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Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer

with a 5-year survival rate of 7.2% in China. However, effective

approaches for diagnosis of PDAC are limited. Tumor-originating genomic

and epigenomic aberration in circulating free DNA (cfDNA) have poten-

tial as liquid biopsy biomarkers for cancer diagnosis. Our study aims to

assess the feasibility of cfDNA-based liquid biopsy assay for PDAC diag-

nosis. In this study, we performed parallel genomic and epigenomic profil-

ing of plasma cfDNA from Chinese PDAC patients and healthy

individuals. Diagnostic models were built to distinguish PDAC patients

from healthy individuals. Cancer-specific changes in cfDNA methylation

landscape were identified, and a diagnostic model based on six methylation

markers achieved high sensitivity (88.7% for overall cases and 78.0% for

stage I patients) and specificity (96.8%), outperforming the mutation-based

model significantly. Moreover, the combination of the methylation-based

model with carbohydrate antigen 19-9 (CA19-9) levels further improved

the performance (sensitivity: 95.7% for overall cases and 95.5% for stage I

patients; specificity: 93.3%). In conclusion, our findings suggest that both

methylation-based and integrated liquid biopsy assays hold promise as

non-invasive tools for detection of PDAC.

Abbreviations

AF, allele fractions; AUC, area under the curve; CA 19-9, carbohydrate antigen 19-9; cfDNA, circulating cell-free DNA; CGI, CpG islands; CH,

clonal hematopoiesis; ctDNA, circulating tumor DNA; CV, cross-validation; DMR, differentially methylated regions; GO, Gene ontology;

HMG, high mobility group; iAUC, integrated AUC; MeDEG, methylated-differentially expressed genes; MPS, Methylation-based prognostic

scores; NAT, normal tissue adjacent to tumor; NGS, next-generation sequencing; PDAC, pancreatic ductal adenocarcinoma; RFE, recursive

feature elimination; ROC, Receiver operation characteristics; RRBS, reduced-representation bisulfite sequencing; UMI, unique molecular

identifier; UTRs, untranslated regions; WBC, white blood cells.

Molecular Oncology 18 (2024) 2801–2813 ª 2024 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

2801

https://orcid.org/0000-0002-6977-6099
https://orcid.org/0000-0002-6977-6099
https://orcid.org/0000-0002-6977-6099
https://orcid.org/0000-0001-6713-1185
https://orcid.org/0000-0001-6713-1185
https://orcid.org/0000-0001-6713-1185
https://orcid.org/0000-0002-6761-1936
https://orcid.org/0000-0002-6761-1936
https://orcid.org/0000-0002-6761-1936
https://orcid.org/0000-0001-5820-6843
https://orcid.org/0000-0001-5820-6843
https://orcid.org/0000-0001-5820-6843
mailto:jingang@smmu.edu.cn
mailto:wangyuying@genomics.cn
mailto:lou.wenhui@zs-hospital.sh.cn
http://creativecommons.org/licenses/by/4.0/


(Received 5 August 2023, revised 29

February 2024, accepted 15 March 2024,

available online 1 April 2024)

doi:10.1002/1878-0261.13643

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the major

histological type of pancreatic cancer, characterized by

its highly aggressive nature. It ranks as the sixth leading

cause of cancer-related death in China, with an overall

5-year survival rate of 7.2% [1]. The poor prognosis was

primarily due to diagnosis at an advanced stage and

rapid progression. Since PDAC usually presents asymp-

tomatic in its early stage, more than 85% of PDAC

patients are diagnosed at advanced stages [2], preclud-

ing the possibility of curative surgical resection.

While serum carbohydrate antigen 19-9 (CA19-9)

has been commonly used as a biomarker for PDAC

diagnosis, its limited sensitivity in early-stage patients

and potential false positivity in non-cancerous condi-

tions limits its clinical utility for PDAC detection. Ele-

vated CA19-9 level was also observed in the patients

with obstructive jaundice, other gastrointestinal tumors

and even in healthy individuals [3]. A previous

meta-analysis reported a pooled sensitivity of 78.2%

and a specificity of 82.8% for PDAC detection [4].

