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Abstract: One of the challenges of the pharmaceutical and cosmetic industries is to deliver bio-
chemical compounds that can be advantageous for the skin. Research on Boraginaceae taxa has
confirmed their use in traditional medicine and proved the potential biological importance of various
molecules in cosmetology. The main classes of valuable compounds associated with Boraginaceae
taxa are fatty acids, including γ-linolenic acid, essential oils, phenolic acids (e.g., rosmarinic acid),
flavonoids, anthocyanins, tannins, and saponins. Highly specific are naphthoquinone pigments
(including shikonin) and allantoin. Another distinguishing feature is the accumulation of silica
(silicon dioxide) in trichomes. Some taxa produce mucilages. However, pyrrolizidine alkaloids
(PAs) with toxic properties are also found (mainly in Symphytum spp.); therefore, their applications
should be avoided. Extracts or individual compounds of Boraginaceae plants are characterized by
antioxidant, anti-inflammatory, antiseptic, anti-irritant, antiaging, and photoprotective activities.
Boraginaceae products are widespread in the cosmetic industry as ingredients of creams, balms,
lotions, gels, shampoos, lipsticks, perfumes, and deodorants. The most valuable for the cosmetic
industry are raw materials obtained from the genera Alcanna Anchusa, Arnebia, Borago, Buglossoides,
Cerinthe, Cordia, Echium, Ehretia, Eriodictyon, Glendora, Lappula, Lithospermum, Lycopsis, Macrotomia,
Maharanga, Mertensia, Messerschmidia, Myosotis, Omphalodes, Onosma, Pulmonaria, Rindera, Symphytum,
Trachystemon, and Trigonotis. Further research should focus on the search for active substances in
other plants of the family.

Keywords: chemical composition; biological activities; γ-linolenic acid (GLA); essential oils; rosmarinic
acid; anthocyanins; shikonin; silicon dioxide; cosmetic applications

1. Introduction

In the 21st century, significant development of the cosmetic industry is noted, with
a 23% increase in the number of cosmetic products on the overall consumer product
market [1]. Consequently, there is a growing demand for high-quality products, including
those based on plant raw materials [2,3].

In the last few years, many traditional medicinal plants have been analyzed using
advanced methods (e.g., HPLC, MS, FTIR), leading to the discovery of various promising
compounds for use in modern cosmetic formulations (e.g., [4–8]).

The Boraginaceae family (Euasterids I clade; APG IV system, 2019; the borage or forget-
me-not family) is represented by approximately 148 genera and more than 2500 species
(annuals, biennials, perennials, rarely trees, shrubs, or lianas) [9]. Stems and leaves of
these plant species are covered by dense trichomes (glandular and non-glandular) [10].
The species are mainly native to Europe, Africa, and Asia (India, Iran). Most species
are distributed worldwide; however; endemic species with the location restricted to, e.g.,
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Sardinia, Anatolia, and Uzbekistan, are also known [11,12]. The family includes both rare
species with threatened categories (e.g., Echium russicum CR in Poland or Rindera umbellata
CR in Moldova) and species with the invasiveness status (e.g., Anchusa officinalis, Echium
vulgare, and E. plantagineum in America) [13,14].

Boraginaceae taxa have more than 2000-year history of use (both internally and ex-
ternally) in traditional medicine, mainly in the regions where they occur naturally and
are commonly available [5]. Currently, their ethnopharmacological properties have been
proved by chemical analyses, and the interest in these species has increased due to the
content of biologically active molecules that can modulate the function and condition of
the human organism and improve the appearance of the skin [2,3,8,15–22]. The therapeutic
effect is mainly related to biologically active compounds, e.g., fatty acids, essential oils,
phenolic acids, flavonoids, anthocyanins, tannins, naphthoquinones, saponins, allantoin,
mucilages, pyrrolizidine alkaloids, and silica (silicon dioxide) isolated from Boraginaceae
plant raw materials (e.g., [23–25]). Multiple clinical studies have demonstrated the advanta-
geous effects of Boraginaceae extracts in relieving inflammation or alleviating symptoms in
various disorders (gastrointestinal, rheumatoid arthritis, atopic dermatitis, eczema, psoria-
sis) [21,26–28]. Moreover, extracts have the ability to destroy, inhibit, or prevent the growth
of microorganisms [29]. Numerous anticancer agents have also been listed [6,30]. However,
compounds with toxic properties are also described. The toxic effect may be related to the
presence of pyrrolizidine alkaloids (PAs) (e.g., [5,31]).

