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Grammar rules and exceptions for the language
of transcriptional activation domains

David G. Cooper,1 Tamara Y. Erkina,1 Bradley K. Broyles,1 Caleb A. Class,1 and Alexandre M. Erkine1,2,*
SUMMARY

Transcriptional activation domains (ADs) of gene activators have remained enigmatic for decades as short,
extremely variable, and structurally disordered sequences. Using a rational design and high throughput
in vivo experimentation, we determine the grammar rules and exceptions for the language of ADs. Ac-
cording to identified rules, billions of highly active ADs can be composed of balanced amounts of
acidic/aromatic amino acids, with either mixed composition of aromatic residues, or using only one aro-
matic residue mixed with acidic residues. However, equally active sequences can be composed of only
aliphatic leucine and aspartic acid residues. Themuch rarer LD exceptions have a higher ratio of hydropho-
bic/acidic balance and display a specific LDL(L/D)DLL motif. For aromatic/acidic Ads, the intermixing of
proline residues in context of amphipathic a-helix structures significantly increases the AD activity. The
identified grammar rules and exceptions are interpreted in application to the biochemistry of AD function
and eukaryotic gene expression.

INTRODUCTION

Transcriptional activation domains (ADs) of gene activators are the key molecules determining activation and expression levels of eukaryotic

genes. ADs have remained enigmatic for decades as extremely variable short sequences, which are usually intrinsically disordered, and

interact with an uncertain number of potential targets during transcription activation. Alongwith other intrinsically disordered protein regions

(IDRs), ADs are critical for the transcriptional dynamics and associated phase transitions during liquid-liquid phase separation.1 Solving the

long standing riddle of AD sequences remains an important goal of molecular biology,2 and understanding the language of AD sequences is

an important step in solving the enigma.

It was suggested previously3,4 and confirmed5 that AD sequences usually follow certain general rules: absence of basic residues, presence

of acidic and hydrophobic (mostly aromatic) residues, balance between acidic and hydrophobic residues, minimal formation of homo-amino

acid clusters by acidic or hydrophobic residues, and preferential terminal location for hydrophobic residues and internal locationwithin AD for

acidic residues. Machine learning analyses of AD sequences selected in vivo to function within the Gcn4 and HSF contexts in yeast showed

that the preference for aromatic residues is W > F > Y and for acidic residues D > E. This preference was consistent with findings of several

publications.6,7 It was shown further that for in vivo AD activity it is sufficient to have only aromatic and acidic residues,4 including hundreds of

sequences composed entirely from Ws and Ds.8

To clarify features and properties of ADs, in addition to confirming the high functionality of the combinations containing only Ws and

Ds, we explored if it is possible to have active in vivo AD sequences comprised entirely from F and D, Y and D, or L and D residues. We

asked if aromatic residues are exclusively important for AD activity, or if the acidic-aliphatic amino acid combinations can also form active

ADs. In addition, we investigated the impact of mixing aromatic residues in comparison to sequences having only one specific hydropho-

bic residue in combinations with acidic residues. We showed that hundreds of active ADs can be constructed from either: acidic residues

intermixed with a variety of combinations of W, F, Y, and L residues, or acidic residues paired with only W, F, or L, but not Y residues. In

addition, we found that while the acidic-aromatic requirement for functional ADs generally dominates, it is possible to have short highly

active sequences comprised entirely from Ls and Ds. Importantly, the functional LD sequences, unlike sequences with aromatic residues,

have a specific LDL(D/L)DLL mini-motif. Based on our results we formulate specific grammar rules the AD sequences follow and analyze

exceptions to these rules.
RESULTS
Experimental setup

The experimental setup was adopted from the our previous analysis of AD sequences containing all possible combinations of W and D

for all positions for a stretch up to 12 positions8 and described in details in the STAR Methods section. Briefly, thousands of individual
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Figure 1. Experimental setup and controls

(A) Experimental setup: oligo pool synthesis, followed by cloning in bacteria, then isolation of plasmid library and transformation in yeast, followed by screening

for growth phenotype determined by expression of the reporter gene regulated by the activator with a specific AD, then isolation of DNA pool, NGS sequencing,

and data analysis. For more details see STAR Methods section and.8.

(B) Raw (not normalized to null sequences) data for three inactive (top) and three active (bottom) sequences. X axis: time of cell growth on themedium containing

Aureobasidin (days). Y axis: CPM(Log2) normalized to 0 time point. Each dot represents the value for an individual biorep barcode (see STAR Methods).

(C) Library internal controls. X axis: null sequences and previously characterized individual sequences; Y axis: growth slope for cells carrying the individual

sequences. Error bars defined as mean +/� two standard deviations normalized to 0 time point and to null sequences.

(D) Internal controls functional reproducibility. X axis: slope value for individual sequences in HSF1 library4; Y axis: normalized slope value for individual sequences

in current Gal4 library. Banded region around regression line indicates 95% confidence interval of slope.

(E)W andD residue containing control AD sequences functional reproducibility; X axis: slope value for individual sequences in previousWDdesign library8; Y axis:

same as in C. Banded region around regression line indicates 95% confidence interval of slope.
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nucleotide sequences (Figure 1A) were parallel-synthesized and cloned into a previously constructed8 yeast centromeric parental shuttle

vector in which the library sequences were fused individually to the Gal4 DNA-binding domain sequence. The resulting plasmid library

was transformed into the yeast Y2HGold strain, where the individual Gal4 hybrid activator proteins were expressed and screened for

functionality as ADs driving the expression of the Gal-Aureobasidin antibiotic resistance reporter gene (Figure 1A). The library DNA

for different growth time points was isolated and sequenced to determine the number of reads for each individual sequence and its

change over time. The growth slope for each sequence was calculated and served as a measure of the AD functionality. Since the results

were obtained within the scope of the whole library pool screening, the results for individual sequences and for all different sequence

sets can be considered to be obtained under identical experimental conditions and thus to be accurately comparable. In addition, each

sequence was labeled by multiple individual barcodes; thus, the results for each individual sequence are the mean of multiple (typically

five) independent experimental repeats (Figure 1B). Counts for each barcode were first normalized to 0 time point (Figure 1B), and then

normalized to the slope of null (stop codon) sequences (see STAR Methods for details). As a part of the library, we used the sequences

of known AD regions, such as Gal4(840–857), Gal4(860–872) and VP16 sequences,9,10 as internal positive controls (Figure 1C). As nega-

tive controls, we used null sequences that contained a stop codon after the DBD. To ensure the high stringency, the cutoff for a ‘‘func-

tional AD’’ was defined as a growth slope two standard deviations above the mean of 97 individual stop codon-null sequences (see

STAR Methods).

To test the reproducibility of our assay, we compared the slopes for individual control sequences in our current study and previously pub-

lished results4 and see good correlation (Figure 1C, Spearman’s rho = 0.718). In addition, we similarly looked at the correlation of other se-

quences which are shared between the library of the current study and the independent library analyzed previously.8 The results show an

excellent correlation (Figures 1D and 1E Spearman’s rho = 0.944) indicating reproducibility of this assay across experiments.
2 iScience 27, 111057, November 15, 2024



Figure 2. Functionality of balanced acidic/hydrophobic sequences in different arrangement contexts

(A) Functionality of dipeptide repeats with an aspartic acidic (D) residue in the first position of the dipeptide. Two dipeptide templates: 8 repeats (dotted borders)

and 10 repeats (solid borders). X axis: individual amino acid used in X positions (blue – basic, red – acidic, green – hydrophilic neutral, yellow/orange hydrophobic,

pink – others); Y axis: growth slope of cells carrying the individual sequences.

