteins [20].

In clinical practice, blood lipoprotein tests are routinely performed, typically using
enzymatic reactions [21]. These assays only measure total cholesterol, HDL levels, and
triglycerides, while LDL usually is estimated using calculations such as the Friedewald
equation [22]. A conventional approach for comprehensive quantification of lipoproteins
involves a time-consuming ultracentrifugation process, which physically separates lipopro-
tein fractions, including chylomicrons, VLDL, LDL, and HDL. Subsequently, these fractions
undergo in-depth analysis [23]. A novel approach involves using commercially avail-
able proton nuclear magnetic resonance (1H NMR) spectroscopy to perform quantitative
profiling of lipoproteins in serum aliquots [13]. In contrast to mass spectrometry, which
some previous studies have used to investigate lipid changes in AD, NMR requires a non-
destructive method for sample preparation, as well as providing high reproducibility [24].

Therefore, the main objective of this study is to explore the diagnostic potential of
lipoprotein subfractions as blood-based biomarkers for AD, offering insights into metabolic
changes and their correlation with clinical data. By identifying specific lipoprotein al-
terations in AD, we hope to contribute to the development of simpler, more effective
diagnostic tools for this complex disease.

2. Results
2.1. Clinical Characteristics

The biochemical analyses included clinical test results, organ functionality, and neu-
rodegeneration markers, all as previously reported [25]. Briefly, the biochemical mea-
surements showed that most biochemical markers were within normal ranges, except for
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higher levels of lactate dehydrogenase (LDH, p = 0.03) and lower glucose levels (p = 0.01)
in the patient group. An age disparity was identified among the groups, with the mean
age of the AD patient group being significantly higher (p = 0.00001). Furthermore, AD
patients presented with a possible build-up of intracellular Aβ and extracellular tau,
evidenced by reduced cognitive test scores for Mini-Mental State Examination (MMSE,
20.0 ± 4.5) and Addenbrooke’s Cognitive Examination (ACE, 58.0 ± 16.5), and elevated
CSF Aβ (682.8 ± 216.3 ng/L), alongside higher Functional Activities Questionnaire (FAQ,
11.8 ± 6.2) cognitive test scores, and increased CSF phospho-tau (p-tau, 81.7 ± 25.0 ng/L)
and total-tau (t-tau, 520.4 ± 102.4 ng/L) levels. Plasma measurements of Aβ, tau, glial
fibrillary protein (GFAP), and Nf-L by single molecule array (SIMOA) were incorporated
to supplement the clinical data. The results indicated significantly raised levels of Aβ40
(p = 0.002), GFAP (p = 0.01), Nf-L (p = 0.04), and p-tau181 (p = 0.00005) in AD patients, even
after adjusting for age-related variations in Nf-L and GFAP (Table 1). Unadjusted values
for mean and SD are presented in Table 1.

Table 1. Characteristics of study groups. Abbreviations; Aβ—Amyloid-β, ACE—Addenbrooke’s
Cognitive Examination, AD—Alzheimer’s disease, ALAT—Alanine transaminase, Con—Healthy
control, CRP—C-reactive protein, CSF–Cerebrospinal fluid, FAQ—Functional Activities Question-
naire, GFAP—Glial fibrillary protein, HDL—High-density lipoprotein, LDH—Lactate dehydrogenase,
LDL—Low-density lipoprotein, MMSE—Mini-Mental State Examination, Nf-L—Neurofilament light,
p-tau—Phospho-tau, SD—Standard deviation, t-tau—Total-tau.

Con (n = 25) AD (n = 25)
p-Value Reference

IntervalMean (SD) Mean (SD)

Demographics

Age [years] 66.6 (1.3) 75.7 (8.2) 0.00001 -
Male/female [n] 16/9 15/10 - -

Ethnicity Caucasian Caucasian - -

Biochemical characteristics

ALAT [U/L] 26.3 (8.6) 22.3 (11.6) 0.17 10.0–50.0
Albumin [g/L] 41.0 (1.9) 41.5 (1.9) 0.37 34–45