Given the numerous health potentials of Boraginaceae species and their common use
worldwide, it is necessary to gather data available in the literature in order to identify
areas of relevant research and main gaps in the knowledge and indicate central directions
for future investigations. In this review, we tried to show the potentials of Boraginaceae
species belonging to the genera Alcanna Anchusa, Arnebia, Borago, Buglossoides, Cerinthe,
Cordia, Echium, Ehretia, Eriodictyon, Glendora, Lappula, Lithospermum, Lycopsis, Macrotomia,
Maharanga, Mertensia, Messerschmidia, Myosotis, Omphalodes, Onosma, Pulmonaria, Rindera,
Symphytum, Trachystemon, and Trigonotis, with special attention paid to their usefulness for
the cosmetic industry. In particular, we focused on chemical molecules and their biological
activities important for skin conditioning, care, and protection.

2. Methods

In this study, all the data were obtained from peer-reviewed articles available in the fol-
lowing databases: Google Scholar, ResearchGate, PubMed, Elsevier, Springer, ScienceDirect,
and Wiley Online Library. We used the combination of the following keywords: “Boragi-
naceae”, “plant species names—Symphytum officinale, Borago officinalis, Anchusa spp., Echium
spp., and others”, “names of chemical molecules”, “cosmetics”, and “herbal medicine” for
searching in these databases. Chapters and books were also checked. The most representa-
tive references used were written in English. The following steps outlined by Arksey and
O’Malley [32] were performed: (i) article scheme development and question formulation;
(ii) recognition of relevant papers; (iii) selection and grouping of papers; (iv) data gathering,
summarizing, organizing, and interpretation of available research; (v) manuscript drafting
and final editing. The number of articles identified from the databases was 264. Due to
duplication and repetitions, 46 articles were excluded from this list. Finally, 218 articles
were used in this review.

Plant names follow The World Flora Online database [www.worldfloraonline.org/,
accessed on 5 September 2024].

3. Boraginaceae Species in Ethnobotany

Plant use has been varying over time as a result of changes in the availability of
different species in particular geographical regions. The practical use of plants in medicine
or cosmetology is also influenced by the spread of knowledge and changes in crops grown
by ethnic communities [33,34]. The members of Boraginaceae have a long-standing history
of use for several arrays of purposes, including nutrition, beverages, flavorings, fragrances,
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and cosmetic and medicinal products [35,36]. In traditional medicine, they have been used
in European, Asian (Iranian, Chinese, and Hindu), and American countries (Brazil, Mexico,
USA) since ancient years [5,11,27,37]. Extracts, tinctures, and infusions are among the ways
to transform raw materials into a form that can be used [38]. Various organs or parts of
Boraginaceae plants (leaves, flowers, roots, fruits, bark, and wood) can be used as raw
materials in therapies and cosmetics [39]. For example, Symphytum extracts have been
applied for muscle pain mitigation, wound healing, and skin inflammation [40,41]. In turn,
fresh herb juice of Borago officinalis has been commonly applied to treat respiratory problems,
lung diseases, sore throat, arthritis, and skin disorders or to alleviate sadness [34,42]. In the
Caribbean Islands, Cordia alliodora seeds in the form of powder or ointment have been used
for skin diseases [36] and the references therein, and Arnebia euchroma ointment has been
applied for burn wound healing in Asia [39].

3.1. Primary and Secondary Molecules in Boraginaceae

Plant-derived biologically active compounds are produced in a sequence of chemical
reactions called a metabolic pathway, classified as (i) primary metabolism and (ii) sec-
ondary metabolism. Primary metabolism (=central metabolism) covers basic reactions and
pathways that are absolutely necessary for the growth, development, and reproduction
of cells. They maintain cellular homeostasis and the function of whole plant individu-
als [43]. Primary metabolites (sugars, amino acids, nucleotides, proteins, organic acids) are
highly conserved and are generally found across different plant species [43–45]. Among
Boraginaceae representatives, fatty acids are the most promising ingredients [12,46].