Therefore, there is a pressing need for novel detection

approaches with improved performance.

Recent technological advances in detection of circulat-

ing tumor DNA (ctDNA), the tumor-derived fraction of

circulating cell-free DNA (cfDNA), provided new oppor-

tunities for non-invasive cancer diagnosis [5,6]. As a bio-

marker, ctDNA harbors valuable genomic and

epigenomic information of cancer, including sequence

alteration, copy number variation, changes in methylation

landscape, and cancer-specific fragmentation patterns [6].

Recent evidence showed that simultaneous detection of

multiple analytes in blood may enhance non-invasive can-

cer detection [5,6]. In this study, we aimed to identify

novel markers in ctDNA and compared the performance

of different analytes for PDAC detection.

2. Materials and methods

2.1. Study recruitment and sample collection

PDAC patients were recruited from the Zhongshan

Hospital, Fudan University (cohort 1), and Changhai

Hospital Affiliated to Navy Medical University (cohort

2). Healthy individuals were recruited from the Fifth

Affiliated Hospital of Southern Medical University

(cohort 3) and BGI (cohort 4) during March, 2019, to

November, 2020. Written informed consent was

obtained from all participants. The study design con-

formed to the standards set by the Declaration of Hel-

sinki and was approved by the ethics committees of the

Zhongshan Hospital (B2019-297) and Shanghai Chan-

ghai Hospital ethics committees (CHEC2018-039).

Blood was drawn before tumor resection or receiv-

ing anti-tumor treatment for PDAC patients and at

recruitment for healthy participants. PDAC tissue and

normal tissue adjacent to tumor (NAT) for methyla-

tion sequencing were collected during surgery.

2.2. Library preparation and sequencing

Library preparation and sequencing approaches had been

described previously [7]. Briefly, ultra-deep targeted

next-generation sequencing (NGS) was conducted using a

duplex unique molecular identifier strategy to suppress

errors. A panel covering exons of 139 cancer driver genes

(Table S1; Fig. S1), selected based on TCGA [8] and COS-

MIC [9] databases, was used. For targeted bisulfite

sequencing, bisulfite-treated single-stranded DNA libraries

were constructed and followed by enrichment using Seq-

Cap Epi CpGiant Probes (Roche, Madison, WI, USA).

The captured libraries were amplified and sequenced on

MGISEQ-2000 using 100 bp paired-end sequencing.

2.3. Mutation-based diagnostic models

Variants were called and filtered as described [7,10]. Sam-

ples with targeted sequencing data were randomly divided

into training set and testing set by a 7 : 3 split. PDAC

diagnostic classifiers were built and validated using a vec-

tor machine algorithm by CARET package in R [11].

2.4. Identification of differentially methylated

regions (DMRs)

A Bayesian hierarchical model with smoothing was

applied to 32 pairs of pancreatic cancer tissue and
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matched NAT to identify DMRs under the following

criteria: the methylation difference between cancer and

normal tissues > 0.2, region size ≥ 50 bp, containing

≥ 3 CpG sites, and ≥ 80% differentially methylated

CpG sites [12]. DMRs were annotated and enriched

using the R package of ANNOTATR [13] and CLUSTERPRO-

FILER [14], respectively.

2.5. Methylation-based diagnostic models and

DMR feature selection

A three-step feature selection approach was applied to

identify methylation-related features. We first identified

all relevant features by Boruta algorithm and then

selected minimal-optimal features using recursive fea-

ture elimination (RFE). DMR markers showing con-

cordant changes between plasma samples and tissue

samples were finally selected. Random forest models

based on selected features were trained through

10-fold cross-validation (CV) in the training set and

validated in the testing set.

