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Abstract: Objective: The development of adjacent segment disease or the progression of spondylosis
following the surgical treatment of spinal stenosis and spondylolisthesis is well documented and can
lead to subsequent functional decline after a successful index surgery. The early detection of negative
inflection points during patients’ functional recovery can improve timely intervention. In this study,
we developed machine learning (ML) models to predict the occurrence of post-operative decline
in patient mobility. Methods: Patients receiving spine surgery for degenerative spinal stenosis or
spondylolisthesis were retroactively consented and enrolled. Activity data (steps-per-day) previously
recorded across a 4-year peri-operative were collected alongside relevant clinical and demographic
variables. Logistic regression (LR), random forest (RF), and extreme gradient boosting (XGBoost)
ML models were constructed and trained on 80% of the dataset and validated using the remaining
20%. The study’s primary endpoint was the models’ ability to predict post-operative decline in
patient mobility. Results: A total of 75 patients were included. Following training, RF and XGBoost
models achieved accuracy values of 86.7% (sensitivity 80%, specificity 90%) and 80% (sensitivity 60%,
specificity 90%), respectively, in predicting post-operative functional decline. The LR model was
the least effective with an accuracy of 73.3% (sensitivity 50%, specificity 88.8%). Receiver operating
characteristic curves showed an area under the curve of 0.80 for RF, 0.70 for XGBoost, and 0.69
for LR. Conclusions: ML models trained on activity data collected from smartphones successfully
forecast functional decline in post-operative activity following spine surgery. These results lay the
groundwork for the future integration of ML into the surgeon’s toolbox for prognostication and
surgical planning.

Keywords: lumbar decompression; lumbar fusion; lumbar spine; machine learning; patient reported
outcome measures; smartphone-based accelerometry

1. Introduction

The efficacy of spine surgical intervention in the management of conditions such as
degenerative spinal stenosis and spondylolisthesis has been well established in neurosurgi-
cal literature [1–3]. The current “gold standard” of outcome measures across this body of
work is patient-reported outcome measures (PROMs). These commonly employed surveys
and questionnaires, such as the Oswestry Disability Index (ODI) [4] and EuroQOL-5D
(EQ-5D) [5], are established as reliable and valid methods of assessing a patient’s personal
perception of pain, mobility, and ability to complete activities of daily living at a discrete
point in time [6]. Despite the success and relative ubiquity of these outcome measures, their
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subjective and discrete nature render them sub-optimal for truly quantitative assessments
and comparisons of surgical efficacy [7,8].

Growing awareness of the current inadequacy in capturing the temporal and graded
nature of post-operative recovery has given rise to an emerging paradigm of activity- and
mobility-based metrics to measure and report the functional improvements of patients
after surgery [9–11]. This body of work uses a range of monitoring devices, from externally
worn accelerometers to patient smartphones, to quantify the daily physical activity of
individual patients across the peri-operative window. By providing a vast amount of
granular, unbiased, and seamlessly collected data, these objective metrics supplement
traditional PROMs by allowing surgeons to understand not just how the patient is feeling
but exactly how often and the degree to which the patient is mobilizing.

Precise and data-driven outcome methodologies are informative across the breadth
of spine surgical practice, from pre-operative prognostication based on a more accurate
understanding of a patient’s baseline functional status [12] to post-operative monitoring
of patient progression and surveillance for symptom recurrence, and even comparing the
relative efficacy of new and existing surgical techniques. Despite this existing work in the
pre-operative and immediate post-operative periods, the possibility of using pre-operative
patient activity data to predict post-operative success and improve prognostication remains
to be fully explored. Unlike comparative studies, the accuracy and clinical usefulness of
predictive models is much more dependent on the volume and variety of data provided,
which quickly saturates and surpasses the computational ability of humans and basic
mathematical techniques [13]. To fully capitalize on and extract insights from the datasets
generated by functional outcome metrics, machine learning (ML)—a subset of artificial
intelligence comprised of algorithms that learn and self-adjust to optimize the mapping of
input data to an output prediction [14]—can be used. In this study, we utilize high-fidelity
patient activity data to predict the likelihood of sustained improvement in physical mobility
after surgery through multimodal ML models trained and validated on both clinical and
functional patient variables.