Secondary metabolism is involved in plant adaptation and mediation of the plant–
environment interaction. Secondary metabolites (e.g., phenolics, terpenoids, and S- and N-
containing molecules) are synthesized from primary metabolite precursors [47]. Compared
to primary metabolism, the pathways of secondary metabolism are species-specific [48].
They have no direct role in the growth, development, and reproduction of plants but have
multiple significant functions, e.g., defense against biotic stressors (herbivores, insects,
and other pathogens) and enhancement of resistance against abiotic stressors (drought,
UV radiation, salinity, low or high temperature). The most promising secondary metabo-
lites in Boraginaceae taxa include essential oils, phenolic acids, flavonoids, anthocyanins,
tannins, naphthoquinone pigments (shikonin and its derivatives), saponins, and allan-
toin [4,18,21,36,37,49–53] (Tables 1 and 2). There is some controversy regarding whether
certain chemical components belong to primary or secondary metabolism. As argued by
some authors, mucilages belong to primary metabolites because of their sugar mixture
composition. In contrast, other authors classify these compounds as secondary metabolites
because their biosynthesis is species-specific [54]. In the current review, we present the
information about mucilages in the section dedicated to secondary metabolites. Specific
secondary phytochemicals are widely used in human food (flavorings, pigments), medicine
(drugs, supplements), and cosmetology industry (volatiles, pigments) [47,55,56]. Individual
chemical molecules (fatty acids, anthocyanins, naphthoginones, mucilages, tocopherols,
and pyrrolizidine alkaloids) as well as their composition and concentration were found to
have great taxonomic value in the Boraginaceae family [57–61].
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Table 1. Biologically active compounds found in the species of the Boraginaceae family and their
effects on the skin.

Chemical Species/Genera Effect on the Skin References

A
lla

nt
oi

n

Buglossoides purpurocaerulea,
Cerinthe minor,

Cynoglossum creticum,
Echium italicum,

E. russicum,
E. vulgare,

Lithospermum latifolium,
L. officinale,

Lindelofia anchusoides,
Martensia maritima,
Omphalodes verna,
Pulmonaria mollis,

P. obscura,
Symphytum cordatum,

S. officinale

increase skin softness, strengthen
the skin, accelerate wound healing [4,20,51,60,61]

A
nt

ho
cy

an
in

s

Anchusa arvensis,
Echium plantagineum,

E. amoenum,
Nonea capsica

antioxidant effect, protection
against UV radiation [62–69]

Es
se

nt
ia

lo
ils

Auxemma glazioviana,
Anchusa italica,
Cordia species,

Echium amoenum,
Myosotis arvensis,

M. palustris,
Paracaryum bingoelianum,

Symphytum asperum,
S. kurdicum,

influence the scent of the cosmetic,
may act as a preservative, have

anti-acne, antibacterial, and
antioxidant properties

[2,62,70–78]

G
LA

Anchusa spp.,
Borago officinalis,

Echium spp.,
Lithospermum latifolium,

Mertensia spp.,
Pulmonaria officinalis,
Symphytum officinale,

Trachystemon orientalis

improve hydrolipid
barrier of skin, support the

treatment of eczema, psoriasis,
and acne

[12,15,21,49,79–82]

M
uc

ila
ge

s

Borago officinalis,
Cordia dichotoma,
Echium amoenum,

Symphytum officinale L.

soften and elasticize the skin, have
a moisturizing effect, dilate pores
before cosmetic treatments, have

antimicrobial properties

[83–89]

R
os

m
ar

in
ic

ac
id

Anchusa azurea,
A. undulata,

Borago officinalis,
Buglossoides purpurocaerulea,

Cerinthe major,
Echium italicum,

Ehretia obtusifolia,
Heliotropium amplexicaule,

Lindelofia longiflora,
Lithospermum sp.,

Mertensia maritima,
Nonnea lutea,

Pulmonaria mollis,
Symphytum sp.,

Trachystemon orientalis

antioxidant properties, support the
fight against free radicals [4,90–94]
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Table 1. Cont.