Cholesterol [mmol/L] 5.4 (0.9) 5.5 (1.1) 0.88 4.2–8.5
Creatinine [µmol/L] 79.0 (10.2) 83.4 (14.5) 0.22 45–105

CRP [mg/L] 1.9 (1.4) 2.2 (2.9) 0.57 <8
Glucose [mmol/L] 6.4 (1.7) 5.4 (0.9) 0.01 4.2–7.8

Haemoglobin [mmol/L] 8.8 (0.7) 8.5 (1.0, n = 15) 0.45 7.3–10.5
HDL [mmol/L] 1.5 (0.3) 1.6 (0.4) 0.35 0.7–1.9
LDL [mmol/L] 3.2 (0.8) 3.3 (0.9) 0.71 2.2–5.7

LDH [U/L] 170.2 (31.2) 192.1 (38.7) 0.03 105–255
Triglycerides [mmol/L] 1.5 (0.8) 1.3 (0.8) 0.34 0.6–3.9

Urea [mmol/L] 5.8 (1.3) 5.7 (1.5) 0.77 3.1–8.1

Neurocognitive test scores

MMSE - 20.0 (4.5) - -
ACE - 58.0 (16.5, n = 21) - -
FAQ - 11.8 (6.2, n = 21) - -

CSF neurodegenerative markers

Aβ [ng/L] - 682.8 (216.3, n = 9) - >500
p-tau [ng/L] - 81.7 (25.0, n = 9) - <61
t-tau [ng/L] - 520.4 (102.4, n = 9) - <450

Plasma neurodegenerative markers

Aβ40 [pg/mL] 95.1 (10.2) 108.7 (17.4) 0.002 -
Aβ42 [pg/mL] 5.3 (1.0) 5.6 (1.3) 0.5 -

Aβ42/Aβ40 0.06 (0.009) 0.05 (0.009) 0.06 -
GFAP [pg/mL] 88.6 (32.8) 247.1 (277.9) 0.01 -
Nf-L [pg/mL] 12.5 (4.4) 36.9 (24.5) 0.04 -

p-tau181 [pg/mL] 1.8 (0.8) 3.1 (1.3) 0.00005 -
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2.2. Cognitive Impairment and Lipoproteins

A comparative analysis of lipoprotein profiles between controls and patients’ unad-
justed values revealed that 17 lipoprotein subfractions were significantly dysregulated;
however, after age adjustment, only two of these lipoproteins were found to be signifi-
cantly dysregulated (Table 2). None of the 112 lipoprotein subfractions were found to be
significantly altered after false discovery rate (FDR) correction. HDL and LDL subfractions
were significantly elevated in the AD group, while the VLDL subclasses were significantly
lower. The unadjusted values for mean, standard deviation (SD), and fold change (FC) are
presented in Table 2.

Table 2. Significantly altered lipoproteins. Both p-value and FDR comparisons are shown for
unadjusted and adjusted data. Abbreviations; AD—Alzheimer’s disease, Con—Healthy control,
FDR—False discovery rate, FC—Fold change, HDL—High-density lipoprotein, H1A2—HDL-1 Apo-
A2, H2A2—HDL-2 Apo-A2, IDTG—IDL triglycerides, LDL–Low-density lipoprotein, LDTG—LDL
triglycerides, L4TG—LDL-4 triglycerides, L5TG—LDL-5 triglycerides, L6TG—LDL-6 triglycerides,
SD—Standard deviation, TPTG—Total triglycerides, VLFC—VLDL free cholesterol, VLPL—VLDL
phospholipids, VLTG—VLDL triglycerides, V1CH—VLDL-1 cholesterol, V1FC—VLDL-1 free choles-
terol, V1PL—VLDL-1 phospholipids, V1TG—VLDL-1 triglycerides, V5CH—VLDL-5 cholesterol, and
V5PL—VLDL-5 phospholipids.