(B–G) Functionality of sequences with only one type of hydrophobic residue (W, F, L, or Y) within three sequence templates: flanked template (DDDXXXXXDD,

panel B), intermixed template (DXDXDXDXDX, panel C), and amphipathic helix template (XGDGXGDGXGDGXGDGXGDG, panel D). Axes same as in A. (E–G)

Distributions of AD activities of mixed amino acids (W, F, L, and Y) within five X positions in each sequence template: flanked template (panel E), intermixed

template (panel F), and amphipathic helix template (panel G) (1024 individual sequences for each template). X axis: template used; Y axis: same as in A.

Values above violin plots indicate percentage of functional sequences within each template dataset. Blue bar indicates the average growth slope for

sequences above the 0 threshold. Inset sequence logos depict proportion of each amino acid at each position, for the top 5% (top) and bottom 5% (bottom)

of sequences for each template dataset.
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Functional ADs can be composed of varying combinations of W, F, Y, or L residues balanced with D residues

Since it was shown previously that simple repetition of the WD dipeptide is sufficient to create highly active in vivo ADs,4,8 we asked if other

dipeptide combinations could also be active, testing monotonous di-peptide repeats of 8 or 10 amino acids pairs composed from D and

another one of 20 amino acid residues. Confirming previous observations,4,8 the di-amino acid peptides containing D and W, or D and F

had the highest functionality scores (Figure 2A). Additional activity was observed for the L and aminor activity for T containing peptides. Since

previous reports repeatedly highlighted the importance of aromatic residues and Ls,3,7,11 we focused on W, F, Y and L residues balancing

them with D residues, asking if each individual hydrophobic residue alone or in combinations with other hydrophobic residues could create

an in vivo functional AD.
iScience 27, 111057, November 15, 2024 3
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We decided to test three different sequence templates each with balanced amounts of acidic and hydrophobic amino acids: flanked

(DDDXXXXXDD), intermixed (DXDXDXDXDX), or an amphipathic helix (XGDGXGDGXGDGXGDGXGDG) indicated below as (XGDG)5,

where Xs wereW, F, Y, or L amino acids. The rationale behind template choices was that (i) the flanked template with all Xs asWs, as previously

shown8 and Figure 1E, produces the ADwith one of the highest activity among thousands identified, (ii) the intermixed template Figure 1E is a

simple balanced hydrophobic-acidic template which also was previously reported producing in vivo active ADs,3,4,8 while (iii) the amphipathic

helix template sequence with hydrophobic Xs, if folded into a canonical a-helix, always creates a short amphipathic helix segment that was

repeatedly reported to be important for functionality of ADs.7,12–14

When we used individual W, F, Y, or L amino acids for all X positions within the flanked template context (Figure 2B), only tryptophan

produced an in vivo active AD, which is consistent with the previous report.8 For the intermixed template (Figure 2C) both Ws and Fs were

able to create in vivo active AD, with slightly higher activity level for Fs over Ws, while Ls and Ys did not produce activity in this context. The

amphipathic a-helix template (Figure 2D) did not have ADs with a significant activity level for any of four individual W, F, Y, or L amino

acids.

To determine the effect of mixing different hydrophobic amino acids within an AD, which is more typical for natural ADs, we created a

library with all combinations of W, F, Y, and L across five X positions, which amounts to 1024 sequence variants for each template: flanked

(Figure 2E), intermixed (Figure 2F), and amphipathic helix (Figure 2G). For the flanked template 47.2% (483/1024) of sequence variants

were above the threshold for functionality, for the intermixed template 57.4% (587/1023) of sequences are functional, while for the amphi-

pathic helix template only 16.2% (166/1024) of sequences were above the threshold. The average slope of functional sequences is 2.2 for

the flanked template, 1.6 for the intermixed template, and only 0.5 for the amphipathic helix template. For all three templates the highest

functionality was recorded for sequences containing a mixture of different hydrophobic residues especially in the context of the flanked

and intermixed templates (Figures 2E and 2F) in comparison to sequences containing only one hydrophobic residue for all X positions

(Figures 2B–2D). If templates are compared to each other (Figures 2E–2G), the flanked template produced sequences with highest activity,

while the intermixed template produced the highest number of active ADs.

The number of each specific hydrophobic residue in the sequence affects AD activity differently. Generally, an increase in the number

of Ws is beneficial regardless of template (Figure S1A), whereas for Fs this trend is only observed for the intermixed template (Fig-

ure S1B). However, while Ls and Ys can be present in highly active ADs, an increased number of L residues is not necessarily beneficial

(Figure S1C), and for Y it is detrimental (Figure S1D). These trends are consistent with the previous ML analysis of the unbiased random

sequence AD libraries3,7 showing the W > F > Y preference among aromatics and a mild near-neutral effect of L residues within tens of

thousands of analyzed active ADs. Analyzing the effects of positions for a specific hydrophobic residue in different templates, we

observe that functional sequences with the flanked template often have L or F residues present at the most C-terminal position

(Figure S1E).

The compositional analysis of mixed sequences revealed that instead of one specific composition, a diverse set of compositions ofW, F, Y,

and L residues produce functional ADs across these three sequence templates (Table S1). These functional compositions, with 5–60 possible

sequence arrangements each, often have high functionality. In general, W and F residues contribute most to function across all three tem-

plates, L residues are less common than W or F across functional sequences, and Y residues are rarely present in functional sequences.

The flanked template is most functional when enriched inW residues. The intermixed template is most functional when enriched in F residues.

The amphipathic template is most functional when depleted of L and Y residues.

To uncover any residue position preferences among functional sequences, we calculated the proportion of each residue at each position

among themost functional (top 5%) for each set of sequences. The outcomes summarized in Figure 2E (sequence logos), indicate that for the

flanked template there is some preference for Ws toward the N-terminus of the active sequences and some preference for Ls more internally.

For the intermixed template (Figure 2F) there is some preference for Fs overWs and evenmore so over Ls. For the amphipathic helix template

(Figure 2G) there is a preference for Ws over Fs, which both dominate over Ls. The only position where L is preferred is toward the N-terminus

of AD. The investigation of non-functional sequences (bottom 5%) suggests that Y is significantly enriched and generally is detrimental for AD

functionality. Overall, theminimotif analysis performed using the above approaches, as well as SlimFinder,15,16 andMEME suite,17,18 indicates

that a wide variety of short sequences containing balanced acidic/hydrophobic composition can function in vivo as ADs with no specific mini-

motif dominating any of tested libraries. The non-functional sequences also do not contain any specific minimotif.

In summary

we analyzed a total of 3071 sequences with W, F, Y, L amino acid sequences balanced with an equal number of Ds using three templates and

found 40% (1236/3071) of sequences above the functionality threshold in the context of our assay. Within functional sequences for each tem-

plate, we found that a wide variety of different sequences can function as an active in vivo AD with varying levels of activity. The active AD

sequences similar to previous observations4,7,11 do not have any specific dominant minimotifs, but instead have a wide variety of functional

sequence compositions.

The presence of proline significantly increases the functionality of sequences as ADs in the context of an amphipathic helix

template

The outcomes for the amphipathic helix template analyses (Figure 2G) indicating extremely low functionality of this template are in

slight disagreement with a previous report8 demonstrating that similar amphipathic helix-forming template generated 19.6%
4 iScience 27, 111057, November 15, 2024



Figure 3. The presence of proline significantly increases the functionality of sequences as ADs in the context of amphipathic helix template

(A) Functionality of sequences with the amphipathic helix template (WXDXWXDXWXDXWXDXWXDX) where X in all positions represents one of the 20 amino

acids. X axis: individual amino acids; Y axis: growth slope of cells carrying the individual sequences.

(B) a-helix predictions for each individual sequence. X axis: helicity probability predicted using Agadir19; Y axis: same as in A.

