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Abstract: Background/Objectives: The human gut microbiome is a complex ecosystem of microor-
ganisms that can influence our health and exercise habits. On the other hand, physical exercise can
also impact our microbiome, affecting our health. Our narrative review examines the bidirectional
relationship between physical activity and the gut microbiome, as well as the potential for targeted
probiotic regimens to enhance sports performance. Methods: We conducted a comprehensive lit-
erature review to select articles published up till January 2024 on the topics of physical exercise,
sports, probiotics, and gut microbiota from major scientific databases, incorporating over 100 studies.
Results: We found that the impact of physical activity on the gut microbiome varies with the type
and intensity of exercise. Moderate exercise promotes a healthy immune system, while high-intensity
exercise for a long duration can cause a leaky gut and consequent systemic inflammation, which
may disrupt the microbial balance. Combining aerobic and resistance training significantly affects
bacterial diversity, linked to a lower prevalence of chronic metabolic disorders. Furthermore, exercise
enhances gut microbiome diversity, increases SCFA production, improves nutrient utilization, and
modulates neural and hormonal pathways, improving gut barrier integrity. Our findings also showed
probiotic supplementation is associated with decreased inflammation, enhanced sports performance,
and fewer gastrointestinal disturbances, suggesting that the relationship between the gut microbiome
and physical activity is mutually influential. Conclusions: The bidirectional relationship between
physical activity and the gut microbiome is exemplified by how exercise can promote beneficial
bacteria while a healthy gut microbiome can potentially enhance exercise ability through various
mechanisms. These findings underscore the importance of adding potential tailored exercise regimens
and probiotic supplementation that consider individual microbiome profiles into exercise programs.
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1. Introduction

The human gut microbiome is a complex community of microorganisms, including
bacteria, archaea, fungi, viruses, and protozoa. It comprises over a thousand bacterial
species that can significantly influence the host’s overall well-being [1,2]. In a healthy
gut, anaerobic species are typically responsible for producing anti-inflammatory short-
chain fatty acids (SCFAs) through the fermentation of complex dietary sugars [3]. SCFAs
play crucial roles in maintaining gut integrity and modulating the immune system. For
example, SCFA butyrate serves as the primary energy source for colonocytes, enhancing
epithelial barrier function and preventing the translocation of pathogens and toxins into the
bloodstream [4]. Additionally, SCFAs can influence the immune system by promoting the
differentiation of regulatory T cells, which help to maintain immune tolerance and reduce
inflammation [5]. However, the beneficial metabolic activities of these anaerobic species
are often compromised in conditions of gut dysbiosis, leading to a reduced production of
SCFAs and other byproducts [3].
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The delicate balance of microbial species and their byproducts is intricately linked
to overall health, influencing a range of diseases. Extensive research has revealed signifi-
cant associations between microbial imbalances and chronic conditions such as metabolic
syndrome, obesity, antibiotic use, and depression [6,7]. These conditions are often charac-
terized by a shift from a dominance of anaerobes to facultative species, which can disrupt
normal metabolic processes and lead to systemic inflammation [3]. Such microbial im-
balances reduce microbial diversity, which can adversely affect the gut’s functionality in
multiple ways. For instance, a less diverse microbiome diminishes the gut’s efficiency in
metabolizing nutrients, which can contribute to the energy imbalance observed in obesity
and metabolic syndrome. A diverse microbiome enhances the capacity for polysaccharide
fermentation, leading to increased SCFA production, which not only provides energy to
the host but also supports glucose homeostasis [8]. A decreased gut microbiota diversity
has been linked to a higher prevalence of coronary vascular disease and nonalcoholic fatty
liver disease [9]. Moreover, reduced microbial diversity also weakens the gut’s defensive
mechanisms against pathogenic bacteria such as Proteobacteria, further exacerbating the risk
of dysbiosis and its associated health conditions [10,11].

This interplay between microbial diversity and metabolic health is intricately con-
nected to physical activity. Regular exercise has been shown to promote microbial diversity,
facilitating a more favorable environment for beneficial microbial populations that en-
hance SCFA production. The effects of physical activity on overall well-being include
improvements in physical, mental, and gut health, achieved through complex biological
mechanisms and interactions. Regular engagement in physical exercises not only helps
to manage and reduce the risk of developing metabolic syndrome but also improves
mental health, anxiety, and depression [12,13]. Exercise regulates the immune system by
prompting an acute rise in interleukin-6 (IL-6), which helps to reduce inflammation [14].
However, extended durations of strenuous exercise can lead to a transient increase in
inflammation due to muscle tissue damage [14]. These interactions also extend to gut
health, where regular exercise is correlated with the mitigation of disease states associated
with gut dysbiosis [15–17]. The exact causal mechanisms behind these correlations are still
under investigation. Recent studies reveal that while high-intensity, long-duration exer-
cise can cause a leaky gut and dysbiosis, low-to-moderate exercise maintains microbiome
health [18]. The effects of physical activity on the microbiome vary significantly with the
type of exercise, such as endurance training, resistance training, and different sports [19].