Chemical Species/Genera Effect on the Skin References

Sa
po

ni
ns Althaea officinalis,

Echium italicum,
Symphytum officinale

foaming agents in body wash
products and shampoos [2,11,95]

Sh
ik

on
in

(r
ed

pi
gm

en
t)

Arnebia euchroma,
A. guttata,

Borago spp.,
Echium italicum,

E. russicum,
E. vulgare,

Lithospermum erythrorhizon,
Onosma hookeri,
O. paniculatum,

reduce free radicals, moisturize,
strengthen the skin barrier,

important in the production of
red lipsticks

[4,24,96]

Ta
nn

in
s

Anchusa L.,
Pulmonaria L.,
Symphytum L.

antioxidant and antiaging effects,
alleviate symptoms of atopic

dermatitis, support wound healing
[75,97,98]

Table 2. The list of ingredients derived from Boraginaceae plant sources recommended by the
International Nomenclature of Cosmetic Ingredients (INCI) database and their effects on the skin
(according to the CosIng database).

Species INCI Name Description Functions

A
nc

hu
sa

ar
ve

ns
is

Anchusa arvensis extract Anchusa arvensis extract is the extract of
the whole plant. Skin conditioning

A
rn

eb
ia

Arnebia euchroma root extract Arnebia euchroma root extract is the
extract of the roots. Antimicrobial

Bo
ra

go
of

fic
in

al
is

L.

Borage seed oil
aminopropanediol amides

Borage seed oil aminopropanediol
amides is the product obtained by the
reaction of Borago officinalis seed oil

and aminopropanediol.

Skin conditioning

Borage seed oil peg-8 esters

Borage seed oil PEG-8 esters are the
product obtained by the

transesterification of Borago officinalis L.,
seed oil, and PEG-8.

Skin conditioning, skin
conditioning—emollient,

surfactant—cleansing,
surfactant—emulsifying

Borage seed oil polyglyceryl-4 esters

Borage seed oil polyglyceryl-4 esters are
the product obtained by the

transesterification of Borago officinalis
seed oil and polyglycerin-4.

Opacifying, solvent,
surfactant—cleansing,

surfactant—emulsifying

Saccharomyces/Borago officinalis seed
oil/glycerin ferment filtrate

Saccharomyces/Borago officinalis seed
oil/glycerin ferment filtrate is a filtrate

of the product obtained by the
fermentation of Borago officinalis seed

oil and glycerin by the microorganism,
saccharomyces.

Skin conditioning—emollient

Saccharomyces/Alchemilla
vulgaris/Achillea millefolium/Borago

officinalis/Eucalyptus
globulus/Helichrysum arenarium

ferment extract filtrate

Borago officinalis ferment extract
filtrate is a filtrate of the extract of the
product obtained by the fermentation
of the whole plants, borago officinalis,
by the microorganism, saccharomyces.

Antioxidant,
skin conditioning
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Table 2. Cont.

Species INCI Name Description Functions

Bo
ra

go
of

fic
in

al
is

L.

Rhizopus/Borago officinalis seed oil
ferment filtrate

Rhizopus/Borago officinalis seed oil
ferment filtrate is a filtrate of the

product obtained by the fermentation
of borago officinalis, Boraginaceae, seed

oil, by the microorganism rhizopus.

Skin conditioning

Potassium borageate
Potassium borageate is the potassium

salt of the fatty acids derived from
Borago officinalis seed oil.

Cleansing,
surfactant—cleansing

Peg-9 borageate

Poly(oxy-1,2-ethanediyl),
.alpha.-hydro-.omega.-hydroxy-, esters

with borage-oil (Borago officinalis L.
seed) fatty acids (9 mol EO average

molar ratio).

Surfactant—emulsifying

Hydrolyzed borage seed oil extract

Hydrolyzed borage seed oil extract is
the hydrolysate of the extract of Borago

officinalis seed oil derived by acid,
enzyme, or other method of hydrolysis.

Antioxidant

Hydrolyzed borage seed oil

Hydrolyzed borage seed oil is the
hydrolysate of Borago officinalis seed oil

derived by acid, enzyme, or other
method of hydrolysis.

Hair conditioning,
skin conditioning

Dimethiconol borageate

Reaction product of the fatty acids
derived from Borago officinalis seed oil

and poly[oxy(dimethylsilylene),
alpha.-hydro, .omega.-hydroxy.

Skin conditioning,
skin conditioning—emollient

Borago officinalis leaf water
Borago officinalis leaf water is the

aqueous solution of the steam distillates
obtained from the whole plants.

Anti-sebum, antioxidant, skin
conditioning, skin protecting

Borago officinalis seed oil Borago officinalis seed oil is the fixed oil
obtained from the seeds.