(C) Effect of number of proline residues in the G-amphipathic helix template (WGDGWGDGWGDGWDGDWGDG). X axis: number of proline residues within the

sequence replacing glycine residues. Y axis: same as in A.

(D) Effect of position of proline residues in the G-amphipathic helix template. X axis: average position of proline residues, the actual position for sequences with a

single proline residue or the average for sequences with two or three proline residues. Y axis: same as in A. Banded region around regression line indicates 95%

confidence interval of slope.
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(21,163/107,975) of functional sequences. The difference between templates, however, is that in the previous study the analyzed tem-

plate was WXDXWXDXWXDXWXDXWXDX designed to determine what X amino acids could facilitate or hinder the activity, while in the

current study the analyzed amphipathic template (XGDG)5 was XGDGXGDGXGDGXGDGXGDG designed to determine what combina-

tions of hydrophobic amino acids are conducive for the AD activity within the amphipathic helix context. Using the glycine in current

study is justified by the fact that it was shown previously as being neutral for AD activity.3 However, glycine residues are also known as

helix destabilizers, thus could contribute to the low yield of AD functional sequences in the (XGDG)5 template. To test the effect of the

helix formation for this template we tested all individual amino acids instead of glycine. The outcomes (Figure 3) indicate that although

some amino acids are predicted to stabilize the hydrophobic/acidic amphipathic helix, especially L, M, and W (Figure 3B) the only

amino acid that created significant AD activity was P - the known a-helix breaker (Figure 3A). The level of activity in this context evidently

correlates with the number of Ps used in this template (Figure 3C, Spearman’s rho = 0.466), with a slight trend for Ps being more ad-

vantageous for the N-terminus of the sequence (Figure 3D). As in previous study,8 these results suggest that breaking the amphipathic

hydrophobic/acidic helix and thus preventing aromatic residues residing on one side of the helix from interacting with each other is

beneficial for AD activity in vivo.
Robust in vivo AD activity displayed by sequences with only a single type of hydrophobic residue balanced with aspartic

acid

Our results and previous investigations8 showed that sequences containing only Ws (Figures 2B and 2C) or Fs (Figure 2C) balanced with

acidic residues can create ADs functional in vivo. We wanted to investigate if different combinations of Ws, Fs, Ys, or Ls alone balanced with

Ds can create functional ADs in vivo and how numerous those combinations can be. Evidently (Figure 4A) and consistent with previously
iScience 27, 111057, November 15, 2024 5



Figure 4. Robust in vivo AD activity displayed by sequences with only a single type of hydrophobic residue balanced with aspartic acid

(A–D) Distributions of AD activities for sequences containing all combinations across ten positions of D withW (WD10, panel A), F (FD10, panel B), L (LD10, panel C),

or Y (YD10, panel D) (1024 individual sequences for each dataset). X axis: dataset used; Y axis: growth slope of cells carrying the corresponding sequences. Values

above violin plots indicate percentage of functional sequences within each dataset. Blue bar indicates the average growth slope for sequences above the

0 threshold. Inset sequence logos depict proportion of each amino acid at each position, for the top 5% (top) andbottom5% (bottom) of sequences for eachdataset.

(E–G) Effect of number of hydrophobic residues forWD10 (panel E), FD10 (panel F), and LD10 (panel G) AD sequences. X axis: number ofW, F, or L residues. Y axis

same as in A. Values above boxplots indicate percentage of functional sequences within each data subset.

(H–J) Effect of position of hydrophobic (W, F, or L) andD residues forWD10 (panel H), FD10 (panel I), and LD10 (panel J) AD sequences. X axis: position of residues

within the 10 positions of the sequences. Y axis: percent of cells carrying the corresponding sequences that have a growth slope above the functionality threshold.

Horizontal lines correspond to the overall percent functionality of each template dataset.

(K–M) Effect of hydrophobic clusters for WD10 (panel K), FD10 (panel L), and LD10 (panel M) AD sequences. X axis: Patterning parameter20 where small values

correspond to fewer clusters of the same residue (see STAR Methods). Y axis: same as in A.
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published results,8 34.3% of sequences in theWD10 set containing combinations of Ws and Ds for 10 positions (350/1021 sequences) are

above the functionality threshold, 35.5% (363/1022 sequences, FD10 set) are functional if all Ws are replaced with Fs (Figure 4B), and 22%

(225/1023 sequences, LD10 set) are functional if Ls are the only hydrophobics (Figure 4C), while only 0.8% (8/997 sequences, YD10 set) are

barely above the threshold for D and Y combinations (Figure 4D).

The existence of a significant number of functional L and D combinations is especially interesting because the machine learning (ML) anal-

ysis of large unbiased random sequence pools (106-105 sequences) screened for functional ADs in vivo3 showed only minor importance of Ls

for AD functionality, and L-rich regions in transcriptional activator IDRs are often not considered as ADs7,12,21 ormore specific to humanADs.11

Even though LD combinations created fewer functional ADs than the WD and FD combinations (Figures 4A–4C), the LD combinations pro-

duced sequences with the highest overall functionality (Figure 4C). The compositional (Figures 4E–4G), positional (Figures 4I–4J), and amino

acid clustering analyses (Figures 4K–4M) of functional WD10, FD10, and LD10 combinations revealed that all three sequence sets follow three
6 iScience 27, 111057, November 15, 2024
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previously reported3 sequence rules: maintaining the general balance between hydrophobic and acidic residues within each individual func-

tional AD sequence (Figures 4E–4G), preferred C-terminal location of hydrophobic and internal location of acidic residues (Figures 4H–4J),

and avoiding homo-amino acid clusters (Figures 4K–4M). For functional sequences, the average balance betweenDs andWs is 5.42 within the

10 amino acid stretch (slightly higher W presence) (Figure 4E), and 5.23 for Fs and Ds (Figure 4F), while for Ls and Ds it is 5.75 which is shifted

toward excess of Ls (Figure 4G) making sequences with six Ls and four Ds the dominant functionality cohort among the LD10 combinations.

We next tested the frequency of a specific amino acid for each of ten positions for the most functional sequences (top 5%) and non-func-

tional sequences (bottom 5%) (Figures 4A–4C, sequence logos). It is evident that for the WD10 and FD10 sets, there is a similar probability

between hydrophobic and acidic residues for each position in the sequence with some preference of hydrophobic residues for the

C-terminus, which is consistent with the positional analysis (Figures 4H–4J). Tested for sensitivity to the mono amino acid cluster formation

(Figures 4K–4M) it is evident that in all three datasets the ADs had greater functionality if hydrophobic or acidic residues were not clustered

(high patterning parameter value)20 but instead evenly intermixed (low patterning parameter value).

To identify mini-motifs enriched in the functional sequences in each dataset, we determined the average slope of sequences that contain

all possible progressively longer combinations of amino acids (Figure S2). The mini-motif search within each of the WD10, FD10 and LD10

sequence sets revealed that there were no clearminimotifs enriched in functionality inWD10 and FD10 sets; however, the LD10 set has a small

number of functionally enriched minimotifs, especially for the 7 amino acid long window, with LDLDDLL noticeably enriched in functional se-

quences (Figure S2). The FD10 set has the greatest diversity of functional sequences with 46.9% of 7 amino acid long sequences having

a functional average growth slope while the LD10 set has the least diversity of functional sequences with only 28.1% of 7 amino acid long

sequences having a functional average growth slope.

Highest activity LD10 AD sequences have an LDL(D/L)DLL motif with an important LDDLL core sequence

Because the top functional LD10 sequences have especially high functionality value, we extended the motif search analysis for these se-

quences. To test if active AD sequences have any Short Linear Motifs (SLiMs), we used the MEME motif discovery tool17,18. The motif search

confirmed the findings for the LD10 set, identifying the SLiM LDL(D/L)DLL with very low E-value (4.2x10�8) (Figure 5A). In fact, among the top

functional 5% of sequences 20 out of 52 sequences contained the LDLDDLL sequence, and 12 out of 52 sequences contained the LDLLDLL

sequence. When we applied the same approach for the WD10 and FD10 sets, no motifs had significant E-values.