Research demonstrates that athletes often develop distinct microbiome profiles after
exercise, marked by increased beneficial microbial species and SCFAs [20]. Additionally,
higher muscle strength in older adults is associated with specific microbiome compositions,
indicating that a healthy microbiome can contribute to maintaining physical strength and
functionality as we age [21]. Conversely, a compromised gut barrier can lead to joint
inflammation, adversely affecting movement and physical performance [22].

Despite the emerging evidence of the relationship between physical activity and
gut microbiome health, several gaps remain in the current literature. While the fact that
exercise influences microbial diversity and SCFA production is documented, understanding
specific bidirectional relationships between gut microbiome profiles and exercises of various
intensities requires a comprehensive exploration. Our review aims to integrate findings
from animal and human studies to consolidate current knowledge, identify gaps, and direct
future research toward the relationship between physical activity and gut microbiota.

2. Methods: Search Strategy and Selection Criteria

We conducted a comprehensive literature review in January 2024 to select articles
on physical exercise, sports, and gut microbiota from PubMed, Google Scholar, Scopus,
and NCBI. The search included keywords such as “physical activity”, “physical training”,
“aerobic exercise”, “high-intensity interval training (HIIT)”, “resistance training”, “ath-
letic performance”, “elite athletes”, “exercise intensity”, “gut microbiota”, “microbiota
diversity”, “probiotics”, “SCFA”, and “metabolic health”. We screened article abstracts
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to assess whether they should be included in the full-text screening. We included over
100 animal and human original research studies that specifically examined the relationship
between gut microbiota and physical exercise. Non-peer-reviewed articles and those on
relevant topics that do not directly address the review’s focus were excluded. Our narrative
review underscores the importance of physical exercise, its connection with gut microbiota,
and its beneficial effects on chronic illnesses and athletic performance. The collected data
encompass various parameters, including the type of exercise, shifts in bacterial species
composition, dosage and strains of administered probiotics, research design, study du-
ration, geographic location, sample size, participants’ age, and participants’ Body Mass
Index (BMI).

3. Gut Microbiome Effects of Exercise in Animals

Exercise is increasingly recognized as influencing the gut microbiome, impacting its
composition and function [23]. Various types of physical activity, such as aerobic exercise
and resistance training, can alter the diversity and metabolic activity of gut microbes. This
chapter explores the relationship between physical activity and the gut microbiome in
animal models (Table S1), providing a comprehensive overview of how various forms of
exercise influence the microbial communities within the gut.

3.1. Voluntary Aerobic Exercise

Voluntary aerobic exercise is increasingly recognized for its influence on gut health.
In a laboratory study by Mika et al., rats housed in cages equipped with running wheels
were allowed voluntary wheel access to perform voluntary aerobic exercise during the
experimental period [24,25]. Compared to rats who were assigned to the sedentary (control)
group, the voluntary aerobic exercise group showed an increased abundance of beneficial
bacterial genera like Lactobacillus and Bifidobacterium [25]. Lactobacillus is known for its
potential to enhance human intestinal barrier integrity. It plays a crucial role in preventing
and treating gastrointestinal infections, reducing intestinal inflammation, improving diges-
tive processes, and enhancing nutrient absorption [26]. On the other hand, Bifidobacteria has
anti-inflammatory and antiviral properties. It aids in regulating the immune system and
improves gut health by assisting in the assimilation of dietary fibers and regulating fat stor-
age [27]. The impact of voluntary aerobic exercise can extend to increasing the abundance
of other beneficial bacterial families such as Ruminococcaceae and Lachnospiraceae [24]. These
changes in the microbiome also lead to a higher overall concentration of n-butyrate, an
SCFA that confers many benefits for gastrointestinal health and immune system health [28].
Overall, the evidence suggests that voluntary aerobic exercise is related to an increase in
the abundance of numerous genera and families that have beneficial effects in enhancing
gut health and promoting the growth of healthy bacteria in the gut.

3.2. Moderate Aerobic Exercise

Building on the effects observed with voluntary aerobic exercise, moderate aerobic
exercise seems to have discernible effects on the gut microbiome of mice. In Lamoureux,
Grandy, and Langille’s controlled laboratory study, 42 mice were split into three groups:
a voluntary exercise group (10 mice), a forced exercise group (11 mice), and a sedentary
control group (21 mice). The intervention (exercise) was implemented over 8 weeks,
and the gut microbial diversity, changes in inflammatory markers, and lean body mass
were measured. The authors had not observed any significant changes in the overall
gut microbial diversity or inflammatory markers after mice underwent moderate aerobic
exercise; however, advanced computational methods such as random forest machine
learning were able to discern notable differences between the gut microbiome of mice
that moderately exercised and mice that did not [29]. The study also found increases
in the Bacteroides and Lactobacillus genus. Both voluntary and moderate aerobic exercise
increased certain useful genera in the gut microbiome, showing its beneficial effects on the
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gut microbiome; however, moderate aerobic exercise did not see as much change in gut
microbial diversity.