Skin conditioning, skin
conditioning—emollient

Borago officinalis seed extract
Borago Officinalis seed extract is an

extract of the seeds of Borago officinalis
L.

Skin conditioning

Borago officinalis leaf extract Borago officinalis leaf extract is the
extract of the leaves. Skin conditioning

Borago officinalis extract Borago officinalis extract is an extract of
the herb.

Skin conditioning, skin
conditioning—emollient

Borago officinalis ethyl ester
Borago officinalis ethyl ester is the ethyl
ester of the fatty acids derived from the

oil of the seeds.
Skin conditioning

Borage seed oil/hydrogenated
borage seed oil esters

Borage seed oil/hydrogenated borage
seed oil esters are the product obtained

by the transesterification of Borago.

Skin conditioning—emollient,
skin protecting

Borage seed oil polyglyceryl-6
esters

Borage seed oil polyglyceryl-6 esters
are the product obtained by the

transesterification of Borago officinalis
seed oil and polyglyceryl-6.

Skin conditioning,
skin conditioning—emollient,

surfactant—cleansing,
surfactant—emulsifying
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Table 2. Cont.

Species INCI Name Description Functions

Bu
gl

os
so

id
es

A
rv

en
si

s
L.

I.M
.Jo

hn
st

.

Buglossoides arvensis seed oil Buglossoides arvensis seed oil is the oil
expressed from the seeds.

Skin conditioning,
skin conditioning—emollient

C
or

di
a

Cordia salicifolia extract Cordia salicifolia extract is the extract of
the whole plant. Skin conditioning

Cordia obliqua leaf extract Cordia obliqua leaf extract is an extract of
the leaves. Skin conditioning

Cordia curassavica leaf oil Cordia curassavica leaf oil is the volatile
oil obtained from the leaves. Fragrance

Ec
hi

um
L.

Echium plantagineum seed oil Echium plantagineum seed oil is the
fixed oil obtained from the seeds.

Skin conditioning,
solvent

Echium lycopsis root extract Echium lycopsis root extract is an extract
of the roots. Skin conditioning

Echium lycopsis fruit oil Echium lycopsis fruit oil is the oil
expressed from the fruit. Skin conditioning

La
pp

ul
a

Lappula squarrosa seed oil
Lappula squarrosa seed oil is the oil

expressed from the seeds of Lappula
squarrosa.

Skin conditioning,
skin protecting

Li
th

os
pe

rm
um

er
yt

hr
or

hi
zo

n

Lithospermum erythrorhizon root
Lithospermum Erythrorhizon root is the

powdered root of Lithospermum
erythrorhizon.

Skin conditioning

Lithospermum erythrorhizon root oil
ferment filtrate

Lithospermum erythrorhizon root oil
ferment filtrate is a filtrate of the

product obtained by the fermentation
of Lithospermum erythrorhizon root oil by

the microorganism saccharomyces.

Skin conditioning

Lithospermum erythrorhizon
root ferment

filtrate extract

Lithospermum erythrorhizon root ferment
extract filtrate is a filtrate of the extract

of product obtained by the
fermentation by the microorganism,

Pseudozyma epicola.

Skin conditioning,
skin conditioning—emollient,

emulsion stabilizing,
hair conditioning,

humectant,
skin conditioning,

skin protecting

Lithospermum root extract serum
succinate albumin

Lithospermum root extract serum
albumin succinate is the product

obtained by the reaction of
Lithospermum erythrorhizon root extract

with succinylated serum albumin.

Skin conditioning

Li
th

os
pe

rm
um

of
fic

in
al

e
L.

Lithospermum officinale extract
Lithospermum officinale extract is an

extract of the whole plant of
the gromwell.

Fragrance,
skin protecting

Lithospermum officinale root extract Lithospermum officinale root extract is an
extract of the roots of the gromwell. Skin conditioning

Lithospermum officinale seed oil
Lithospermum officinale seed oil is the oil

expressed from the seeds of
the gromwell.

Skin conditioning
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Table 2. Cont.

Species INCI Name Description Functions

M
er

te
ns

is
M

ar
iti

m
a

Mertensia maritima extract Mertensia maritima extract is the extract
of the whole plant. Skin conditioning

Pu
lm

on
ar

ia
of

fic
in

al
is

L.