We then checked the importance of each specific position within the LDL(D/L)DLL sequence. By selecting within the LD10 set the se-

quences containing the LDL(D/L)DLL stretch with only one amino acid in a specific position deviating from the consensus and calculating

the average functionality score for each subset, we see that the most important core of the sequence is L(D/L)DLL with LDDLL being the

more common sequence (28 out of 50 functional sequences containing the LDL(D/L)DLL motif) (Figure 5A). An important quality of the

LDL(D/L)DLL is that if it is inversed to LL(D/L)LDL it loses much of its functionality (Figures 5B and 5C). Similarly, sequences are inactive

when the positions of only two letters within the LDDLL core are reversed, i.e., for the top functional sequence: LLDLDLDDLL (slope =

6.70) vs. LLDLDLDLDL (slope = �0.984) or second top functional sequence: DLLDLDDLLL (slope = 6.40) vs. DLLDLDLDLL (slope = 0.067).

The effect of sequence inversion was tested for all functional WD10 FD10 and LD10 sequences in each set. Generally, the disruptive effect

is clearly seen for the LD10 andWD10 sequences, but the FD10 sequences were significantly more tolerant to the inversions, which correlates

with the functional sequences in the FD10 set being the most variable for specific sequence motifs.

Sequences containing the L(D/L)DLL core still varied in activity. To test what factors are affecting the activity level of LD10 set sequences,

we tested if in addition to the presence of the motif, they also follow the rules we formulated before3 and confirmed in Figure 4. It is evident

that sequences containing the core L(D/L)DLL motif generally are more functional if the amount of the acidic and hydrophobic residues is

balanced and quickly lose activity with excess of either acidic or hydrophobic residues (Figure 5E). The activity level is also correlated with

the proximity of hydrophobics toward the C-terminus of the molecule (Figure 5F). Notice, that the bump for the middle positions for Ds is

likely the result of Ds being in themiddle of the LDL(D/L)DLLmotif. The presence of L-clusters in addition to the L(D/L)DLL core also negatively

affected the level of activity (Figure 5G). Notice, the functional exceptions containing a relatively high clustering score all have balanced L/D

content and the presence of the LDL(D/L)DLL motif.

Presence of positively charged residues negatively affects AD functionality

Another rule that was obvious from the previousML analysis of the randompool sequences3 was the requirement for the absence of positively

charged residues: R, K, and to a lesser degree H. We checked how sequences containing an otherwise active AD module (e.g.,

GGGGGDDDWWWWWDDGGGGG) are affected by presence of R residues, the most positively charged amino acid. Evidently (Figure 6A,

Spearman’s rho =�0.755), presence of only one R replacing a G within varying positions significantly reduced the AD activity, two Rs in many

cases reduced the AD activity closer to the threshold, while most of the sequences containing 3Rs in different positions eliminated the AD

activity entirely. The position of the positively charged residues within the sequence correlated with the greatest negative effect at the

N-terminus of the sequence (Figure 6B, R2 for 2 R residues = 0.58), and the AD activity was sensitive to clustering of Rs (Figure 6C).

Algorithms trained/designed on natural AD sequences are not accurate and often overpredict the functionality of

‘‘synthetIC’’ ADs.

Since we used designed sequences in our libraries, which might not necessarily be present in natural gene activators, and because recent ML

models were developed by training on natural AD sequences, we wanted to see how well these ML models predict the functionality of our
iScience 27, 111057, November 15, 2024 7



Figure 5. Highest activity LD1AD 0 sequences have an LDL(D/L)DLL motif with an important LDDLL core sequence

(A) LDL(D/L)DLL motif (inset sequence logo) identified using the MEME motif discovery tool17 in 40 of the top 50 functional LD10 sequences. Activities of

sequences containing a single amino acid variation within the LDL(D/L)DLL motif. X axis: sequence variants (substituted residue underlined). Y axis: growth

slope of cells carrying the corresponding sequences.

(B) Activity discrimination of the LDL(D/L)DLL motif. X axis: presence or absence of the motif in the sequence. Y axis: same as in A.

(C) Activity discrimination of the inversed LLD(L/D)LDL motif. Axes: same as in A.

(D) Effect of position of the L(D/L)DLL core motif within the sequence. X axis: distance of motif from the N-terminus of the AD (color coded) within sequences

containing LDDLL or LLDLL. Y axis: same as in A.

(E) Effect of number of L residues for sequences with the L(D/L)DLL core motif within the sequence. X axis: number of L residues (color coded) within sequences

containing LDDLL or LLDLL motif. Y axis: same as in A.

(F) Effect of position of L and D residues for sequences with the L(D/L)DLL core motif (either LDDLL or LLDLL present) within the sequence. X axis: position of

residues within the 10 positions of the sequences. Y axis: percent of cells carrying the corresponding sequences with a growth slope above the functionality

threshold. Horizontal line corresponds to overall percent functionality of the L(D/L)DLL core motif containing sequences.

(G) Effect of hydrophobic clusters for sequences with the L(D/L)DLL coremotif (either LDDLL or LLDLL present) within the sequence X axis: Patterning parameter20

where small values correspond to fewer clusters of same residue (see STAR Methods). Y axis: same as in A.
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‘‘synthetic’’ ADs. We used the most comprehensive to date PADDLE model trained on AD sequences from all 162 yeast (S. cerevisiae S288C)

transcription factors, broken into over 10,000 fragments.12 This model was demonstrated to have an accuracy of 92%12 for prediction of ADs in

human activators. In addition, we compared the results of PADDLEpredictionwith the predictionsmadeby theAttentionADmodel22 trainedon

an unbiased large (>10^6) set of random sequences screened for AD activity in vivo in the context of Gcn4 DBD.7 The Attention ADmodel is an

improved modification of the ADpred model7 which has high AUC 0.98 when tested on the fraction of the dataset not used for training.

Applying PADDLEmodel to our current datasets (Figure 7 panels A, B, C andG, H, I, J) we see that the AUC value varies between 0.58 and

0.92 depending on the dataset. TheAttentionADmodel (Figures 7, panels D, E, F, and K, L,M,N) has AUC values of 0.57–0.87, which is slightly

lower consistently for all datasets. However, the Attention AD model has greater overall accuracy (Acc) in all datasets except for LD10. When

we look at the correlation between the predictions made by models (X axes) and the in vivo functionality scores (Y axes) we see that PADDLE

tends to overpredict (most of values are in the right two quadrants), with stark example of the flanked template (panel A) where all sequences

are predicted to be functional, while in vivo �50% are not functional. A similar trend is observed for the intermixed template (panel B), while

amphipathic template sequences (panel C) with the highest accuracy were predicted to be mostly inactive ADs. A similar trend of overpre-

diction is observed (panels G, H, I, J) for the WD10, FD10, LD10 (with lesser degree), and for YD10 (mostly inactive sequences) datasets. As a

comparison to the PADDLE model the Attention AD model, in addition to having lower AUC values, appears to make random mistakes in

some cases, with wider distribution of values for all four quadrants (panels D, E, F, and K, L, M, N).