3.3. Intense Aerobic Exercise

In contrast to moderate aerobic exercise, intense aerobic exercise enhances the growth
of additional genera such as Firmicutes and Bacteroidetes, which in turn promote positive
health output. Research on thoroughbred racehorses has shown that intense aerobic
exercise was associated with significant shifts in the levels of the Bacteroidetes and Firmicutes
phyla [30]. Both of the phyla increased in abundance. It is noteworthy as both of these phyla
are beneficial individually, but an imbalance in their ratios (more Firmicutes as compared to
Bacteroidetes) can cause significant physiological harm [31]. The Firmicutes phylum plays an
important role in digestive health and energy harvesting [32]. Additionally, the Bacteroidetes
phylum is involved in the breakdown of complex carbohydrates, a process that requires
significant aid from bacteria [33], helping in better absorption and utilization. A recurring
theme across all forms of aerobic exercise is the increase in beneficial bacterial strains
aiding in better gut health. Voluntary aerobic exercise saw an increase in the abundance of
numerous genera and families. Moderate aerobic exercise did not see as much change in
gut microbial diversity but did see a change in some gut microbial species. Intense exercise
resulted in alterations in the two most populous good genera of the gut microbiome,
Bacteroidetes and Firmicutes.

3.4. Resistance Training

Resistance training is a type of exercise that involves performing physical activities
to increase strength. Research has shown that resistance training may confer benefits
to the gut microbiome in animal models. Research on rats has shown that resistance
training altered the gut microbiota composition, with an increase in Lactobacillus and
Bifidobacterium [34]. Resistance training protects against autoimmune diseases. This protec-
tion is achieved by changing the composition or function of the gut microbiota, particularly
Akkermansia muciniphila, which in turn leads to a reduction in the activity or presence of
T helper 17 (Th17) cells [35]. Similar to voluntary aerobic exercise, studies on resistance
training suggest that it is good for the gut microbiota and overall gut health by conferring
an increase in the abundance of the Lactobacillus and Bifidobacterium genera.

4. Effects of Different Types of Exercise on the Human Gut Microbiome

Research consistently supports that those various types of exercise influence hu-
man gut microbiome composition in ways similar to those observed in animal models
(Tables S2–S6, Figure 1). Interventions utilizing multiple exercise routines (aerobic and
resistance) had more of a significant influence on bacterial diversity than, for instance,
resistance training alone. Studies indicate that low-intensity exercise programs may have a
limited positive impact on gut microbiota diversity compared to high-intensity exercise.
However, research shows that intense, prolonged exercise could lead to an increase in
inflammation [18,36]. Regardless of the type of exercise intervention, most studies in the
tables reveal a similar trend of observations concerning the effects on the major phyla of
the gut microbiome as explored in this chapter.

4.1. Overall Gut Microbiota Diversity

Exercise has repeatedly been demonstrated to positively influence the alpha diversity
of the gut microbiota, contributing to overall gut health. For instance, swimmers who
participated in a 7-week high-intensity interval training (HIIT) program exhibited a sig-
nificant increase in alpha diversity within their fecal microbiota [37]. Similarly, a 6-week
endurance training was associated with increased beta diversity in a cohort of previously
sedentary overweight women [38]. Notably, combining multiple exercise modalities, such
as different aerobic exercises and resistance training, appears to exert a more pronounced
effect on bacterial diversity compared to employing just one type of exercise. However,
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intense, prolonged physical activities could lead to an increase in inflammation, suggest-
ing a delicate balance between exercise intensity and its health benefits [18,36]. Intense
physical activity can also increase appetite and lead to higher energy intake, often driving
athletes to consume energy-dense diets. These diets, particularly those high in fat and
refined carbohydrates, can negatively alter the gut microbiome by promoting the growth of
pro-inflammatory bacteria and reducing microbial diversity [39]. Thus, it can be concluded
that exercise is associated with human gut microbiome diversity, which can be beneficial
for overall health.

Nutrients 2024, 16, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. Effects of physical-activity-induced changes in the gastrointestinal microbiome. 

4.1. Overall Gut Microbiota Diversity 
Exercise has repeatedly been demonstrated to positively influence the alpha diversity 

of the gut microbiota, contributing to overall gut health. For instance, swimmers who par-
ticipated in a 7-week high-intensity interval training (HIIT) program exhibited a signifi-
cant increase in alpha diversity within their fecal microbiota [37]. Similarly, a 6-week en-
durance training was associated with increased beta diversity in a cohort of previously 
sedentary overweight women [38]. Notably, combining multiple exercise modalities, such 
as different aerobic exercises and resistance training, appears to exert a more pronounced 
effect on bacterial diversity compared to employing just one type of exercise. However, 
intense, prolonged physical activities could lead to an increase in inflammation, suggest-
ing a delicate balance between exercise intensity and its health benefits [18,36]. Intense 
physical activity can also increase appetite and lead to higher energy intake, often driving 
athletes to consume energy-dense diets. These diets, particularly those high in fat and re-
fined carbohydrates, can negatively alter the gut microbiome by promoting the growth of 
pro-inflammatory bacteria and reducing microbial diversity [39]. Thus, it can be con-
cluded that exercise is associated with human gut microbiome diversity, which can be 
beneficial for overall health. 