Pulmonaria officinalis extract Pulmonaria officinalis extract is an extract
of the whole plant of the lungwort.

Astringent,
skin conditioning,

skin conditioning—emollient

Sy
m

ph
yt

um
of

fic
in

al
e

L.

Symphytum officinale root extract Symphytum officinale root extract is the
extract of the roots of the comfrey.

Anti-seborrheic,
skin conditioning,

soothing

Symphytum officinale root cell extract
Symphytum officinale root cell extract is
the extract of a culture of the root cells

of the comfrey.
Skin conditioning

Symphytum officinale
rhizome/root extract

Symphytum officinale rhizome/Root
extract is the extract of the rhizomes

and roots of Symphytum officinale.
Skin conditioning

Symphytum officinale leaf powder
Symphytum officinale leaf powder is a
powder of finely ground leaves from

the comfrey.
Abrasive

Symphytum officinale leaf extract Symphytum officinale leaf extract is an
extract of the leaves of the comfrey. Skin conditioning

Symphytum officinale extract Symphytum officinale extract is the
extract of the whole plant.

Skin
conditioning—miscellaneous

Symphytum officinale callus
culture lysate

Symphytum officinale callus culture
lysate is a lysate of a suspension of the

cultured callus cells.
Skin conditioning

Symphytum officinale callus
culture extract

Symphytum officinale callus culture
extract is the extract of a culture of

the callus.
Skin conditioning

Tr
ic

ho
de

sm
a

ze
yl

an
ic

um

Trichodesma zeylanicum oil Trichodesma zeylanicum oil is the fixed
oil obtained from the plant.

Skin conditioning,
skin conditioning—emollient

3.2. Primary Metabolites
Fatty Acids

In general, Boraginaceae taxa are well-known sources of fatty acids, which possess
chemotaxonomic significance [54], Figure 1. For example, Özcan [12] screened 24 species
from the Turkish flora and documented the total content of fatty acids ranging between
5 and 36% in their seeds. In Spain, a high amount of fatty acids, up to 21.1%, was de-
tected in E. asperrimum seeds [80]. Considering fatty acid profiles, Boraginaceae taxa are
rich in unsaturated fatty acids (Ω–6), e.g., arachidonic acid (AA, 20:4n–6; 15–17%) and
linoleic (LA, 18:2n–6; 1.4–68.4%) [12,36,47]. Monounsaturated fatty acids, e.g., oleic acid
(OA, 18:1n–9; 14–16.6%) and erucic acid (EA, 22:1n–9; 4–8.2%), are equally abundant [12].
Among polyunsaturated fatty acids, the highest amounts of α-linolenic acid (ALA; 18:3n–3;
12–43%), stearidonic acid (SA, 18:4n–3; 0.02–14.5%), and the unique γ-linolenic acid (GLA,
18:3n–6, 2–72%) were identified [12,37,56,80,99].
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High content of GLA was found in S. officinale (16–72%) and B. officinalis (up to 25%)
seeds [12,21,80,81]. GLA was also detected in the seeds of Echium spp., Anchusa spp., and
Trachystemon orientalis [12] as well as in Lithospermum latifolium, Pulmonaria officinalis, and
E. plantagineum [12,49,100,101]. Recently, Mertensia seeds have been indicated as sources
of GLA-rich oil [80]. Other organs are a potential source of GLA as well. For example, B.
officinalis contained approx. 2.5% of GLA in the leaves, and its concentration in the petals
was approx. 16% [79].