Another recently developed tool for prediction of AD functionality for a sequence is a mechanistic predictor based essentially on the

composition of the sequence.6 It accurately predicted nonfunctional sequences (Figure 7, panel O, dotted lighter color violins), but has

poor prediction with 53%–18% accuracy depending on the dataset. The likely reason for the poor performance of the mechanistic predictor

is that it is based primarily on composition, counting charged (D, E) and hydrophobic residues (W, F, Y, L) and does not consider other rules.
8 iScience 27, 111057, November 15, 2024



Figure 6. Presence of positively charged residues negatively affects AD functionality

(A) Effect of number of arginine residues in the flanked template (GGGGGDDDWWWWWDDGGGGG) with R residues replacing G residues. X axis: number of

arginine residues within the sequence. Y axis: growth slope of cells carrying the corresponding sequences.

(B) Effect of position of arginine residues in the flanked template. X axis: average position of arginine residues. Y axis: same as in A. Banded region around

regression line indicates 95% confidence interval of slope.

(C) Effect of clustered arginine residues for sequences containing two arginine residues. X axis: sequence groups based on position of residues: both residues

upstream of the AD (N-cluster), both residues downstream of the AD (C-cluster), and residues on either side of the AD (Spaced). Y axis: same as in A.
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PADDLE and the Attention AD model are neural network ML models, and thus do not clearly reveal the ML features used for the model

building and predictions. However, understanding ML features and connecting them to AD biochemical features is important for deducing

the mechanism of AD function. For this reason, we tested how each quadrant: true positive (TP), false positive (FP), true negative (TN),

and false negative) in Figure 7 panels J, H, I, and K, L, M follow the basic rules we emphasized above (balance of acidic and hydrophobics,

C-terminal preference of hydrophobic residues, and no-cluster formation). We usedWD10, FD10, and LD10 datasets because only these sets

are truly randomized using all possible combinations of specific hydrophobic residue andD. Evidently (panel P) for bothMLmodels the lowest

deviation from the hydrophobic/acidic balance is for TP and the highest is for TN, with intermediate level for FP and insufficient data for FN.

Similar situation is for C-terminal preference of the hydrophobic residue (panel Q) and for clustering score (panel R). Thus, at least these three

basic rules appear to be recognized by both ML models. Although we see this correlation, the rules are likely formulated mathematically

differently by NN models and by us. In addition, to test the importance of each rule we performed logistic regression (see STAR Methods)

testing the importance of each rule. All three rules contributed significantly (Table S2) showing importance of deviation from the acidic/

hydrophobic balance, position of hydrophobics, and homo-amino acid clustering.

The computational feature development is not a trivial task because features might overlap and contain exceptions. For instance,

balance and clustering rules are connected, as the more is the deviation from balance between hydrophobic and acidic residues,

the higher is the probability of clustering. Although homo amino acid clustering has generally a negative impact on AD functionality

(Figures 4K–4M; Figure 5G), it might depend on a specific context. For instance, we see that while clusters of 4–6 Ws flanked by Ds

are functional, this type of clustering is not tolerable for function if instead of Ws, Fs or Ls are used (Figure S3). This observation might

be a reflection of the hydrophobicity level. According to many hydrophobicity scales and the normalized best hydrophobicity scale,23

among W, F, and L, the amino acid W has the lowest hydrophobicity and thus while flanking Ws with Ds prevents intramolecular hy-

drophobic aggregation, for F and L the repulsion of flanking Ds is maybe not sufficient. Further ML feature development connecting

them to biochemical features of ADs will be an important task for revealing more nuanced rules, allowing us to gain more insights

in the mechanism of AD function.

DISCUSSION

ADs’ functionality has remained enigmatic for decades as ADs do not follow the foundational biochemistry/molecular biology specificity triad:

specific sequence determines specific structure, which in turn determines specific interactions. Although it was repeatedly demonstrated by

screening of sequence libraries in vivo that �1% of all random sequences are functional as ADs,4,7,24,25 the extremely high variability of AD

sequences is largely either ignored or underestimated. Considering the 20 amino acid optimal minimum length for ADs,7 the whole combi-

natorial space constitutes 20^20 sequences and 1% of it is a staggering �10^24 sequence possibilities for a single gene activator molecule.

Absence of structural specificity is widely accepted, and it is by now a convention to characterize ADs as a typical example of intrinsically disor-

dered protein regions. The spectrum of AD targets range from basal transcription factors such as TBP,26–30 TFIIB,31,32 TFIIH,33,34 TFIIA,35,36

RNA polymerase II,37 variable TAFs,38 Mediator subunits Med17 (Srb4), Srb10, Med15 (Gal11), Med2, and Med 25,39–46 as well as subunits

of chromatin remodeling and histone-modifying complexes such as Ada2, Taf17, Tra1 (SAGA and NuA4 complexes),47–53 Swi1 and Snf2

(SWI/SNF complex),53–55 and CBP.56–58 Some ‘fuzzy’ interactions between Gal4 and Gcn4 ADs andMed15 were analyzed in detail,13 however

it was stated that other equally fuzzy ‘free for all’ interactions are possible with other coactivators and are not investigated. UnderstandingADs

remains a difficult, long-standing fundamental scientific problem.2 Solving the AD enigma has foundational practical importance as multiple

diseases including cancer are associated with changes in gene expression. The correction of the inappropriate expression level by modifica-

tion of specific activator AD sequences by genome editing such as CRISPR-Cas9 technology seems to be increasingly feasible and beneficial;
iScience 27, 111057, November 15, 2024 9



Figure 7. Performance and comparison of ML models PADDLE and Attention AD, and Mechanistic Predictor

(A–N) PADDLE ML model7 (panels A, B, C, G, H, I, & J) and Attention AD model22 (panels D, E, F, K, L, M, & N) used to predict functionality across seven sets of

sequences: Flanked WYFL (panels A-B), Intermixed WYFL (panels B-E), Amphipathic Helix WYFL (panels C–F), WD10 (panels G–K), FD10 (panels H–L), LD10

(panels I–M), and YD10 (panel J–N). X axis: Z-scores represent predicted probability of functionality using PADDLE (see STAR Methods) with scores greater

than a threshold of 4 predicted to be functional.7 Probability values represent predicted probability of functionality using Attention_AD with scores greater

than a threshold of 0.5 predicted to be functional. Y axis: growth slope of cells carrying the corresponding sequences. Values in the upper left corner of each

panel are the correlation between the growth slope and prediction (r), area under the ROC curve (AUC) and the fraction accurately predicted (Acc).

(O) A modified Mechanistic Predictor6 used to predict functionality across seven sets of sequences. The modified predictor applied to sequences with a total

length of 20 residues: Functional ADs = [-6.5 % Net Charge % �4 & Number of W, F, and L Residues R3]. Distributions of sequences predicted to be

functional (solid borders) and sequences predicted to be non-functional (dotted borders). X axis: dataset used; Y axis: same as in A. Values on the graph

represent the percent of experimentally determined functional sequences out of the sequences predicted to be functional using the modified mechanistic

predictor.

(P–R) Average scores for three rules: balance (panel P), position (panel Q), and clustering (panel R) within sequences correctly predicted (true positives (TP) and

true negatives (TN)) and incorrectly predicted (false positives (FP) and false negatives (FN)) to be activation domains by PADDLE (solid borders) and Attention AD

(dotted borders). Deviation from balance is the absolute value of the difference in number of acidic and hydrophobic residues. C-terminal preference is the slope

calculated from abest fit line where the X axis was 1–10 for the ten positions of each sequence and the Y axis was the number of sequences that had a hydrophobic

residue at each position, with a greater preference indicating more hydrophobic residues toward the C-terminus (see Figures 4 panels H, I, J).
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however, it requires first understanding AD sequence features and creation of ML models able to accurately predict the modified AD activity

level. Decoding the language of ADs is one of the starting points in solving the AD enigma.