2. Materials and Methods
2.1. Patient Selection and Data Source

Patients who received spinal surgery between 1 January 2014, and 1 July 2020 at two
urban academic centers were eligible for enrollment in this retrospective study. Inclusion
criteria comprised patients with clinical symptoms and radiographic findings that mer-
ited elective spine surgery as well as ownership and the consistent usage of an Apple
iPhone (Apple Inc., Cupertino, CA, USA). Patients meeting these criteria were contacted
and consented over the telephone and in person. Consenting patients were instructed to
download QS Access (Quantified Self Labs, San Francisco, CA, USA), which is a mobile
application that collates and securely exports Apple Health activity data. The primary
variable extracted and analyzed in this study was patients’ daily step count. Additional
demographic and clinical variables were also collected from the electronic medical record
(EHR). This study was approved by our Institutional Review Board (IRB #843229). This
study’s design and reporting were supported by guidelines from Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE) and Transparent Reporting of a
Multivariable Prediction Models for Individual Prognosis or Diagnosis (TRIPOD) [15,16].

2.2. Variables

Baseline characteristics were extracted from EHRs, including age (years), sex, body
mass index (BMI), and operated levels. Using patient activity data, a time series of steps-
per-day was constructed across a 4-year peri-operative window, spanning 2 years prior
through 2 years following a patient’s date of surgery (Figure 1A). To account for inter-
patient variability in absolute activity levels and to permit subgroup analysis, patient step
counts were normalized with respect to the first year of patient data, representing each
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patient’s true baseline activity level. These data were then smoothened using a 14-day
sliding window to minimize noise and amplify true signals (Figure 1B).
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Figure 1. An example patient’s activity (i.e., steps taken per day) is collected across a 4-year peri-
operative window (A), smoothed and normalized to each individual’s pre-operative baseline (B),
and subsequently segregated into distinct temporal epochs based on the activity magnitude and rate
of change (C).

A previously developed and validated algorithm [11] was applied to each patient time
series to classify physical activity into six distinct temporal epochs (Figure 1C):

(1) Pre-operative baseline, as described above;
(2) Acute pre-operative decline;
(3) Periods of spontaneous recovery of activity;
(4) Acute post-operative recovery;
(5) Fully recovered state with post-operative activity levels commensurate to or exceeding

pre-operative baseline; and
(6) Secondary decline in activity following prior compete post-operative recovery.

Following this segmentation, the total cumulative days patients remained in each
epoch, the rate of activity change within each epoch (i.e., the 1st derivative), and the change
in the rate of activity itself (i.e., the 2nd derivative) were calculated.

The primary objective of this study was to predict the occurrence of secondary post-
operative functional decline, which was defined by a 0.25 standard deviation or greater
decrease in a patient’s mean steps-per-day following a complete surgical recovery. Clinically,
this would manifest in patients as reduced ambulatory capacity due to pain or weakness.

2.3. Statistics

Three distinct ML algorithms were constructed and implemented: logistic regression
(LR), random forest (RF), and extreme gradient boosting (XGBoost) models. LR is a
statistical technique that estimates the likelihood that a dichotomous categorical outcome
variable occurs given certain characteristics of the predictor set by plotting the natural
logarithm of the odds of the dependent variable as a linear combination of the input
features [17]. The simplicity of LR renders it computationally efficient, though it tends



J. Clin. Med. 2024, 13, 6515 4 of 10

to overfit predictions based on the feature set. In contrast, RF and XGBoost are truer ML
algorithms that use ensemble classification architecture, whereby multiple classifiers work
in unison to create a set of decision trees [18,19]. RF uses predictive voting to aggregate
trees, whereas XGBoost sequentially optimizes subsequent decision trees based on loss
function minimization. Both methods introduce feature randomness and regularization to
reduce overfitting and are better suited to capture non-linear relationships.

The input variables included the activity parameters above as well as patient BMI and
age at surgery. The patient dataset was split into a training set and validation set using
a 4:1 ratio. Model efficacy was defined as the accuracy of predicting the occurrence of a
secondary decline in activity following prior sustained recovery. Differences in performance
were compared using each model’s accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, and area under the curve (AUC) of the receiver operating
characteristic. All analyses were conducted utilizing R 4.3 (R Foundation, Vienna, Austria)
and Python 3.7 (Python Foundation, Wilmington, DE, USA).

3. Results
3.1. Baseline Demographics

A total of 75 patients were included in this study with surgeries including lumbar
fusion (LF; 34), lumbar decompression (LD; 28), cervical fusion (7), cervical decompression
(2), cervical total disc arthroplasty (1), and lumbar kyphoplasty (3). The cohort was 42%
male and 58% female with the average age at surgery being 61.3 years old and average BMI
being 29.4 (Table 1). Across patients, 52.2% received a single-level surgery, 17.4% received a
two-level surgery, and 30.4% received a three-level or greater surgery. In aggregate, the
step counts for all patients consisted of over 109,000 distinct datapoints.