To construct a multi-omics model, random forest

models combining mutational status and methylation

were first trained and validated in cfDNA samples

profiled with complete measurement. Secondly, to

combine CA19-9 levels with the cfDNA methylation-

based model, samples were predicted positive if either

the methylation-based model generated a positive pre-

diction or the CA19-9 levels was greater than

37.0 U�mL�1. The level of CA19-9 was measured in

each institute using COBAS e601 (Roche Diagnostic

System, Basel, Switzerland) with Elecsys CA19-9

reagents (Roche).

2.6. Statistical analyses

Wilcoxon-Mann–Whitney test was used to compare dif-

ferences between groups when the normality assumption

was violated, and considered as statistically significant

at a two-sided P-value < 0.05. Receiver operation char-

acteristics (ROC) curves and corresponding area under

the curve (AUC) were applied to assess the performance

of diagnostic model. Statistical analyses and data visual-

ization were performed using R statistical project (ver-

sion 3.5.0) and PYTHON (version 3.7).

3. Results

3.1. Study design and participants

In this study, we performed a comprehensive analysis

of genomic and epigenomic alterations in plasma

cfDNA of PDAC patients and healthy individuals

(Fig. 1). Blood samples were collected from 262 PDAC

patients (cohort 1: n = 169; cohort 2: n = 93) and 216

healthy controls (cohort 3: n = 84; cohort 2: n = 132).

A slightly older median age was observed in PDAC

patients (median = 64) than healthy controls

(median = 58). Notably, 60% of the PDAC patients

were diagnosed at early stages (AJCC stage 0-II)

(Table 1).

3.2. Mutation spectra of plasma cfDNA

To detect genomic sequence alterations, targeted

ultra-deep NGS was performed on plasma cfDNA

extracted from 163 PDAC patients (all from cohort 1)

and 163 healthy controls using a panel covering exons of

139 cancer driver genes [7]. A median de-duplication

depth of 4467X were achieved. In total, 242 mutations

were detected in 113 (69.3%) PDAC patients and 56

mutations were identified in 48 (29.4%) healthy controls

(Fig. S2).

To control for the confounding effect of clonal hema-

topoiesis (CH) on cfDNA variant detection, we also

sequenced gDNA of matched WBCs from cfDNA

mutation-positive participants. Shared non-synonymous

variants were found in 26 (23.0%) PDAC and 7

(14.6%) healthy participants with highly correlated

allele fractions (AFs, Pearson R2 = 0.96, Fig. 2A). The

most frequently mutated genes were TP53 (22.8%) and

GNAS (11.4%). It highlighted the necessity of perform-

ing matched WBC sequencing when analyzing cfDNA

variants in liquid biopsy assays.

After filtering for WBC-shared variants, 212 variants

remained in 102 (62.6%) PDAC cfDNA samples, with

AFs ranging from 0.03% to 17.3% (median: 0.27%).

KRAS (36%) and TP53 (26%) were found to be the

most frequently mutated genes in PDAC plasma

cfDNA (Fig. 2C,E), which was consistent with the

mutation spectrum in PDAC tissue from TCGA

(Fig. S3). For healthy individuals, 49 mutations

remained in 41 (25.1%) participants, with AFs ranging

from 0.05% to 0.78% (median: 0.13%, Fig. 2B,D).

Mutant AFs of cfDNA and tumor burden were signifi-

cantly higher in PDAC than healthy controls. In

PDAC patients, significantly higher AFs were observed

in patient with greater tumor diameter, and in stage

III-IV patients (Fig. S4).

From the PDAC cfDNA variants, we identified 10

recurrent mutational hotspots [15] (Fig. 2F, Table S2),

a pattern highly consistent with the PDAC mutational

hotspots represented in the COSMIC database [9]

(Fig. S5). In total, 75 PDAC patients (46.0%) har-

bored hotspot mutations, with the highest prevalence

in KRAS p.G12 (n = 56) and TP53 p.R249 (n = 9). A
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Table 1. Participants characteristics by assay type. Categorical variables were presented as number (percentage); Continuous variables

were presented as median (interquartile range).