To be able to study the grammar of ADs, we intentionally used sequences which are enriched in hydrophobic amino acid residues (W, F,

Y, L), previously identified to be important for AD function,3,5,11 so that we limit the number of nonfunctional AD sequences and to significantly

increase the number of functional ADs in comparison to random sequence libraries.4–7 Themain, immediate, and general finding of our study,

consistent with previous reports,3,7,8,11 is that a significant number of active ADs can be as short as 10 amino acids and contain balanced

acidic/hydrophobic sequences with mixtures of W, F, Y, L amino acids (1236 out of 3071 tested sequences using three different templates

Figure 2). More surprisingly, for a 10 amino acid stretch a high AD activity is achievable by using Ds in combination with only Ws, or Fs, or

Ls, but not Ys (350/1021 in WD10, 363/1022 in FD10 and 225/1023 in LD10 sets, Figure 4). In analyzing this large number of functional se-

quences, even when the composition is limited to amix ofW, F, Y, L as hydrophobics, or even for only a unique hydrophobic within a 10 amino

acid stretch, no specific minimotif was identified among functional sequences, except for LD10 sequences.

Despite not having even short consensus sequences except for the LD10 set, ADs follow certain grammar rules that we3 and others5,6

started to formulate and refine based on high throughput experimental data and informatics analyses. The foundational rules that are clear

from our current and previous3 study are formulated below, but not necessarily in a strict order of importance: (1) the absence of basic amino

acid residues or at least a net negative charge, see Figure 6;3 (2) the balance between acidic and hydrophobic, preferably aromatic residues,

see Figures 2, 3, 4, and 5;3,5 (3) with aromatic residues dominating in AD composition over aliphatic residues, see Figures 2 and 3; 3 (4) with

acidic and hydrophobic residues preferably not forming significant acidic or hydrophobic clusters, see Figures 4, 5, and 6;3 (5) with hydropho-

bic residues preferably situated closer to the C-terminus and acidic residues situated more internally, see Figures 4, 5, and 6;3 and (6) addi-

tionally, for sequences following the above rules the functionality increases with an increased number of proline residues, see Figures 3 and 3.

The analysis of these rules and their relation to the existing models is important for gaining insights into the biochemical processes

involved. Rule (1) suggests that the interacting targets or target binding sites contain positively charged amino acids; thus, if an AD also

has an excess of positively charged amino acids it creates an electrostatic repulsion which negatively affects AD function. Rule (2) suggests

that interactions with AD targets likely involve both electrostatic and hydrophobic interactions, because sequences not containing either hy-

drophobic or acidic amino acids are generally not functional.4,7,25 Additionally, the balance between acidic and hydrophobic amino acids is

also consistent with the ‘‘stickers and spacers’’ idea for IDRs59 and the related ‘‘acidic exposure’’ model5 for ADs, whereby the balanced

composition of hydrophobic and hydrophilic residues keeps hydrophobic residues from forming hydrophobic condensates, thus readying

and exposing them for interactions with functional targets. The significant preference for aromatic residues in rule (3) suggests that the

AD target interactions do not simply involve hydrophobic interactions but likely also encompass pi-pi interactions specific for aromatic res-

idues. Rule (4) is related in interpretation to rule (2), as it also ensures that intramolecular hydrophobic aggregates are not formed. Rule (5)

suggests that positioning the hydrophobics at the spatially free C-terminus ensures the best exposure of hydrophobics.

The results indicating the exceptional benefits of having proline residues within the AD sequence (Figure 3) suggest that contrary to the

expectations of hydrophobic/acidic amphipathic helix being beneficial for AD function,7,12–14 the presence of proline as a ‘‘helix breaker’’ is

highly beneficial (rule (6)). The likely explanation for this phenomenon is that by breaking the helix at least in the context of the amphipathic

helix (Figure 3), Ps prevent intramolecular interactions between hydrophobic residues. In this respect, the proline phenomenon is in line with

rules (2) and (4). Additionally, the proline phenomenon explains the existence of the entire proline rich class of ADs, which was observed long

ago60 but never was fully explained.

There are, however, interesting exceptions from the above rules which in some cases can help us to understand the foundational

rules more deeply. For instance, for rule (1) the occasional presence of positively charged amino acids, as long as it does not greatly

reduce the net negative charge of AD (Figure 6), modulates the level of AD activity which might be important during the evolutionary

adaptation of the biological object. Similarly, for rule (2) a deviation from the acidic/hydrophobic balance also modulates the AD level

of activity (Figures 2, 4, and 5). For rule (3) all functional ADs within the frame of the flanked template DDDXXXXXDD (Figure 2E) consti-

tute a deviation from the no-clusters rule. However, within this template the flanking Ds likely ensure the solvent exposure of hydropho-

bics within the cluster by repulsion, which is similar to the effect of an even and balanced distribution of acidic and hydrophobic res-

idues in the intermixed template (Figure 2F). Deviations from rule (4) also modulate the AD level of activity, which might be important in

evolutionary adaptations.

The example of ADs containing only Ls and Ds as a deviation from rule (3) deserves special consideration. Although LD sequences were

reported several decades ago61 as possible candidates for ADs, they are rarely considered as a functional alternative to a typical aromatic/

acidic ADs. It was shown that LXXLL motif is present in multiple coactivators such as CBP/p300, Rip140, TAFH and others62 playing a facili-

tating role for the recruitment of these and other coactivators for the proper transcription activation. In some cases, the L-enriched sequences

are considered important for the function of the gene activator molecule, however not as ADs but rather as sequencemodules influencing the

sequence selection/discrimination by the DNA binding domain of the gene activator.21 According to modern high throughput experimen-

tation studies in yeast and in human, although ADs are dominated by aromatic and acidic residues, and largely are consensus-less, the LXXLL

motif was indicated to be associated with AD activities for some sequences.11,12 Previous work based on the ML analysis of large unbiased

datasets of random AD sequence libraries3,7 showed that typical ADs overwhelmingly contain aromatic residues as hydrophobic represen-

tatives with Ls only occasionally facilitating aromatic residues. However, our current study shows that LD sequence combinations, although

much rarer than aromatic/acidic sequences (Figure 4), can create ADs which surpass aromatic/acidic ADs in level of functionality. The rarity of

LD ADs is based on the unique requirement in this case to have a specific LDL(L/D)DLL consensus (Figure 5) which is unusual for ADs as largely
iScience 27, 111057, November 15, 2024 11



DDDWWWWWDD LLDLDLDDLL

or

?

Figure 8. Proposed mechanism for AD peptide action

On the nucleosome surface the AD peptide (e.g., DDDWWWWWDD or LLDLDLDDLL) interacts with DNA bases via hydrophobic residues (in case of aromatic

residues – via intercalation) while interacting with histone tails by electrostatic contacts between acidic residues of the AD peptide and basic residues of histone

tails. Created bulge of DNA later is propagated by a chromatin remodeler, similar to the proposed action of DNAgroove binders,64 so that the histone octamer is

translocated away from the gene promoter opening it for the transcription initiation complex assembly. Note: the structures of depicted peptides are predicted

by AlphaFold2 ML model,68 which for the LD peptide suggests that the structure is amphipathic with all Ls situated on one side possibly aligning with the DNA

groove. Elements of figure created with BioRender.com.
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consensus-less sequences (Figures 2E–2G; Figures 4A–4C). In addition, the usual balance between hydrophobic and acidic residues is shifted

in this case towardmore hydrophobics (in this case Ls) due to the LDL(D/L)DLL motif. These facts suggest that the interacting target of LD AD

has very specific structural characteristics. Consistent with this specificity and suggesting that chirality might be involved is also an observation

that inversing of the LDLDDLL sequence to LLDDLDL (Figure 5C) or changing position of just two amino acids to LDLDLDL eliminates the

functionality.