  

Figure 1. Effects of physical-activity-induced changes in the gastrointestinal microbiome.

4.2. The Role of the Firmicutes Phylum in Gut Health

Engaging in regular physical activity is correlated with an increase in the bacteria of the
dominant phylum Firmicutes, which plays a vital role in various gut functions and overall
intestinal health [40]. Notably, individuals who engage in regular physical exercise show a
marked increase in the abundance of SCFAs produced by Firmicutes, particularly those from
the Ruminococcaceae, Lachnospiraceae, and Erysipelotrichaceae families [41–43]. Ruminococcus
is a diverse genus of bacteria within the gut microbiome, encompassing both beneficial
and potentially harmful species [44]. These bacteria have been found to respond positively
to increases in physical activity, with their populations rising as a person becomes more
physically active [43,45–52]. Ruminococcus includes two species, Ruminococcus gauvreaui and
Faecalibacterium prausnitzii, both of which are associated with enhanced health outcomes.
Higher levels of Ruminococcus gauvreaui correlate with improved cardiorespiratory fitness
and greater insulin sensitivity [44]. Faecalibacterium prausnitzii produces the SCFA succi-
nate, which is a substrate for intestinal gluconeogenesis, a process that improves glucose
homeostasis [53]. Research has found that Faecalibacterium prausnitzii levels are significantly
higher in women who engaged in high physical activity in the previous week [54]. Addi-
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tionally, endurance runners were found to have higher levels of Faecalibacterium prausnitzii
and SCFA succinate compared to healthy non-athletes [51].

The Lachnospiraceae family includes SCFA-producing bacteria such as Dorea, Coprococcus,
and Roseburia [55]. Dorea produces SCFA acetate, a compound directly linked to glucose
levels and known for its positive influence on glucose metabolism [56]. Research has
shown that the abundance of Dorea is higher in individuals who engage in physical activity,
suggesting that regular exercise may amplify its beneficial effects [38,49,57]. Coprococcus
produces SCFA butyrate, which reduces the severity of atopic conditions such as atopic
dermatitis [58]. Coprococcus is significantly enriched in individuals who engage in regular
physical activity [42,47,49,59,60]. Roseburia is another genus of bacteria that produces SCFA
butyrate. The abundance of Roseburia is significantly higher in actively exercising adults,
demonstrating a beneficial impact on gut metabolism and immunity through butyrate
production. Notably, Dorea, Coprococcus, and Roseburia have also been found to increase
following a 21.1 km athletic marathon or a 3748.91 km rowing event lasting 33 days and
22 h [47,57].

Other Firmicutes have been associated with enhanced gut health and improved
metabolic responses, including species like Streptococcus, Romboutsia, Holdemanella,
Ruminococcaceae, Blautia, Ruminiclostridium, Clostridium phoceensis, Streptococcus suis,
Clostridium bolteae, Lactobacillus, Anaerostipes hadrus, and Veillonella. Studies have shown
that Streptococcus and Romboutsia are more abundant in physically active adults, suggest-
ing a link between these bacteria and regular physical activity [61–63]. Notably, specific
Streptococcus species have demonstrated anti-inflammatory properties in vitro by signifi-
cantly reducing cytokines such as TNF-α, IL-1β, and IL-6 [47,50,52].

Holdemanella levels have been observed to increase dramatically following a weeks-
long exercise intervention [64]. Research has shown that Holdemanella can mitigate hy-
perglycemia by restoring levels of the hormone GLP-1, which is crucial for blood sugar
regulation [65]. Studies involving athletes have revealed increases in Ruminococcaceae,
Blautia, Ruminiclostridium, and Clostridium phoceensis after moderate-intensity exercises,
such as treadmill workouts [50].

Further studies focusing on elite athletes, including those from 16 different sports,
have indicated a considerable predominance of Firmicutes members like Streptococcus suis,
Clostridium bolteae, Lactobacillus, and Anaerostipes hadrus in those participating in mod-
erately active sports, such as fencing [62]. High-intensity sports participants, such as
field hockey and rowing athletes, show higher levels of Lactobacillus acidophilus and
Faecalibacterium prausnitzii [62].

Observational and interventional studies have consistently shown that physical ac-
tivity increases SCFA-producing bacteria like Veillonella [45,63,66–68]. This is particularly
noteworthy as Veillonella, a lactate-utilizing species when colonized in mice, has been
shown to improve exercise performance. Additionally, Veillonella is abundantly found in
the gut microbiomes of elite athletes post-marathon, highlighting its potential benefits to
athletic performance [69].