Lipoprotein [g/L]
Con AD

FC
Unadjusted Adjusted

Mean SD Mean SD p-Value FDR p-Value FDR

H1A2 0.030 0.015 0.041 0.018 0.4 0.02 0.2 0.04 1
H2A2 0.037 0.012 0.043 0.012 0.2 0.03 0.3 0.04 1
IDTG 0.173 0.126 0.122 0.135 −0.3 0.02 0.2 0.95 1
L4TG 0.021 0.009 0.030 0.013 0.4 0.01 0.2 0.2 1
L5TG 0.020 0.011 0.027 0.010 0.3 0.03 0.3 0.2 1
L6TG 0.040 0.016 0.049 0.013 0.2 0.01 0.2 0.07 1
LDTG 0.179 0.043 0.226 0.081 0.3 0.02 0.2 0.3 1
TPTG 1.505 0.672 1.258 0.758 −0.2 0.03 0.3 0.95 1
V1CH 0.084 0.050 0.054 0.051 −0.4 0.002 0.2 0.4 1
V1FC 0.036 0.024 0.022 0.026 −0.4 0.006 0.2 0.5 1
V1PL 0.085 0.053 0.060 0.061 −0.3 0.01 0.2 0.6 1
V1TG 0.550 0.321 0.384 0.402 −0.3 0.005 0.2 0.6 1
V5CH 0.014 0.007 0.010 0.006 −0.3 0.05 0.3 0.3 1
V5PL 0.019 0.006 0.014 0.006 −0.3 0.01 0.2 0.2 1
VLFC 0.100 0.036 0.083 0.044 −0.2 0.04 0.3 0.5 1
VLPL 0.231 0.087 0.196 0.112 −0.1 0.04 0.3 0.8 1
VLTG 0.951 0.498 0.768 0.604 −0.2 0.03 0.3 0.9 1

The correlations between these significantly altered lipoprotein subfractions and
the total lipoprotein levels measured by standard clinical tests were then established
(Figure 1). The total measured triglycerides exhibited a strong positive correlation with
VLDL subfractions; VLDL free cholesterol (VLFC) (ρ = 0.79), VLDL phospholipids (VLPL)
(ρ = 0.77), VLDL-1 triglycerides (V1TG) (ρ = 0.74), VLDL-1 cholesterol (V1CH) (ρ = 0.74),
VLDL-1 free cholesterol (V1FC) (ρ = 0.72), and VLDL-1 phospholipids (V1PL) (ρ = 0.74),
and similarly for total triglycerides (TPTG) (ρ = 0.78), VLDL triglycerides (VLTG) (ρ = 0.77),
and intermediate-density lipoprotein triglycerides (IDTG) (ρ = 0.74).

Subsequently, correlations were established between the lipoprotein subfractions of
interest and neurocognitive test scores, levels of AD CSF markers, and plasma measure-
ments of neurodegenerative markers as determined by the SIMOA. The VLDL subfractions
VLFC and VLPL exhibited moderate positive and significant correlations with ACE scores
(ρ = 0.6 and ρ = 0.6, respectively) and V1PL, with a moderate negative correlation with
Aβ42 (ρ = −0.54). Conversely, triglyceride containing subfractions TPTG, VLTG, and IDTG
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demonstrated moderate positive correlations with Aβ40 (ρ = 0.54 for TPTG and ρ = 0.54
IDTG) and ACE (ρ = 0.54 for TPTG, ρ = 0.6 for VLTG, and ρ = 0.54 for IDTG) (Figure 2).
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Figure 1. Correlogram of lipoproteins measured by NMR and routine analyses. Only significant corre-
lations are shown. The colour indicates whether the correlation is positive (red) or negative (blue), and
the intensity of the colour corresponds to Spearman’s ρ. Abbreviations; HDL—High-density lipopro-
tein, H1A2—HDL-1 Apo-A2, H2A2—HDL-2 Apo-A2, IDTG—IDL triglycerides, LDL—Low-density
lipoprotein, LDTG—LDL triglycerides, L4TG—LDL-4 triglycerides, L5TG—LDL-5 triglycerides,
L6TG—LDL-6 triglycerides, TPTG—Total triglycerides, VLFC—VLDL free cholesterol, VLPL—VLDL
phospholipids, VLTG—VLDL triglycerides, V1CH—VLDL-1 cholesterol, V1FC—VLDL-1 free choles-
terol, V1PL—VLDL-1 phospholipids, V1TG—VLDL-1 triglycerides, V5CH—VLDL-5 cholesterol, and
V5PL—VLDL-5 phospholipids.
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Figure 2. Correlogram of lipoproteins of interest and clinical parameters. Only significant correla-
tions are shown. The colour indicates whether the correlation is positive (red) or negative (blue),
and the intensity of the colour corresponds to Spearman’s ρ. Abbreviations; ACE—Addenbrooke’s
cognitive examination, FAQ—Functional Activities Questionnaire, GFAP—Glial fibrillary acidic
protein, H1A2—HDL-1 Apo-A2, H2A2—HDL-2 Apo-A2, IDTG—IDL triglycerides, LDTG—LDL
triglycerides, L4TG—LDL-4 triglycerides, L5TG—LDL-5 triglycerides, L6TG—LDL-6 triglyc-
erides, MMSE—Mini-Mental State examination, Nf-L—Neurofilament light, p-tau—Phospho-tau,
t-tau—Total-tau, TPTG—Total triglycerides, VLFC—VLDL free cholesterol, VLPL—VLDL phospho-
lipids, VLTG—VLDL triglycerides, V1CH—VLDL-1 cholesterol, V1FC—VLDL-1 free cholesterol,
V1PL—VLDL-1 phospholipids, V1TG—VLDL-1 triglycerides, V5CH—VLDL-5 cholesterol, and
V5PL—VLDL-5 phospholipids.