Mutation Methylation Mutation + methylation Total

PDAC Healthy PDAC Healthy PDAC Healthy PDAC Healthy

Gendera

Male 91 (55.83%) 69 (42.33%) 154 (60.39%) 86 (41.15%) 87 (55.77%) 67 (42.95%) 158 (60.31%) 88 (40.74%)

Female 72 (44.17%) 94 (57.67%) 101 (39.61%) 118 (56.46%) 69 (44.23%) 89 (57.05%) 104 (39.69%) 123 (56.94%)

Age 64 (56–69) 58 (53–64) 64 (57–69) 58 (53–64) 64 (56–69) 58 (53–64) 64 (57–69) 58 (53–64)

Stage

0 2 (1.23%) 2 (0.84%) 2 (1.23%) 2 (0.75%)

I 61 (37.42%) 76 (31.93%) 57 (35.19%) 80 (30.08%)

II 35 (21.47%) 54 (22.69%) 35 (21.60%) 77 (28.95%)

III 13 (7.98%) 33 (13.87%) 14 (8.64%) 34 (12.78%)

IV 52 (31.90%) 73 (30.67%) 54 (33.33%) 73 (27.44%)

CA19-9 149.1 (39.75–598) 7.8 (5.08–11.39) 149.1 (39.75–598) 7.8 (5.08–11.39) 149.1 (39.75–598) 7.8 (5.08–11.39) 149.1 (39.75–598) 7.8 (5.08–11.39)

a

Gender information was missing for 5 healthy controls.

Fig. 1. Flowchart of the study design. Analyses marked with asterisk were conducted in samples with complete measurements. CA19-9,

carbohydrate antigen 19-9; cfDNA, circulating cell-free DNA; DMR, differentially methylated regions; NAT, normal tissue adjacent to tumor;

PDAC, pancreatic ductal adenocarcinoma.
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much lower fraction of healthy control plasma har-

bored these hotspot mutations (n = 7; 4.3%).

3.3. Diagnostic model based on mutation status

We next attempted to build a diagnostic classifier to dis-

tinguish PDAC from healthy plasma based on cfDNA

mutational profile. In the training set (PDAC: n = 114,

healthy control: n = 114), the model based on top 10

most frequently mutated genes generated an AUC of

0.746 (sensitivity: 53.3%, specificity: 96.5%; Fig. 2G).

However, the top two mutated genes, KRAS and TP53,

showed much higher feature importance (Fig. S6), lead-

ing to a comparable model based on these two genes

with an AUC of 0.723 (sensitivity: 47.2%, specificity:

98.2%). Meanwhile, a model containing the top 10

recurrent hotspots achieved a similar performance, with

an AUC of 0.716 (sensitivity: 43.9%, specificity:

99.1%). In the testing set (PDAC: n = 49, healthy con-

trol: n = 49), these three models achieved sensitivity of

48.9%, 49.0%, and 46.9%, respectively, at the same

specificity of 95.9% (Fig. 2G). All models showed over-

all higher sensitivities in later stages than early stages

(Fig. 2H). Overall, the classification models based solely

on cfDNA mutation status had limited capability in dif-

ferentiating PDAC and healthy plasma, especially for

early-stage PDAC.

3.4. Identification of PDAC-associated

epigenomic signatures

To characterize epigenomic abnormalities associated

with PDAC, we analyzed 5-mC methylation profile of

32 pairs of PDAC and NAT using targeted bisulfite

sequencing, covering 5.6 million of CpG sites genome-

wide. A total of 1173 DMRs were identified, with a

median size of 208 bp (Fig. S7), of which 538 were

hypermethylated DMRs (increased methylation in can-

cer tissue vs. normal; hyper-DMRs) and 635 were hypo-

methylated DMRs (hypo-DMRs) (Fig. 3A,B). These

DMRs were annotated to various genic regions, with

nearly 37% of the DMRs being annotated to introns,

followed by exons (17.0%), intergenic (14.0%), the

upstream of a transcriptional start site (11.0%), pro-

moters (9.7%), 50 untranslated regions (UTRs, 7.6%)

and 30 UTRs (3.7%). Annotation by CpG regions

showed that hyper-DMRs were more likely to be anno-

tated to CpG islands (CGI), while hypo-DMRs were

more likely to be annotated to CpG open sea.