These findings underscore the profound impact of physical activity on the gut micro-
biome. Maintaining an active lifestyle can significantly alter and potentially enhance the
growth of Firmicutes, which are associated with promoting better health and
athletic performance.

4.3. The Role of the Bacteroidetes Phylum in Gut Health

Bacteroidetes are a group of gut commensals that play a crucial role in protecting
against pathogens and supplying nutrients to other microbial residents within the gut
ecosystem [70]. Recent studies have explored the relationship between physical activity and
the presence of specific Bacteroidetes species, including Prevotella intermedia, Bacteroides caccae,
and Parabacteroides. For instance, individuals engaging in high-intensity sports exhibit
significantly higher levels of Prevotella intermedia and Bacteroides caccae [37]. Additionally,
Parabacteroides are found in higher abundance in physically active adults [71,72]. A recent
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systematic review also highlighted that sustained exercise routines are associated with
notable increases in Prevotella levels [73]. This relationship underscores the dynamic nature
of Bacteroidetes, which can adapt and shift in response to exercise duration and intensity.

4.4. The Role of the Verrucomicrobia Phylum in Gut Health

Several studies reported a specific increase in the species Akkermansia muciniphila of
the Verrucomicrobia phylum [54,61,67,74]. Akkermansia muciniphila has been shown to play a
protective role in preventing various metabolic disorders, including diabetes. [61]. Zhong
et al. studied the effects of aerobic and resistance exercise, finding a rise in SCFA-producing
bacteria linked with anti-inflammatory effects such as Verrucomicrobia [75].

4.5. The Role of the Actinobacteria Phylum in Gut Health

Actinobacteria are one of the four main phyla of the human gut microbiome, and, de-
spite their tiny number, they play an important role in gut homeostasis [76] Bifidobacterium,
a genus of the Actinobacteria phylum, stands out due to its prevalence in physically active
adults [54,62,64,74,77–79]. Studies have shown that engaging in high-intensity activity can
lead to significantly higher levels of Bifidobacterium [48].

Bifidobacterium produces acetate, a short-chain fatty acid (SCFA) that protects intestinal
epithelial cells from apoptosis triggered by the O157 toxin of Escherichia coli [80]. Acetate
also plays a crucial role in inducing goblet cell differentiation, mucin secretion, and the
sialylation process, all of which are essential for maintaining a healthy and functional gut
barrier [80,81]. Bifidobacterium also produces lactate, which further stimulates through
cross-feeding the production of other beneficial SCFAs such as butyrates by Lactobacilli,
Bacteroides, or certain Enterobacteria [82].

4.6. The Role of the Proteobacteria Phylum in Gut Health

Proteobacteria, which include species such as Escherichia coli, play a critical role in
indicating disturbances within the gut microbiome [83]. An imbalance characterized by
elevated levels of Proteobacteria is often linked to poorer gut health and can exacerbate con-
ditions such as chronic intestinal inflammation in mice [84]. Many studies have shown that
the abundance of Proteobacteria decreases with moderate physical activity [38,48,75,78,85,86].
Zhong et al., who studied the effects of aerobic and resistance exercise, also found a de-
crease in pro-inflammatory bacteria such as Proteobacteria [75]. However, elite athletes
participating in intense exercise showed a modest rise in Proteobacteria, which might be
attributed to adverse effects on the gut microbiota caused by overloaded training [52,54,87].
Tabone et al., who studied fecal samples from athletes who completed a treadmill exercise,
found an increase in Proteobacteria’s Escherichia coli species. [50].

5. Probiotic Supplementation in Sports Performance

Probiotic supplementation has garnered significant attention in sports science for
its potential to enhance athletic performance through improved gut health and various
physical parameters (Table S7; Figure 2). Certain sports supplements like whey protein,
polyphenols, and other compounds have also been shown to interact with the gut micro-
biota by promoting the growth of healthy species and limiting species producing toxic
metabolites [88]. Creatine, a popular dietary supplement among athletes, has been shown
to increase Bacteroides and Firmicutes species while decreasing Proteobacteria, Fusobacteriota,
Crenobacter, and Shewanella species in animal models [89]. Intense exercise can lead to
injuries, often requiring antibiotic treatment. Antibiotics, while necessary for treating
infections, can disrupt the gut microbiome [90], potentially counteracting the benefits of
probiotic supplementation. This dual impact on the gut highlights the need for a more
comprehensive approach to managing gut health in athletes, particularly those undergoing
bacterial infection treatment.
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A blend of Bifidobacterium and Lactobacillus strains at high doses experienced increased
VO2 max and extended exercise durations before failure, alongside reduced heart rates
during activity [91]. Elite cyclists taking a probiotic mixture of Bifidobacterium animalis and
Lactobacillus helveticus experienced significantly less nausea, vomiting, and inflammation
during training [92]. Male runners on a 45 billion CFU multi-strain probiotic regimen for
four weeks demonstrated extended running times before fatigue under heat conditions [93].
Elite rugby players consuming a diverse probiotic regimen (including Lactobacillus aci-
dophilus, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium lactis, Streptococcus
thermophilus, and Saccharomyces boulardii) reported alleviated leg heaviness and muscle
pain, which likely contributed to improved performance and recovery [94].