Finally, the discriminatory ability of the lipoprotein subfractions in distinguishing
between healthy and diseased individuals was examined using receiver operating charac-
teristic (ROC) curve analysis (Figure 3). Among the 17 lipoproteins that showed significant
regulation, two exhibited an area under the curve (AUC) of around 0.7, including HDL-1
Apo-A2 (H1A2, AUC = 0.67, 95% CI = 0.52–0.82) and HDL-2 Apo-A2 (H2A2, AUC = 0.67,
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95% CI = 0.52–0.82). Despite adjusting for age and sex differences, the significance of these
two lipoproteins persisted.
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Figure 3. Receiver operating characteristics (ROC) curves for lipoproteins with an area under the
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3. Discussion

In this study, we compared the levels and composition of various lipoproteins, includ-
ing their subfractions, to clinical data and diagnostic outcomes to investigate their potential
association with cognitive impairment. Moreover, we evaluated the diagnostic capabilities
of selected lipoproteins to determine their effectiveness as potential blood-based biomark-
ers.

A previous study of a similar scope (but reporting no SIMOA-based measurements
of neurodegenerative-related proteins in plasma) investigated lipoproteins in AD using
NMR with a secondary focus on ApoE status [26]. In brief, certain ApoE genotypes are risk
factors for AD, with the Apoε4 allele being a major risk factor and Apoε3 to a lesser extent,
whereas Apoε2 plays a protective role in AD [27]. Both studies were in agreement that
the HDL subfraction H1A2 is significantly elevated in the AD group compared to healthy
controls. As previously stated, HDL has been linked to a neuroprotective role, which is
also the case for the ApoA-II subfractions, H1A2 and H2A2. Several apolipoproteins, such
as ApoA-II, are not generated in the brain environment; however, HDL lipoproteins have
been shown to be able to traverse the BBB [28]. The subfraction ApoA-II is the second most
significant constituent of HDL particles [29].