Hypo-DMRs were more likely to be enriched in

enhancers than hyper-DMRs (Fig. 3C). GO analysis of

DMR-associated genes revealed that hyper-DMRs were

significantly enriched for genes involved in transcription

activation and high mobility group (HMG)-box domain

binding activity. Therefore, hypermethylation of these

DMRs may initiate systematic transcriptional aberra-

tion in PDAC. On the other hand, hypo-DMRs

appeared to be significantly enriched for genes involved

in actin binding and cell adhesion (Fig. 3D), possibly

associated with the activation of fibroblasts/stromal

cells in pancreatic tumors [16].

3.5. PDAC diagnostic models based on DMR

markers

We next performed cfDNA methylation profiling for

255 PDAC cancer plasma and 209 healthy control

plasma samples using targeted bisulfite sequencing.

Notably different methylation patterns between PDAC

and healthy plasma cfDNA were observed for 1173

DMRs identified from tissue analysis (Fig. S8). Inter-

estingly, while the majority of hyper-DMRs showed

higher methylation levels in cancer plasma than in

healthy plasma as expected, the majority of hypo-

DMRs surprisingly also showed increased methylation

levels overall in cancer plasma. This observation was

consistent with a previous report which showed that

tissue-derived methylation signature was abundant in

plasma from cancer patients [17].

Random forest models were then trained to classify

PDAC plasma from healthy controls based on DMR

methylation ratios. Among samples with targeted meth-

ylation sequencing data, 70% of randomly selected

PDAC patients from cohort 1 (n = 113) and all healthy

controls from cohort 3 (n = 84) were used as training

set while the remaining samples were used as testing set.

In the training set, 10-fold CV achieved an AUC of

0.925 (Fig. 4A). A three-step feature selection approach

was then applied to select the optimal features. First,

Boruta algorithm was used to prioritize all relevant fea-

tures, and the resulting model based 200 selected fea-

tures achieved a 10-fold CV AUC of 0.933 (Table S3;

Fig. 4B). To further select optimal features, the RFE

process was utilized and 13 features were selected,

resulting in a corresponding model with a 10-fold CV

AUC of 0.941 (Fig. 4C). Finally, as hypothesized,

hypo-DMR markers were more likely to be associated

with stromal cells instead of cancerous cells and hence

might be less specific for PDAC detection. Therefore,

only hyper-DMRs that showed concordant changes

between plasma and tissue samples (Fig. S9) were con-

sidered. The final methylation-based classification

model was based on six tissue-plasma concordant

hyper-DMRs (annotated to genes KCNA3, PRRX,

CCNA1, TRIM58, and NR2F1-AS1, Table S4) and

achieved a 10-fold CV AUC of 0.935 (Fig. 4D).
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The above models were then separately validated

using the testing set (remaining 49 PDAC patients

from cohort 1, all 93 PDAC patients from cohort 2,

and 125 healthy controls from cohort 4) and their

AUCs were compared. The achieved AUCs were com-

parable in all three models, being 0.948 in the model
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after Boruta selection, 0.946 with additional RFE and

0.946 in the model utilizing tissue-plasma concordant

hyper-DMRs only, while the number of features uti-

lized in the last model was much fewer (Fig. 4E).

Therefore, the last model was selected and generated a

sensitivity of 88.7% for PDAC overall, at a specificity

of 96.8%. Additionally, this model exhibited a sensitiv-

ity of 78.0% in stage I patients (Fig. 4F). The sensitivi-

ties increased along with the advancing of disease

stages, and this was observed in both internal samples

(PDACs from cohort 1) and external samples (PDACs

from cohort 2) in the testing set (Fig. S10).