A study was conducted on trained volunteer athletes who were given a combination of
probiotics including Bifidobacterium bifidum, Bifidobacterium lactis, Enterococcus faecium, Lacto-
bacillus acidophilus, Lactobacillus brevis, and Lactococcus lactis at a dose of 1 × 1010 CFU/day
for 12 weeks. The researchers found an increase in the ratio of subjects in the control group
who had one or more upper respiratory tract infection (URTI) symptoms, suggesting that
the intervention group had a better immune response and potentially better overall health
and endurance [95]. Elite athletes administered Lactobacillus helveticus, which significantly
reduced the duration and severity of upper respiratory tract infection (URTI) symptoms
and led to them experiencing an increased sense of energy [96]. Division I female ath-
letes supplementing with Bacillus subtilis reported improvements in strength measures
and reductions in body fat percentage, indicating enhanced physical performance and
recovery capabilities [97]. Badminton players consuming Lactobacillus casei with orange
juice daily showed improvements in aerobic capacity [98]. Athletes supplemented with
Lactococcus lactis exhibited increased CD86 expression and decreased cumulative days of
fatigue, indicating improved immune function and reduced fatigue, which is particularly
beneficial for endurance sports [99].

Marathon runners taking probiotics containing B. animalis, B. bifidum, and L. acidophilus
for 28 days reported fewer gastrointestinal symptoms and enhanced gut health during stren-
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uous exercise [100]. Probiotics may mitigate exercise-induced oxidative damage and inflam-
mation, which are integral to maintaining athletic performance. Endurance-trained men
taking multiple probiotics containing B. bifidum, B. lactis, E. faecium, L. acidophilus, L. brevis,
and Lactococcus lactis exhibited reduced markers of inflammation and oxidative stress, along
with decreased fecal zonulin levels, suggesting improved intestinal barrier function [101].
Athletes consuming Lactobacillus paracasei and Lactobacillus rhamnosus showed increased
plasma antioxidant levels and passive reactive oxygen species (ROS) [102]. Triathletes
administered Lactobacillus plantarum demonstrated significant reductions in inflammatory
markers such as TNF-α, interleukin-6 (IL-6), and interleukin-8, along with increased levels
of anti-inflammatory IL-10 and plasma branched-chain amino acids [103]. By minimizing
inflammation, probiotics enable athletes to maintain higher levels of performance and
comfort during training and competitions.

Probiotic supplementation can alter the intestinal flora, alleviating gastrointestinal
issues and enhancing athletic performance as discussed in an earlier section. It also reduces
fatigue signs and muscular soreness, which indirectly contributes to athletic performance.
It also reduces the immune-suppressive effects and upper respiratory tract infections
induced by vigorous physical activity as discussed. Probiotics can decrease the expression
of nuclear factor kappa β (NF-κB) and pro-inflammatory cytokines while increasing levels
of anti-inflammatory cytokines [104]. Anti-inflammatory cytokines help to reduce muscle
inflammation and degeneration. Probiotics also influence the function of macrophages,
which are crucial for muscle healing [105]. During physical exercise, muscle fibers generate
myokines such as anti-inflammatory IL-10 and IL-6, which also possess systemic anti-
inflammatory properties [106].

Oxidative stress and exercise-induced hyperthermia can lead to gastrointestinal issues
during endurance exercise. Probiotics can help maintain intestinal integrity by enhancing
the uptake of glucose and amino acids during extended physical activity. After physical
activity, probiotics that include species such as L. paracasei can enhance the absorption
of branched-chain amino acids, which are essential for muscle growth and repair [107].
Probiotics containing L. plantarum may improve iron utilization, which boosts aerobic
capacity and endurance by accelerating erythropoiesis [108]. Additionally, L. plantarum sup-
plementation can enhance skeletal muscle glycogen storage, providing a readily available
energy source during physical activity and increasing endurance [109]. However, research
on the potential of probiotics in nutritional metabolism related to exercise is still limited.

6. Potential Mechanisms of Action

The bidirectional association between physical activity and gut microbiota presents
several potential implications for general health and sports nutrition. Exercise can improve
intestinal health and metabolism, while probiotics can impact muscle function and athletic
performance (Figure 3). This section delves into the latest research to explore two main
areas: the potential mechanisms by which physical activity influences gut health and how
the gut microbiome affects muscle metabolism and overall health.
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6.1. Potential Mechanisms of Physical Activity in Gut Health

The link between exercise and the gut microbiota is multifaceted and bidirectional,
with considerable effects on metabolic and muscle functioning, supporting the idea of a
gut–muscle axis. This section will explore the mechanisms of how physical activity can
influence the gut microbiota (Figure 3).