Table 1. Baseline characteristics.

Variable Lumbar Fusion
(N = 34)

Lumbar
Decompression

(N = 28)

Other
(N = 13)

Sex
Male 13 (38.2%) 10 (35.7%) 8 (61.5%)
Female 21 (61.8%) 18 (64.3%) 5 (38.5%)
Age
<50 years 4 (14.3%) 6 (21.4%) 3 (23.1%)
51–60 years 5 (17.9%) 4 (14.3%) 5 (38.5%)
61–70 years 9 (32.1%) 11 (39.3%) 4 (30.8%)
71–80 years 8 (28.6%) 7 (25%) 1 (7.7%)
80+ years 2 (7.1%) 0 (0%) 0 (0%)
BMI (kg/m2)
<20 1 (3.6%) 1 (3.7%) 0 (0%)
20–25 9 (32.1%) 9 (33.3%) 3 (23.1%)
25–30 10 (35.7%) 7 (25.9%) 3 (23.1%)
30–35 7 (25%) 4 (14.8%) 6 (46.2%)
35–40 1 (3.6%) 2 (7.4%) 1 (7.7%)
40+ 0 (0%) 4 (14.8%) 0 (0%)
Operated Levels
1 17 (60.7%) 15 (53.6%) 4 (40%)
2 8 (28.6%) 2 (7.1%) 2 (20%)
3 3 (10.7%) 10 (35.7%) 3 (30%)
>3 0 (0%) 1 (3.6%) 1 (10%)

Baseline demographics for all included patients. ‘Other’ surgery category includes cervical fusion (7), cervical
decompression (2), cervical total disc arthroplasty (1), and lumbar kyphoplasty (3).

Across all patients, there were no intra-operative complications. One (1.3%) patient
required re-operation for recurrent disc herniation.
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3.2. Activity Classification

Pre- and post-operative patient activity, derived from mobility data stored on patient
smartphones, was classified as detailed in the methodology above. Patients spent an
average of 250.0 days in a period of acute pre-operative deterioration of physical mobility
compared to their baseline (Table 2). This did not differ between the type of surgery
received (p = 0.685). Across all patients, 82.67% regained mobility commensurate to or
above the pre-operative baseline. Patients who successfully recovered spent an average
of 217.0 days regaining functional status. There was no statistically significant difference
in normalized activity levels between surgery type across the acute pre-operative decline,
post-operative recovery, and fully recovered states (Table 2).

Table 2. Durations of patient mobility categorizations.

Patient Mobility Categories
Lumbar
Fusion

(Days ± SE)

Lumbar De-
compression
(Days ± SE)

Other
(Days ± SE) p

Acute Pre-Operative Decline 219.9 (±39) 208.5 (±35) 274.6 (±73) 0.685
Pre-Operative Spontaneous Recovery 112.9 (±26) 189.4 (±45) 137.1 (±45) 0.321
Immediate Post-Operative Recovery 172.3 (±34) 220.0 (±40) 169.3 (±71) 0.635
Fully Recovered 264.3 (±42) 178.8 (±34) 232.9 (±63) 0.332
Post-Operative Secondary Decline 233.0 (±52) 267.5 (±46) 303.5 (±126) 0.904

Patient activity was categorized into distinct epochs, including acute pre-operative decline, periods of spontaneous
recovery of activity, acute post-operative recovery, fully recovered state with post-operative activity levels
commensurate to or exceeding pre-operative baseline, and secondary decline in activity following prior complete
post-operative recovery. Comparisons were tested with an analysis of variance test for statistical significance with
an α value of 0.05.

Additionally, 34.7% of patients experienced a post-operative secondary decline in
physical activity after previously regaining full physical mobility (15 LF, 11 LD, and 4 other
cervical surgeries). The average length of the post-operative recovery and fully recovered
periods before secondary decline were 119.7 days and 201.5 days, respectively. LF patients
experienced a significantly greater decrease in mobility during these periods of secondary
decline compared to LD patients (paired t-test yields p = 0.0026).