Fig. 2. Mutation landscape of plasma cfDNA and mutation-based diagnostic models for PDAC. (A) Correlation of AFs for shared mutations

between cfDNA and paired WBC. Mutational landscape of plasma cfDNA in healthy controls (B) and (C) PDAC patients. Each column

represents a PDAC or healthy plasma sample. Upper bar chart represents the number of mutations in each sample. Lower waterfall

diagram depicts the mutated genes in each sample. Top 10 mutated genes in healthy (D) and PDAC plasma cfDNA (E). (F) The upper

heatmap shows the mutant hotspots, and color depicts the level of mutant AFs. The Bottom plot demonstrates AFs of variants detected by

hotspot status (G) Performance of the diagnostic models in the training (left) and testing (right) dataset using different indicators of

mutational status. (H) PDAC sensitivity in the testing set by stage at the specificity of 95.9%. AF, allele fractions; cfDNA, circulating cell-free

DNA; PDAC, pancreatic ductal adenocarcinoma; WBC, white blood cells.

Fig. 3. Differentially methylated regions (DMRs) discovered by targeted bisulfite sequencing of PDAC tumor and NAT tissues. (A) Circos

plot showing the distribution of PDAC-specific DMRs across the genome. Red points: hyper-DMRs. Blue points: hypo-DMRs. Circles from

outer to inner circle were the overview of DMRs, the area statistics of hypermethylated regions, and hypomethylated regions, respectively.

(B) Heatmaps showing DMR methylation levels in tissue data. (C) Locations of DMRs in genome. (D) GO term annotation of DMRs. DMR,

differentially methylated regions; HMG, high Mobility Group; NAT, normal tissue adjacent to tumor; PDAC, pancreatic ductal

adenocarcinoma; UTRs, untranslated regions.
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3.6. Multi-omics model

Finally, we attempted to further improve the diagnostic

performance by integrating the methylation data with

the mutational status. We obtained both targeted

sequencing and targeted bisulfite sequencing data for a

total of 156 PDAC patients (training set: n = 109; test-

ing set: n = 47) and 156 healthy controls (training set:

n = 61; testing set: n = 95). The 10-fold CV AUC

slightly increased from 0.943 in the model based on

Fig. 4. Methylation-based PDAC diagnostic models. Performance of random forest model in the training set using all DMRs (A), and 200

DMRs selected by Boruta algorithm (B) as features. Performance in the training set using 13 DMRs selected by Boruta followed by RFE (C)

and 6 DMRs in addition filtered by tissue-plasma concordance (D). (E) Comparison of performance of the above 4 diagnostic models in the

testing set. (F) PDAC sensitivity in the testing set by stage (specificity = 96.8%). AUC, area under the curve; RFE, recursive feature

elimination; ROC, receiver operation characteristics.
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methylation markers (Fig. 5A) to 0.948 by adding muta-

tional status of the top two mutated genes (i.e., KRAS

and TP53) (bi-omics model I, Fig. 5B), and to 0.947 by

adding mutational status of the top 10 mutated genes

(bi-omics model II) to the model (Fig. 5C). Adding

mutational status of the top 10 hotspots to the

methylation-only model (bi-omics model III) did not

improve the performance (Fig. 5D). In the testing set,

Fig. 5. Multi-omics based PDAC diagnostic models. (A) Performance of the diagnostic model in the training set based on 6 selected DMR

markers. Performance of the diagnostic model in the training set based on methylation in combination with KRAS/TP53 mutation (B) or

mutation in top 10 genes (C) or hotspot mutation (D). (E) Performance in methylation-based diagnostic model in the testing set with and

without mutational status. (F) Sensitivities of diagnostic models in testing set based on different combination of analytes. AUC, area under

the curve; CA19-9, carbohydrate antigen 19-9; RFE, recursive feature elimination; ROC, receiver operation characteristics.
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the methylation-only model achieved an AUC of 0.946

while the bi-omics model I achieved an AUC of 0.953

and bi-omics model II achieved an AUC of 0.958

(Fig. 5E). At the specificity of 97.9% in the training set,

both bi-omics models I and II achieved a sensitivity of

80.9% and a specificity of 97.9%, compared to a sensi-

tivity of 76.6% achieved by the methylation-only model

(Fig. S11). These results suggested that the bi-omics

models showed marginal performance enhancement

over the methylation-only model.