Exercise can impact gut health through several interconnected mechanisms. During
exercise, mitochondria in skeletal muscles produce reactive oxygen and nitrogen species
(RONS) [110]. RONS can trigger immune responses in the cells lining the colon through
serotonin signaling pathways [111]. The effectiveness of the immune response is closely
linked with the development of the gut microbiota [112]. Moderate aerobic exercise boosts
the production of immunoglobulin A in the gastrointestinal tract, enhancing the gut micro-
biota’s ability to prevent intestinal pathogen colonization [113]. Regular moderate-intensity
exercise, particularly resistance training, reduces circulating levels of lipopolysaccharides
(LPS) and decreases the expression of Toll-like receptors [114]. This reduction is associated
with decreased inflammation and improved gut barrier function [115].

Exercise has been shown in studies to have an essential role in controlling bile acid
pools, which promotes the health of the host gut microbiota [116]. Bile salt metabolism
is an essential component of the gut microbiota. The secondary bile acids generated by
the microbiota are detected by the tissues via the activation of the Farnesoid X receptor
(FXR) and the G-protein-coupled bile acid receptor, which play critical roles in energy
metabolism. The gut microbiota can efficiently control the body’s metabolic capacity and
muscle anabolism by inhibiting FXR [117]. Hydrogen sulfide is another messenger gener-
ated by cysteine breakdown by gut microbiota that controls the metabolism of intestinal
epithelial and immunological cells [118]. Hydrogen sulfide may be a possible target for
enhancing myogenesis and improving muscle function. Supplementation with sodium hy-
drosulfide stimulates myogenic gene expression and improves the regeneration of muscles
in mice [119].
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6.2. Potential Mechanisms of the Gut Microbiome in Muscle Metabolism and Health

The gut microbiome regulates muscle metabolism via pathways involving AMP-
activated protein kinase (AMPK) and downstream signaling pathways such as the mam-
malian target of rapamycin (mTOR). These pathways control a variety of physiological
activities like glucose, protein, and lipid synthesis [120]. Studies suggest that SCFAs can
activate muscle AMPK directly by raising the adenosine monophosphate/triphosphate
(AMP/ATP) ratio [121].

The gut microbiome significantly influences muscle metabolism through critical path-
ways such as AMP-activated protein kinase (AMPK) and the mammalian target of ra-
pamycin (mTOR). Insulin Growth Factor (IGF-1), a primary modulator of bone and muscle
development, has a considerable impact on the mTOR pathway, which is critical for muscle
synthesis [122]. These pathways thus are pivotal in regulating essential physiological
functions, including glucose, protein, and lipid synthesis [120]. Physical exercise benefits
from this synthesis as it enhances energy production and metabolic efficiency.

A strong correlation exists between SCFAs, produced by gut bacteria, and muscular
strength [121,123]. SCFAs can directly activate AMPK in muscles [121]. This activation is
beneficial during physical exercise as it plays an important role in muscle development and
growth [124]. Mice treated with antibiotics to disturb the gut microbiome demonstrated
reduced soleus and plantaris hypertrophy after wheel running as compared to those not
treated [125]. One notable SCFA, butyrate, promotes the release of glucagon-like peptide-1
(GLP-1) from colonic cultures, suggesting that it could play a role in reducing muscle
atrophy [126]. Butyrate specifically supports aerobic metabolism in skeletal muscles by
boosting mitochondrial activities such as increasing oxidative phosphorylation, further
underscoring the importance of SCFAs in muscle health and performance [127].

The gut microbiota plays a significant role in protein metabolism. In the small intestine,
bacteria such as Clostridium, Bacillus, Streptococcus, and Proteobacteria are among the most
abundant species involved in amino acid fermentation, while Clostridia is particularly
prevalent in the large intestine [128]. Additionally, these bacteria can enhance the host’s
ability to absorb amino acids. For instance, Bacillus coagulans can increase amino acid levels
in the serum following milk protein consumption [129].

The gut microbiome can affect the production of hormones such as insulin and andro-
gens, which are essential for protein synthesis and muscle development [130]. Minimal
or excessive physical activity can lead to a disturbed gut microbiome, which can have
profound effects on these processes. For instance, the bacterium Bacteroides, known for its
pro-inflammatory properties, promotes insulin resistance by enhancing polysaccharide
fermentation, lipogenesis, and the development of host adipose tissue [40]. Elevated levels
of Bacteroides are commonly observed in individuals with hyperandrogenic conditions,
such as Polycystic Ovary Syndrome [131]. Recent studies have shown that androgen insuf-
ficiency, induced by castration, not only alters the gut flora but also increases the risk of
obesity and the loss of thigh muscle in mice [132]. Interestingly, the use of antibiotics has
been found to minimize these alterations [132].