The key question regarding the mechanism of ADs’ function is the determination of actual AD target(s) and thus clarifying the mechanism

of action. In this respect functional LD sequences seem as an exception from the general aromatic/acidic compositional rule and can be

considered as a special case with a special type of target or special mode of interaction, e.g., the leucine zipper type of interactions with co-

activators. However, the similarity in levels of activity of ADs with LD composition and ADs with a multitude of all other hydrophobic/acidic

compositions (Figures 2, 3, 4, and 5) characterized in identical conditions for all sequences within our high-throughput experimental setup,

suggests that themechanism is possibly universal, because otherwise for thousands of very compositionally diverse sequence variations there

are thousands of different targets and mechanisms, which is unlikely. The ADs with the LD composition, because they require more Ls for

functionality, a specificmotif, and a very special arrangement of amino acids, likely even in 3D,may then inform us about very special structural

characteristics of the universal target. One such target suggested earlier3,63 might be the interface between the DNA and histones in the

nucleosome (Figure 8). The hypothesis of AD interaction with the DNA/histone interface is consistent with the biochemical analysis of all rules

discussed above. Importantly, the sequences identified in our screen are reminiscent by chemical nature (aromatic-hydrophilic) to the DNA

groove binders such as netropsin and chromomycin, which recently were shown to initiate the histone octamer translocation in vitro.64

The universality of the AD mechanism between lower and higher eukaryotes is suggested by similar composition of ADs between yeast

and human3,7,11,12 and the retention of AD functionality when transferred between biological phyla.65–67.

The ML approach and the ML feature development is a new way to get insights to the mechanistic aspects of AD function. The fact that

PADDLE trained on natural AD sequences12 and the Attention ADmodel22 trained on the unbiased random sequence set, both perform sub-

optimal on our ‘‘synthetic’’ sequence sets (Figures 7A–7N) is likely because the total combinatorial space is enormous amounting to�10^24,

and both ML models were trained on comparably tiny fractions of sequences, with the designed sequences being outside of either training

set. Thus, our sets can be used for additional training of future MLmodels likely improving their accuracy. The similarity of the overprediction

outcomes for both PADDLE andMechanistic Predictor which is based on the composition suggests that hidden ML features of PADDLE, are

likely also dominatedby compositional features. The noticeable overpredictions of functional ADs by PADDLE overmore randommistakes by

the AttentionADmodelmight suggest that our design of AD sequences generally reflects the natural selection. The combination of designed
12 iScience 27, 111057, November 15, 2024
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AD approach and further development of ML models, and connection ML and biochemical AD features is potentially a prospective research

direction.

Limitations of the study

Although we provide and analyze a massive library of variable sequences tested for functionality as ADs, our study is limited to in vivo char-

acterizations. The actual mechanism of AD function—either via direct physical recruitment of coactivators and transcriptional machinery com-

ponents, or by the AD action as a surfactant (Figure 8), or both—remains unclear, which highlights the fundamental long-standing enigma of

eukaryotic gene regulation. The reasons for the AD problem to be so hard and potential ways to solve it are reviewed recently.69 To test

potential AD target(s) additional in vitro modeling with identified AD sequences will be necessary in the future.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw sequencing data This paper GEO: GSE277056

Normalized data This paper Zenodo: https://doi.org/10.5281/zenodo.6461744

Experimental models: Organisms/strains

Yeast strain Y2HGold Takara Cat# 630498

Recombinant DNA

Plasmid pGBKT7 Takara Cat# 630489

Plasmid pRS314 Addgene Addgene Plasmid # 11004

Software and algorithms

Analysis code This paper Zenodo: https://doi.org/10.5281/zenodo.6461744

cutadapt Martin, M.70 https://pypi.org/project/cutadapt/

STAR Dobin, A. et al.71 https://github.com/alexdobin/STAR

PADDLE Sanborn, A.L. et al.12 https://github.com/asanborn/PADDLE

LSTM Attention-AD Wang, X. & Kihara, D.22 $https://github.com/kiharalab/Attention_AD
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

East strain Y2HGold (Takara) was maintained on a standard YPD growth medium and after transformation with the sequence library,

screened on the –trp synthetic yeast growth medium containing 200 mg/mL of aureobasidin. See details in the method details section

below.
METHOD DETAILS

Library construction, cloning, and screening

The parental library plasmid was constructed by cloning the fragment containing the ADH1 promoter and theGal4(1–147) DBD cassette, PCR

amplified from the commercially available pGBKT7 vector. The PCR fragment was cloned into the SacI and KpnI sites of the centromeric yeast

shuttle vector pRS314.

The design library containing 12,400 individual sequences each 60 nucleotide long. Individual sequences are described for each figure.

If sequences are less than 20 amino acid residues the remaining space was filled by glycine codons, as it was shown previously that glycine

is neutral for the AD activity.3,8 Each library sequence had an individual 20-nucleotide barcode directly following the stop codon to improve

alignment performance. The library was synthesized at the GenScript commercial facility, amplified by PCR five times (each time append-

ing a unique Biological Replicate (BioRep) barcode), quantitated for the DNA content, and mixed in equal proportions into a single pool.

For description of more detailed steps, see Figure S4. The pool was cloned into the NcoI and SalI restriction sites remaining from the

pGBKT7 fragment of the parental library plasmid. The library complexity was estimated by individual colony counts after transformation

for a fraction of the total transformation mix, then multiplying by the fraction factor. Total complexity was estimated to be �10^6. The

total content of individual sequences within the library was determined by NGS at GenScript. The NGS also confirmed the in-frame fusion

of AD sequences to the Gal4 DBD region. After the bacterial cloning and verification, the plasmid library was isolated for the following

yeast transformation.

The isolated plasmid library was transformed into the yeast strain Y2HGold, available commercially from Clontech/Takara. The

maintenance of the library complexity was determined by the individual colony count for a fraction of a transformation mix as

described above for the bacterial transformation. The number of individual yeast transformants for the entire library was estimated

to be �10^6. After transformation, the whole-library cell culture was transferred into the –trp synthetic yeast growth medium con-

taining 200 mg/mL of aureobasidin and grown for four days with daily 1/100 dilution to maintain the culture in the mid-log phase.

Cell culture samples were taken at 0, 1, 2, 3, and 4 days. DNA was isolated using a Thermo Scientific Pierce Yeast DNA Extraction

Reagent Kit. The library component was isolated by PCR using the Invitrogen AccuPrime SuperMix I kit with primers containing Illu-

mina adapters and barcodes unique for each DNA sample. DNA samples were controlled for purity, repeatedly quantitated for DNA

content, and sequenced at the NovoGene commercial facility.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Sequence processing

For each sample, cutadapt70 was used to demultiplex by BioReps, remove adapter barcodes, and remove sequence reads shorter than 73

residues. Reads from the design library weremapped using STAR71 to a pseudo-genome of 12,400 sequences. The pseudo-genomewas built

using the 12,400 designed sequences, with their unique barcodes, each represented as its own ‘‘chromosome.’’ The pseudo-genome is a

general feature format file with one ‘‘gene’’ assigned to each ‘‘chromosome.’’ Successful mapping in STAR required a perfect match (allowing

no mismatches). For each sample, the output read (gene) count file was used as the input for further data processing.

Estimation of sequence growth rates

Data processing and analyseswere conducted in R version 4.2.3.72 Correlations among the read counts of biological replicates (BioReps) were

calculated to ensure reasonable consistency. For each sample, counts for each sequence were converted to counts per million and log-trans-

formed. The counts were then normalized to the average count for each sequence at the initial timepoint. Sequences detected in fewer than

two of the five BioReps at the initial timepoint were removed (366 sequences). Sequences where counts drop to 0 at the first growth timepoint

were removed (78 additional sequences), as no accurate growth slope could be calculated. Robust linear regression (implemented in the

MASS package in R) was used to estimate the growth slope of each sequence over time; this was our final estimate for the functionality of

each sequence. Growth slopes were calculated for the remaining 11,956 sequences using all BioReps at the initial timepoint and first growth

timepoint. The intercept was not defined, though expected to be�0 based on normalization. A functionality thresholdwas determined as the

mean growth slope +2 standard deviations for the non-functional stop-codon controls (n = 97). The functionality threshold was subtracted

from all slopes to set the threshold to zero. Sequences with adjusted growth slopes greater than zero are considered functional. Percent func-

tionality corresponds to the percentage of sequences in a group with a slope greater than zero.