ApoA-II has the capability to form complexes with ApoE2 and ApoE3, resulting in
the reduction of internalization into the cell of Aβ by binding to this neurotoxic protein.
However, these features are absent with ApoE4 [30]. Of note, ApoA-I and –IV are increased
at repair sites of peripheral nerve injuries [31], and a similar mechanism could perhaps
apply to ApoA-II. Even though H1A2 and H2A2 correlated moderately with routinely
measured HDL cholesterol, no significant difference was observed between the AD and
control group for routinely measured HDL, supporting the previous observation that the
role of HDL in AD depends on apolipoprotein composition rather than lipoprotein particle
quantity. In line with its neuroprotective functions, ApoA-II has been associated with lower
CSF-NfL levels in multiple sclerosis [32]. In contrast to these findings, other studies have
found lower plasma ApoA-II levels in patients with AD compared to controls in a Japanese
cohort [33] and, in mild cognitive impairment (MCI) patients, lower ApoA-II increased the
risk of cognitive decline [34].
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Some discrepancies were also found between the aforementioned study by Berezhony
et al. [26] and this present study. Their results highlighted the HDL-4 subfractions Apo-A1
(H4A1), free cholesterol (H4FC), and cholesterol (H4TG) as significantly increased in AD
patients, which the present study did not find, possibly due to a smaller cohort size. This
was also evident for the LDL and VLDL subfractions LDL-2 cholesterol (L2CH) and VLDL-
2 triglycerides (V2TG), which presented similar findings. However, a few lipoproteins,
including V1CH, V1TG, and IDTG, were found to be significantly altered in both studies,
albeit the alterations were in opposite directions, with these lipoproteins being of lower con-
centrations in AD patients in the current study. Our findings on VLDL subfractions diverge
from previous research, which could be due to possible methodological differences such as
NMR protocols or sample preparation, population heterogeneity involving variations in
disease stage or genetic backgrounds, and the dynamic nature of lipid metabolism in AD.
To resolve these discrepancies, future research should focus on standardizing methods and
expanding to larger, more diverse cohorts. Furthermore, these alterations in the current
study were not found to be significant post-FDR correction, minimizing their contribution
to aiding in differentiating AD patients from healthy individuals.

Given these findings, it is crucial to acknowledge the limitations of this proof-of-
concept study. The inclusion of clinical data from patients depended on the physician’s
discretion for confirming their diagnosis, resulting in some patients having only neurocog-
nitive test scores available for analysis. In addition, a significant difference was observed in
the mean age between the groups, with the AD patient group exhibiting a higher mean age
than the healthy control group. Due to age limitations for healthy blood donors, recruiting
older individuals for the control group was not feasible. To mitigate this, the lipoprotein
values were adjusted for age before conducting the statistical analysis, aiming to elim-
inate potential effects arising from age disparities. Age-related changes in lipoprotein
metabolism are complex and may not be fully accounted for by this adjustment. Although
we cannot exclude the possibility that some of the observed differences in lipoprotein
profiles between groups could be partially attributed to age rather than AD status alone,
available data concerning lipoprotein levels at the ages of the AD patients and healthy
controls do not indicate any differences [35]. In addition, our study was limited by the lack
of stratification of AD patients by disease stage; however, they were all diagnosed with
mild (to moderate) AD at the time of clinical examinations. APOE status by genotyping
has also been shown to an important factor in aiding the stratification of the AD group,
which our study could benefit from having included, but the study was too small for a
stratification based on genotypes. Another limitation to mention is that blood samples were
drawn in non-fasting individuals, which could affect their lipoprotein profiles. However,
fasting and non-fasting blood samples should be comparable in regards to lipoprotein
profiles, with small differences, especially for HDL [36], and the non-fasting state is actually
the prevailing condition during the day. Furthermore, small populations were used in this
study, thus affecting the ability of the suggested lipoprotein subfractions to differentiate
between healthy and diseased individuals. Lastly, it is important to acknowledge that
certain confounding factors that could potentially influence the lipoprotein profile, such as
smoking, BMI, type 2 diabetes, cardiovascular disease, and dietary supplementation, have
not been considered in this study. It should be noted, however, that all the routine blood
samples were within reference intervals (including glucose and LDL- and HDL-cholesterol
and triglycerides) and not different between the AD and the control groups. Given these
limitations, our findings should be interpreted with caution. The observed differences
in lipoprotein profiles between AD patients and controls may be partially influenced by
these unaccounted factors, rather than solely by AD pathology. Further research is needed
to disentangle the effects on lipoprotein profiles of AD from those of other health and
lifestyle factors.
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Overall, our research improves upon the understanding of AD by highlighting several
key aspects: Firstly, it underscores the significant role of lipid metabolism in AD pathol-
ogy, aligning with the broader recognition of metabolic dysfunction in neurodegenerative
disorders. Secondly, our findings support the development of blood-based biomarkers
for AD. Lastly, by integrating lipoprotein profiles with established biomarkers such as
Aβ and tau, we offer a more comprehensive approach to understanding AD pathology,
which may enhance diagnostic precision. These insights pave the way for further explo-
ration into the intricate relationships between lipid metabolism, neuroinflammation, and
neurodegeneration in AD.