CA19-9 is currently the most widely used biomarker

for pancreatic cancer. We measured CA19-9 for all

PDAC patients as well as healthy controls from cohort

4 (n = 89). CA19-9 alone, by applying the conven-

tional diagnostic cutoff value of 37.0 U�mL�1 [18],

achieved an overall sensitivity of 76.6% for PDAC

patients (n = 142), a sensitivity of 77.3% in stage I

patients (n = 41) and a specificity of 95.5% for healthy

controls in the testing set. To further improve the per-

formance, we integrated the methylation levels with

CA19-9 levels for prediction. Due to unavailability of

CA19-9 measurement in heathy controls in the training

set, samples were predicted as positive if either

methylation-based model or CA19-9 generated a posi-

tive result, achieving a sensitivity of 95.7% for PDAC

at a specificity of 93.3% in the testing set. Notably,

for stage I PDAC patients, sensitivity increased to

95.5%, a remarkable improvement compared to a sen-

sitivity of 78.0% obtained by the methylation-based

model or 77.3% by CA19-9 alone (Fig. 5F). Among

PDAC patients with a negative CA19-9 result

(n = 33), 27 patients (81.8%) were predicted as positive

by the methylation-based model. These data suggest

that combined measurements of top methylation

markers and CA19-9 levels may have the potential to

provide superior diagnostic performance for PDAC

detection.

4. Discussion

In this study, we conducted comprehensive genomic

and epigenomic profiling using targeted sequencing to

cfDNA of PDAC plasma and healthy individuals. The

combination of duplex UMIs and ultra-deep depth of

over 80 0009, along with matched WBC sequencing,

ensured high specificity of variant identification. The

detection rate of KRAS gene (~ 36%) in cfDNA of

PDAC patients was comparable to recently published

studies using NGS [5,6,19], but lower than KRAS

prevalence in TCGA tissue data (~ 90%), with half of

the variants detected having an AF below 0.5%. These

results suggested that a large fraction of plasma sam-

ples may harbor KRAS mutations with AF < 0.2%,

below the limit of detection of our NGS assay. Nota-

bly, we also identified potentially oncogenic variants in

cancer driver genes in healthy plasma cfDNA, and

some were hotspot mutations as reported in a previous

study [20]. The presence of oncogenic variants in

cfDNA of asymptomatic individuals might be related

to CH and somatic clonal expansion in normal tissues,

which poses additional challenge to implementation of

liquid biopsy. Further studies are needed to fully eval-

uate the background mutation burden in average-risk

individuals. Our results collectively indicated that

PDAC detection based on mutation alone is likely to

have limited sensitivity using the current state-of-art

sequencing technology.

In the methylation-based diagnostic model, we

achieved better performance compared to the

mutation-only model, and stepwise feature selections

allowed us to reduce the number of features utilized in

the final model to only six DMR markers, while main-

taining the performance in the testing test. This pro-

vided a minimal set of DMR markers for further

validation and potential application in the clinical set-

ting using more cost-effective assay forms for detec-

tion, such as multiplexed quantitative PCR.

We also found that previously reported diagnostic

markers varied across studies (Table S5). Two major

reasons may underlie this discrepancy. First, various

methods were used for detection of the methylation

signal, including MeDIP-seq [21], Illumina Infinium

450 k Array [22], and reduced-representation bisulfite

sequencing (RRBS) [23,24]. Of these, MeDIP-seq can-

not detect methylation alterations at single base-pair

resolution. Infinium 450 k Array and RRBS suffered

from lower genome coverage due to either a limited

number of probes or bias towards CpG-rich regions.