Recent research has emphasized the gut–brain–muscle axis, which connects a healthy
gut with athletic performance. Research in animal models suggests that the gut microbiota
may influence mood and stress by interacting with the central nervous system. In mice, it
has been found that intestinal microbiota’s fatty acids stimulate afferent sensory neurons,
which signal the brain to suppress monoamine oxidase (MAO) expression during exercise.
This suppression leads to increased dopamine signaling, which in turn motivates exercise
behaviors and enhances performance. [133].

Stress initiated by exercise can stimulate the hypothalamic–pituitary–adrenal axis,
resulting in the production of cortisol and noradrenaline, both of which affect the gut mi-
crobiota [134]. The production of corticotropin-releasing factor also alters gastrointestinal
function, influencing inflammatory processes, colonic transit duration, mucosal secretory
functions, barrier functions, and the growth of intestinal tract bacteria [135]. Additionally,
stress can increase plasma noradrenaline levels, affecting the gut microbiota and increasing
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the aggressiveness of infectious enteric bacteria [136]. Excessive physical activity can raise
body temperature and cause extreme heat stress, negatively impacting the gastrointesti-
nal microbiome. It reduces gut blood flow, resulting in relative ischemia and increased
intestinal permeability, which may allow bacteria to migrate from the intestines and cause
gastrointestinal issues [137].

7. Future Research and Perspectives

While probiotics have shown beneficial effects for athletes, our analysis identified
several limitations in the studies that could potentially bias our analyses. Research into
the modulation of the gut microbiome through probiotics has utilized a variety of strains,
dosages, and supplementation durations, complicating direct comparisons and the ability
to draw definitive conclusions about the most effective strains or dosages. Furthermore, the
lack of standardized outcomes across these studies adds another layer of complexity. While
some investigations focus on aerobic capacity and VO2 max, others might assess muscle
soreness or gastrointestinal symptoms. This inconsistency in measured outcomes hampers
the establishment of a consistent set of metrics for evaluating the efficacy of probiotic
supplementation. Additionally, variations in demographic characteristics, such as age, sex,
and baseline health status, across studies could influence outcomes and their applicability.
Notably, most studies administering probiotics have been conducted with male athletes,
with fewer focusing on female athletes, potentially affecting the interpretations due to
physiological differences between genders.

Current research predominantly focuses on bacteria within the gut microbiota, yet
this complex ecosystem comprises a broader array of microbial taxa, including fungi and
archaea. To fully understand the interactions between physical activity and gut health,
future research should expand its scope to assess these diverse microbial communities. This
approach will help to identify the most beneficial types of exercise prescriptions tailored
to individual microbiome profiles. Additionally, reporting microbiome data at the species
level, rather than at the broader phylum level, would provide more precise insights that
are crucial for developing targeted clinical interventions. This level of detail is essential for
translating microbiome research into practical health solutions.

The impact of physical activity on the gut microbiome remains uncertain and varies
substantially across studies. To enhance reliability and precision, standardized study
designs such as RCTs with larger sample sizes are necessary. Many current cross-sectional
studies rely on self-reported questionnaires that might include biases and inaccuracies that
affect the research results. More comparable results regarding the effects of physical activity
on the gut microbiome could be achieved by employing more objective measurement
techniques like wearable fitness trackers. Rather than measuring vastly different outcomes,
there should be a core set of metrics that all studies should include, such as microbial
diversity changes and the intensity of exercise, to allow for better cross-study comparisons.
These studies should also consider potential confounding factors such as BMI, nutrition,
and biotic consumption to better isolate the specific effects of physical activity. A broader
range of environmental factors, such as geographic location, pollution, and antibiotic use
can also profoundly impact gut health. By controlling for these variables, researchers can
better isolate the effects of probiotics or physical activity on the microbiome. Future multi-
omics studies could provide a holistic view of the biological effects of physical activity,
which will help to unravel the numerous genes and molecular pathways that are altered.

8. Conclusions

Research suggests that the impact of physical activity on gut microbiota differs based
on the type, intensity, and duration of exercise. Regular exercise enhances the growth of
beneficial bacteria and short-chain fatty acids (SCFAs), improving gut health and potentially
warding off metabolic diseases. Furthermore, exercise boosts microbial diversity, which
is vital for both metabolic and immune health, and enhances an anti-inflammatory state
throughout the body. The alteration of the beneficial gut microbiota with exercise and
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probiotics increases compounds including SCFAs, bile acids, and hydrogen sulfide, which
can improve muscle mass and exercise endurance. Furthermore, research indicates that gut
flora may play a crucial role in macronutrient absorption and modulate neuroendocrine
pathways, resulting in enhanced gut health, increased athletic ability, and fewer health
issues. More research on metabolic and physiologic pathways is needed to better describe
the relationship between physical activity and gut microbiota.
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