4. Materials and Methods
4.1. Characteristics of Study Participants

For this study, 25 patients diagnosed with mild to moderate AD and 25 healthy
controls were enrolled. All subjects were Caucasian. Recruitment was performed consec-
utively at the time of diagnosis for the patients ( ≥65 years) and prior to starting their
treatment regimen at the Department of Neurology, Aalborg University Hospital. The
patient diagnosis was based on the following criteria: the International Classification of
Diseases and Related Health Problems 10th Edition (ICD10) [37], and the National Institute
of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease
and Related Disorders Association (NINCDS-ADRDA) [38]. Neurocognitive examinations
comprised a MMSE, ACE, and a FAQ. Aβ, p-tau, and t-tau were measured in CSF using
Innotest® β-Amyloid(1–42) (Innotest®, Triolab, Brøndby, Denmark), Innotest® Phospho-tau
(181P) (Innotest®, Triolab, Brøndby, Denmark), and Innotest® hTau Ag (Innotest®, Trio-
lab, Brøndby, Denmark), respectively, and according to the manufacturer’s instructions.
Measurements of CSF and cognitive tests were included when deemed necessary due to
diagnostic uncertainty. Exclusion criteria included other forms of dementia or neurological
diseases, as well as severe psychiatric disorders. As a control group for comparison with
AD patients, age- and sex-related donors were recruited from the blood bank of Aalborg
University Hospital. Inclusion criteria for blood donors required them to be ≥65 years old
and to complete a standard blood bank questionnaire describing their physical and mental
health, such as experiencing memory impairment, fatigue, and chest pain. Exclusion crite-
ria included other forms of dementia or neurological diseases, as well as severe psychiatric
disorders. All participants signed a written consent form before inclusion in the study. The
study was approved by the local North Denmark Region Committee on Health Research
Ethics (N-20150010) and conducted according to the Declaration of Helsinki.

In addition to diagnostic data, routine analyses and markers of neurodegeneration
were added to examine possible co-morbidities and characteristics of participants. Briefly,
markers of organ function included: alanine transaminase, albumin (Bromocresol Green),
cholesterol, creatinine (enzymatic method), C-reactive protein, glucose, HDL, LDL, LDH,
triglyceride, and urea, measured using the Alinity c system with dedicated reagents (Abbott,
Chicago, IL, USA) [39]. More information on the methods can be obtained from General
Chemistry|Core Laboratory at Abbott. Haemoglobin was measured either using the Hb 201
DM (Hemocue AB, Ängelholm, Sweden) or the XN-9000 (Sysmex Europe SE, Norderstedt,
Germany) in accordance with the manufacturer’s instructions. Lastly, levels of markers for
neurodegeneration included Aβ40, Aβ42, GFAP, Nf-L, and p-tau181 and were measured by
SIMOA® HD-X Analyzer using the commercially available kits, Neurology 4-Plex E and
P-Tau181 (Quanterix©, Billerica, MA, USA), according to the manufacturer’s instructions.
A flowchart of the methods used can be seen in Figure 4.
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Figure 4. Flowchart of the methods and statistical analysis included. Abbreviations: 1H NMR—Proton
nuclear magnetic resonance, Aβ—Amyloid-β, ACE—Addenbrooke’s Cognitive Examination,
AD—Alzheimer’s disease, ALAT—Alanine transaminase, Con–Healthy control, CRP—C-reactive
protein, CSF—Cerebrospinal fluid, EDTA—Ethylenediaminetetraacetic acid, FAQ—Functional Activ-
ities Questionnaire, GFAP—Glial fibrillary protein, HDL—High-density lipoprotein, LDH—Lactate
dehydrogenase, LDL—Low-density lipoprotein, MMSE—Mini-Mental State Examination,
Nf-L—Neurofilament light, p-tau—Phospho-tau, ROC—Receiver operating characteristic,
SIMOA—Single molecule array, t-tau—Total-tau.