In our study, a targeted bisulfite sequencing panel cov-

ering 5.6 M CpG sites was applied, allowing us to mea-

sure CpG methylation level at single base-pair

resolution with increased genomic coverage. Notably,

of the 200 DMRs features selected by Boruta algo-

rithm, 136 located outside CGIs, which would be

missed in RRBS-based methylation profiling. Sec-

ondly, difference in the study population may also

contribute to the variation. Most previous studies were

conducted in the Caucasian population, while the

Asian population were underrepresented. Nevertheless,

of the six markers selected in the final methylation-

based diagnostic model, two genes (KCNA3 and

TRIM58) were previously reported through TCGA

data analysis [8], hence suggesting that different detec-

tion methods may robustly re-discover DMR markers

with high performance. Overall, the novel biomarkers

identified through our study add a rich resource for
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future investigation of epigenomic abnormalities and

regulation mechanisms for PDAC.

To further improve the diagnostic performance, we

experimented with combining multiple analytes, includ-

ing mutation, methylation and the widely used PDAC

biomarker, CA19-9. Compared with methylation-only

model, additionally incorporating mutational status

only marginally increase the performance; on the other

hand, combining methylation markers with CA19-9

improved the overall PDAC sensitivity to 95.7% and

stage I sensitivity to 95.5% in the testing set, while

maintaining a specificity of 93.3% in healthy controls.

Recently, several studies showed that simultaneous

detection of multiple analytes in blood may potentially

improve performance for PDAC detection. For exam-

ple, one study showed that a combination of five meth-

ylation markers and KRAS mutation status generated a

sensitivity of 68% at the specificity of 86% [22]; another

study reported a sensitivity of 64% through simulta-

neous detection of KRAS mutation and CA19-9 [25];

both were inferior to our results. Recently, two diagnos-

tic models that combined methylation markers and

CA19-9 levels were reported, and both were close to

observed performance of our assay. A diagnostic model

based on 13 methylation markers and CA19-9 level

achieved a sensitivity of 82% for early-stage PDAC at a

specificity of 94% [24], yet the diagnostic performance

of methylation markers alone was quite limited (sensi-

tivity: 40%, specificity: 98%). Another model incorpo-

rating 185 methylation markers and CA19-9 levels

achieved a sensitivity of 92% for stage I PDAC at a

specificity of 89%, while achieving a sensitivity of 75%

in a CA19-9 negative PDAC patients [26]; however, the

number of methylation markers included were a lot

more than those utilized in our model, which would

most likely limit the clinical feasibility of such panel of

markers. Nevertheless, these reports support the notion

that combined detection of multiple analytes may com-

plement each other and hence improve the overall

performance.

Our study also had a couple of limitations. First, we

did not evaluate benign lesion of pancreas in this

study, and because such benign lesions have been

reported to also show aberrant methylation and ele-

vated CA19-9 levels [27,28], our models may need to

be adjusted if used for differentiating PDAC from

benign pancreatic lesions in clinical setting. In addi-

tion, measurement on CA19-9 levels was unavailable

for health controls in the training set and therefore

participants were categorized as positive if either

CA19-9 levels or the methylation-based model was

tested positive. However, it provides the flexibility to

integrate our diagnostic model with clinical standard

of care, which might enhance the application in the

clinical practice.

5. Conclusions

In conclusion, our results identified novel biomarkers

for detection of PDAC by profiling genomic and epi-

genomic abnormalities of cfDNA through massive par-

allel sequencing. We also showed that performance of

diagnostic models may be further improved by inte-

grating methylation markers with the protein marker

CA19-9, resulting in remarkable detection sensitivity

and specificity. Importantly, given only a handful of

effective methylation markers and the conventional

CA19-9 test were utilized, such methodology may be

potentially developed into a cost-effective diagnostic

assay. Our findings hold promise for the development

of clinically valuable diagnostic tools for the improved

management of PDAC.
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