3.3. Model Accuracy

The RF model was the most successful predictive model (86.7% accuracy, 80.0%
sensitivity, 90.0% specificity) with XGBoost performing similarly (80.0% accuracy, 60.0%
sensitivity, 90.0% specificity). The LR model was least successful (73.3% accuracy, 50.0%
sensitivity, 88.8% specificity). All models had greater specificity than sensitivity, indicating
greater prediction accuracy for cases where the patient does not experience a secondary
post-operative decline (Table 3).

Table 3. Model performance metrics.

Random Forest XGBoost Logistic Regression

Accuracy 86.7% 86.7% 86.7%
Sensitivity 80% 80% 80%
Specificity 90% 90% 90%
AUROC 0.90 0.88 0.84
Positive Predictive Value 90% 90% 80%
Negative Predictive Value 90% 90% 90%

Performance metrics for the 3 machine learning models implemented. XGBoost = extreme gradient boosting.
AUROC = area under recover operating characteristic.

The model performance gauged by the receiver operating characteristic (ROC) curve
yielded total area under the curve (AUC) values of 0.90 for RF (Figure 2A), 0.88 for XGBoost
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(Figure 2B), and 0.84 for LR (Figure 2C), showing that RF exhibited the greatest measure of
separability.
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3.4. Feature Contribution to Decision Tree Models

The feature importance for both RF (Figure 3A) and XGBoost (Figure 3B), the two
decision tree models used in this analysis, was extracted. For both models, the duration of
the immediate post-operative recovery period, when a patient is regaining their baseline
physical functionality, contributed toward approximately one quarter of the total prediction.
Subsequent analysis showed that a greater post-operative recovery length was correlated
with a lesser probability of subsequent functional decline (r2 = −0.349). Other important
features for both tree models included age, BMI, and the 1st and 2nd derivatives of the
activity time series.
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4. Discussion

We present a data-driven method to predict post-operative decline in physical mobility
in patients undergoing spine surgery. Our three machine learning algorithms utilized
clinical variables in conjunction with pre- and post-operative activity data as measured by
patient smartphones to determine with a high degree of accuracy whether patients would
sustain their post-operative functional improvements or experience a subsequent mobility
decline. Random forest modeling was most accurate in this regard (AUC = 0.80, 86.7%
accuracy, 80.0% sensitivity, 90.0% specificity) and relied greatly on patients’ length of post-
operative recovery, the rate of increasing activity during the recovery period (1st derivative),
BMI, and age. Objective activity monitoring also revealed that amongst patients who do not
sustain post-operative improvements in mobility, lumbar fusion patients experience greater
declines in physical activity compared to lumbar decompression patients (p = 0.003). This
work illustrates the efficacy of using ML to unlock the full potential of objective outcome
metrics in spine surgery and paves the way for future studies with more generalizable
results and informative clinical insights.
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Traditional methods of quantifying post-operative recovery in spine surgery, such as
the ODI4 and EQ-5D [5], all rely on self-reported static questionnaires, which is a method-
ology that has remained largely unchanged since the inception of PROMs in 1978 [20].
Importantly, these surveys offer a way to systematically collect a patient’s perspective of
their disease process, which is crucial in establishing the substrate for shared decision
making [21]. However, this strength of PROMs is also its greatest drawback; subjectivity in
the collection process of these surveys introduces possible recall and response bias, such as
by relying on patients’ historical recollection and recent symptomatology to characterize
long-standing and chronic disease processes [8]. Investigations into similar surveys such
as the Short-Form Six-Dimension (SF-6D) and Quality of Well Being scale (QWB) have
shown that the variability between repeated survey administrations approaches established
minimum clinically important differences (MCIDs), showing that clinical decision making
based on these and similar instruments may not always be reliable. Additionally, the
discrete nature of PROM administrations at specific pre- and post-operative clinic visits
provides a very limited window into the true status of a patient’s functional health and
well-being.

Objective, mobility-based outcome metrics attempt to address these coverage gaps.
Activity data from highly fidelitous sources such as externally worn accelerometers or
patient smartphones have been shown to be highly concordant with a patient’s true level of
mobility [22]. Using objectively recorded data rather than relying on subjective reporting
eliminates potential inaccuracies and increases the validity, reliability, and responsiveness
of these novel outcome measures. Additionally, passive data collection allows for finer
temporal resolution on the scale of hours and days compared to the weeks and months
between PROMs in their current form, imparting a more detailed depiction of patients’
baseline health, disease progression, and post-operative recovery. Early investigations of
objective outcome metrics have proven the clinical benefit of this granularity, illustrating that
activity data can be used to characterize not only the degree to which patients regain mobility
after spine surgery but also the specific pathologic process affecting their spine [11,12].