Sequence sets

The library contained several control sequence sets: sequences comprised solely of a stop-codon (n = 97), 8 replicates of 24 natural AD se-

quences (n = 192), and 8 replicates of 3 previously tested sequences containing W and D residues (n = 24). In addition to the controls, the

library was comprised of various sequence sets that cover the combinatorial space for a given sequence template. All dipeptide combinations

repeated 4, 6, 8, or 10 times (n = 1421). Aromatic/hydrophobic (W, Y, F, or L) and aspartic acid (D) residues in a ten-residue sequence: WD10

(n = 1022), YD10 (n = 997), FD10 (n = 1022), and LD10 (n = 1023). Flanked template (GGGGGGGGGGDDDXXXXXDD) with all combinations of

W, Y, F, and L residues in place of X (n = 1020). Flanked template (GGGGDDDWWWWWDDGGGGG) with 1, 2, or 3 glycine residues replaced

with arginine residues (n = 176). Intermixed template (GGGGGGGGGGDXDXDXDXDX) with all combinations of W, Y, F, and L residues in

place of X (n = 1019). Amphipathic template (XGDGXGDGXGDGXGDGXGDG) with all combinations of W, Y, F, and L residues in place

of X (n = 1024). Amphipathic template (WGDGWGDGWGDGWGDGWGDG) with all glycine residues replaced with other amino acids

(n = 18) or 1, 2, or 3 glycine residues replaced with proline residues (n = 175).

Sequence feature analyses

Among each set of sequences, the effects of the following sequence features on function were determined for aromatic/hydrophobic and

basic residues: number of residues, balance of different residues, position of residues, clustering of residues, andmultiresiduemotifs. Balance

refers to an equal number of aromatic/hydrophobic and basic residues. The effect of the position of residues along each ADwas visualized as

the percent of all sequences with the specified residue at the specified position that were functional or through sequence logos for groups of

sequences. Sequence logos (prepared using ggseqlogo package in R) depict proportion of each residue at each position within a set of

sequences.

Clustering refers to grouping of the same consecutive residue. Clustering was calculated using the ‘‘patterning parameter’’ metric defined

by Martin et al.20 In brief, the ‘‘patterning parameter’’ was calculated as the average deviation of local sequence aromatic asymmetry from

total sequence aromatic asymmetry normalized to the maximally clustered score. ‘‘Aromatic’’ (W, F, or L residues in this study) asymmetry

is the difference between the fraction of the AD sequence that is W, F, or L residues and the fraction of the AD sequence that is D residues.

The total sequence is 10 residues while the local sequences are 5 residue wide windows scanning through each sequence. A maximally clus-

tered sequence in this context would have 5 consecutiveW, F, or L residues and then 5 consecutive D residues (or the inverse). This sequence

has the lowest possible total sequence aromatic asymmetry (0.5–0.5, perfectly symmetrical) and the highest possible local sequence aromatic

asymmetry (1–0 or 0–1) with two of six windows with only one type of residue. Normalizing to the maximally clustered sequence sets this

sequence to a ‘‘patterning parameter’’ value of 1 while the least clustered sequences will have scores approaching 0.

For sequences with 1–3 proline or arginine residues inserted across AD sequences, the average position of these residues was calculated

for each sequence by first assigning the 20 positions of each ADwith values from 1 to 20 and then averaging the values that correspond to the

position of the proline or arginine residues.

Logistic regression

For theWD10, FD10, and LD10 sets, the number of hydrophobic residues, deviation from balance, average position, and clustering were con-

verted into features scaled to scores between 0 and 1. The number of hydrophobic residues is a count of the number of residues within each
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10-position long sequence. The deviation from balance was calculated by taking the absolute value of the difference between the number of

hydrophobic and acidic residues in each sequence. The average position of hydrophobic residues was calculated the same way as the

average position of proline or arginine residues described above. For these three features the maximum value was 10 (10 hydrophobic res-

idues, a completely imbalanced sequence with a deviation of 10, or a sequence with a single hydrophobic residue at position 10), so these

features were all scaled by dividing each score by 10. The ‘‘patterning parameter’’ was directly used as the clustering feature. The effect of

each of these features on predicting functionality were determined using logistic regression (stats package in R). Coefficient estimates for

the model for each set represent the average change in the log odds of a sequence being functional per increase in each rule value from

a value of 0–1.
Mini-motif analysis

Minimotifs enriched in functional sequences were determined systematically by calculating the average slope for all sequences containing

each combination of residues for 3–8 residue wide windows. Minimotifs were also identified among the top 50 functional LD10 sequences

using MEME.17,18 To ensure identification of all significant minimotifs using MEME, default settings were used expect for minimum motif

width that was decreased to 3 and number of motifs to search for increased to 20. Subsequent analyses were conducted on sequence subsets

that were prepared using regular expressions to select sequences that contain specified motifs.
Secondary structure prediction and analysis

For the SPOT-1D secondary structure,73 the prediction for each unique 20-amino-acid-long AD sequence was performed using the SPOT-

1D-Single program. The software was installed and run locally, as obtained from https://github.com/jas-preet/SPOT-1D-Single (accessed

07/20/23). The SS3 prediction component of SPOT-1D-Single was utilized to estimate the percentage of alpha-helical content for each AD

sequence.

For the Agadir prediction of helical content,19 each unique 20-amino-acid-long AD sequence was submitted to the Agadir prediction

server (http://agadir.crg.es/). Agadir was executed with the default parameters: pH = 7, temperature = 278 K, ionic strength = 0.01, N-termi-

nus = free, and C-terminus = free. The output provided the percentage of each peptide predicted to adopt an alpha-helical conformation.
Functional AD prediction models

Three separate models trained and designed based on natural AD sequences were applied to the design library to predict functionality:

PADDLE ML model,12 Long Short-Term Memory model with Attention AD mechanism,22 and the Mechanistic Predictor.6 To apply the

PADDLE and Attention AD models to the library, each sequence was supplied alongside a set of 20 background sequences so that each

sequence could be embedded in the background sequences to produce sequences of the required residue lengths (53 for PADDLE, 30

for Attention). The background sequences were generated randomly to contain equal amounts of the residues A, G, S, T, N, Q, and V.

The no secondary structure PADDLE model was then applied to those inputs which generates Z-scores based on the probability of being

an active transcription activation domain. The AttentionADmodel provides probabilities of functionality, for whichwe selected 0.5 as a cutoff.

TheMechanistic Predictor (MP) is an experimentally informed and empiricallymodified set of conditions to predict functional ADs. TheMP,

based on a library of sequences with 39 residues: Functional ADs = [-13%Net Charge% �8 & Number of W, F, and L ResiduesR6]. As our

library consists of sequences with a total length of 20 residues, the MP had to be modified to be applied to our library by halving all the

numeric cutoffs. The modified predictor applied to our library with sequences with a total length of 20 residues: Functional ADs = [-6.5 %

Net Charge% �4 & Number of W, F, and L ResiduesR3]. Net Charge is determined for each sequence by adding 1 for each basic residue

(R, K, and H) and subtracting 1 for each acidic residue (D and E). The modified MP was then applied to each sequence in the library resulting

in either a prediction of a functional or nonfunctional AD.
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