4.2. Collection and Processing of Blood Samples

Collection of blood samples and post-processing were performed as previously de-
scribed [40]. Briefly, a 21-gauge needle was used to draw blood from the median cubital
vein into 10 mL clot activator tubes (BD Vacutainer, UK) and 4 mL ethylenediaminete-
traacetic acid (EDTA) tubes. The collected samples were centrifuged twice at 2500× g for
15 min at room temperature to acquire serum and plasma samples. After centrifugations,
samples were aspirated to approximately 1 cm above the buffy coat or pellet, aliquoted,
snap-frozen using liquid nitrogen, and stored at −80 ◦C until further analyses. EDTA
plasma was used for the analysis of markers of neurodegeneration by SIMOA, and serum
was used for NMR spectroscopy and routine analysis of biochemical parameters.

4.3. Nuclear Magnetic Resonance Spectroscopy
1H-NMR spectroscopy was performed as previously described [25]. Briefly, serum

samples were thawed for 1 h, carefully diluted at 1:1 dilution with sodium phosphate
buffer (0.075 M, pH 7.4, 20% D2O in H2O, 6 mM NaN3, 4.6 mM 3-(trimethylsilyl)-2,2,3,3-
tetradeuteropropanoic acid (TSP-d4)), and aliquoted into 5 mm NMR tubes. Spectra were
recorded with a Bruker Avance Neo 600 MHz spectrometer attached to a BBI probe (Bruker
Biospin GmbH, Rheinstetten, Germany). An IconNMR (Topspin 4.1.1, Bruker Biospin
GmbH, Rheinstetten, Germany) and a Samplejet autosampler (Bruker Biospin GmbH,
Rheinstetten, Germany) were used for handling samples and acquisition of data. Using
acquisition parameters from Dona et al. [41], one-dimensional nuclear Overhauser effect
(1D-NOESY) spectra were recorded at 310 K using a total of 96k data points, 30 ppm
spectral width, 32 scans, and water suppression (25 Hz) during relaxation delay (4 s),
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and mixing time (10 ms). Fourier transformation was applied on free induction decays
after artificial zero fillings up to 128k data points and 0.3 Hz line broadening. B.I. Meth-
ods (Bruker Biospin GmbH, Rheinstetten, Germany) reference samples were routinely
measured and processed in automation for temperature calibration, water suppression de-
termination, and external quantitative referencing, in accordance with the manufacturer’s
recommendations. B.I.LISATM (Bruker Biospin GmbH, Rheinstetten, Germany) was used to
automatically quantify lipoprotein subfractions. The subfractions are numbered according
to increasing density.

4.4. Data Analysis

Extensive lipoprotein profiling was performed using 1H-NMR. The analysis revealed
distinguished lipoprotein subclasses for cognitively affected patients, based on a total
profile of 112 lipoprotein subfractions. Lipoprotein values were corrected for age and
sex using generalized additive models. Normal distributions of data and residuals were
assessed by the Shapiro–Wilk test. Comparisons between groups were performed using
a Mann–Whitney U test with a significance level of p < 0.05 for both unadjusted and
adjusted values. Data were presented as mean with SD. Correlations between adjusted
lipoprotein concentrations and clinical parameters were investigated using Spearman’s ρ.
ROC curves were created for adjusted lipoproteins of interest and are presented with an AUC
with 95% confidence interval (CI) and p-value. R version 4.2.2 was used for data analysis and
graphical visualization. The raw NMR lipoprotein data and biochemical data can be accessed
in Supplementary Material Table S1 and Supplementary Material Table S2, respectively.

5. Conclusions

In conclusion, our study makes a significant contribution to the understanding of
lipoprotein changes in AD, particularly emphasizing the role of certain lipoprotein subfrac-
tions, such as those within the HDL group like H1A2 and H2A2. However, the need for
further validation in larger, more diverse patient cohorts is imperative to fully ascertain the
diagnostic value of these lipoprotein subfractions. This study establishes a strong founda-
tion for future investigations and accentuates the importance of exploring lipoproteins as
potential blood-based biomarkers in the area of neurodegenerative diseases.
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