The next step in the progression and development of these outcome metrics is to work
backwards and utilize patient activity data to predict which patients are likely to experience
the greatest clinical benefit from spine surgical intervention. Answering this question has
tremendous clinical value and paves the way for surgeons to use validated, data-driven
methods to inform patient selection and surgical prognostication. As we illustrate in this
study, the volume of smartphone-derived data, and not just its objectivity, is where the
true advantage of activity-based outcomes lies. Fully unlocking this potential, then, is only
feasible using techniques designed to process and harvest insights from these large datasets,
namely machine learning. ML has quickly gained prominence in spine surgery research in
lieu of traditional statistical techniques, as these tools can extract relationships underlying
the inherent complexity of clinical data that are otherwise invisible to the human eye [23].

Amongst our ML models, decision tree classifiers (i.e., random forest and XGBoost)
yielded greater predictive performance than logistic regression, which was likely due to
their superior processing and iterative understanding of non-linear relationships among
the input features. One of the strongest variables contributing to the accuracy of these
classifiers was the duration of post-operative recovery with longer recovery periods before
reaching and/or exceeding baseline mobility status associated with sustained functional
recovery. While this association is not necessarily causal, it raises additional questions for
further investigation such as whether certain behavior patterns of patients with faster post-
operative recoveries lead to a greater likelihood of subsequent decline, if there is a crucial
window within the immediate post-operative period that influences downstream recovery,
and whether specific clinician follow-up in the immediate post-operative period can have
a disproportionately beneficial impact on patients. Additionally, further investigation is
needed to understand why post-operative declines were more severe in lumbar fusion
compared to other surgeries; this likely stems from the relatively higher pre-operative
disease burden and more invasive operative requirements to decompress and stabilize the
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spine. While the results of this initial study do merit follow-up, these and subsequent results
should be interpreted with caution to avoid over- or under-generalizing the results during
clinical decision making. Although ML can enhance prediction, models are inherently
imperfect; over-reliance on them could dissuade surgeons from offering, or patients from
accepting, otherwise beneficial surgical intervention.

To our knowledge, this is the first study implementing ML using objective, mobility-
based data in spine surgery. Across the 29 spine surgery outcome prediction tools available
in contemporary literature, all prior studies utilized solely clinical variables such as age,
symptom duration, length of stay, and hospital- or surgery-associated complications; Single-
institution studies had sample sizes ranging from 27 to 1053 with the total comprised
datapoints orders of magnitude less than the dataset used herein [24,25]. Because the
relative benefit of ML over traditional statistical measures in the prediction and optimization
of signal-to-noise ratios is most dependent on the total number of data input, we believe our
study uniquely adds to the current landscape of spine surgery and outcomes prediction [26].

This study must be interpreted within the context of its limitations. Although our
models were trained and validated on a very large number of datapoints, the limited
patient population and feature set limits broad generalizability. Future studies should
primarily aim to include larger numbers of patients from multiple, geographically and
demographically diverse institutions, such as multi-institutional datasets and national and
international registries. Additionally, while patients receiving different surgeries were
grouped together for this initial analysis, subsequent investigations with larger patient
cohorts should aim for subgroup analysis within surgical types and techniques so as to
better identify and isolate activity trends within specific patient populations. Input features
into these predictive models should also be expanded to encompass a greater breadth of
variables that could influence overall patient outcomes, including radiographic parameters
of the disease process, medical co-morbidities, and cognitive and psychosocial functioning.
Self-reported pain and physical mobility, as collected through PROMs, are also important
to include in subsequent studies not only to assess the potential predictive overlap between
subjective and objective measures of patient mobility but also to validate our initial results
with existing measures. Other limitations inherent to retrospective data analysis are also
present, such as confounding due to unseen variables or the clustering of patients in the
study. Lastly, study enrollment was voluntary, and patients opting to provide their activity
data may have a positively skewed relationship between activity and functional outcome,
whether due to age, level of smartphone usage, or other factors.

5. Conclusions

We demonstrate the ability of machine learning classifiers trained on activity data
from patients’ smartphones to accurately predict post-operative functional recovery after
spine surgery. This is the first such study to utilize ML with objective outcomes data,
and it provides a compelling substrate for future iterations of predictive models that
leverage the granularity and temporal specificity of such data. Further training of ML
models on larger, multi-institutional datasets and national registries is needed to build
more generalizable models.
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