It is well recognized that fatty acids, e.g., Borago oil (BO), play a significant role in
maintaining the integrity of the stratum corneum. The target effects vary depending on the
application form (internal/external), the dose used, and the duration of application [21].
Primarily, BO is effective in mitigating skin dryness [19]. For example, skin dryness was
reduced by 14–40% in atopic dermatitis patients after two months of BO dietary sup-
plementation (360 mg or 720 mg a day) [15]. This action is related to supporting the
development of the skin barrier, which results in moisturizing the skin surface, increasing
the water volume in the stratum corneum, and preventing water loss through the epider-
mis [TEWL] [15,49,102]. The hydration of the skin is presumably due to the participation
of GLA in the increased synthesis of ceramides [16]. At the same time, GLA alleviates
inflammation symptoms (e.g., eczema, skin redness, atopic dermatitis, acne), contributing
to the comprehensive regulation of the immune system [16]. The advantageous clinical
effect is likely associated with the inhibition of potent mediators of inflammation, including
cytokines (Il-6 (interleukin-6) or TNF-α (tumor necrosis factor-alpha) [28,103]. It is well
known that BO supports free radical scavenging; therefore, it has antiaging properties [104].
Positive effects of diets rich in BO on collagen synthesis have also been reported; con-
sequently, reduction of skin wrinkles and improved skin texture was documented [19].
Moreover, BO significantly decreased skin melasma by inhibiting tyrosinase activity in
melanocytes and contributing to the reduction of melanin synthesis [105]. Visual effects of
whitening melasma spots were observed after 6–8 weeks of topical application of a cream
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containing 1% of BO. Therefore, BO is recommended for skin care and repair formulations
and is an ingredient in cosmetics intended for dry and sensitive skin care, skin with acne,
seborrheic dermatitis, and atopic dermatitis [2,50,101,106].

4. Secondary Metabolites
4.1. Essential Oils

Essential oils (EOs) are mixtures of aromatic volatile substances of various chemical
classes and properties [107]. In Boraginaceae representatives, EOs are mainly found in glan-
dular trichomes located on the surface of flowers, leaves, fruits, and seeds [4,108]. Essential
oils differ from each other in their chemical composition, although there are some chemical
groups responsible for their properties, e.g., simple phenolic compounds and different sub-
groups of terpenes (e.g., [53,70,72]). The qualitative and quantitative characteristics of essen-
tial oils are species-dependent [71,72]. In the same species, the essential oil composition and
the concentration of their compounds may vary depending on the geographical location,
plant age, and cultivation (soil moisture, soil trophy) and weather conditions (light, humid-
ity, temperature) [109,110]. Most Boraginaceae EOs have a very complex chemical composi-
tion, ranging from several to over a hundred isolated chemical molecules [37,70–72,111,112].
The most frequently identified ingredients responsible for the biological properties of Borag-
inaceae EOs are simple phenolic compounds (thymol, carvacrol) (Figure 2), monoterpenes
(α-pinene, eucalyptol, α- and-β-phellandrenes), diterpenes (phytol), sesquiterpenes (α-
bisabolol, α-humulene, trans-caryophyllene, alloaromadendrene, α-eudesmol, δ-cadinene,
β-caryophyllene, β-gurjunene, β-ionene), alkanes (heptane, hentriacontane, eicosane), es-
ters (di-isobutyl phthalate, methyl salicylate), benzopyrones (coumarins), and aldehydes
(nonanal, benzeneacetaldehyde = hyacinthin) [70,72,73,109,111–114].
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In particular, a high concentration of biologically active molecules was identified
in EOs from Auxemma glazioviana (94%) [71], Myosotis arvensis and M. palustris (42.7–
45.8%) [70], Anchusa italica (32.6%) [74], Echium amoenum Mey. (7.5–19.5%) [72], and Varronia
curassavica (syn. Cordia verbenacea) (10–15%) [109]. Aromatic volatile compounds are also
characteristic for Symphytum kurdicum and S. asperum [75], other Cordia species [36,76,84],
and references cited therein, Glendora rosmarinifolia [113], and Paracaryum bingoelianum, a
new species recognized in the flora of Turkey [73].

The EOs in the Boraginaceae species exert strong antioxidant, anti-inflammatory,
and antiseptic (=antibacterial, antiviral, and antifungal) effects on the skin [2,62,71,77,78].
Molecules present in EOs have the ability to scavenge free radicals and prevent skin
cell damage induced by reactive oxygen species (ROS) [115]. A very promising anti-
inflammatory effect of Boraginaceae EOs is related to the documented reduction in the
number of mediators responsible for the inflammation process (IL-6, TNF-α, COX-2) and
regulation of the NF-κB pathway, which may reduce the effects of pathological skin in-
flammation [27]. For example, anti-inflammatory properties have been documented for
α-bisabolol, which helps to alleviate inflammation symptoms, such as itching, pain, and
swelling [116–118]. The α-bisabolol molecule is potentially non-allergenic and anti-irritant
and is thus regarded as a safe ingredient for baby products [119]. Coumarins and β-
humulene molecules are known to inhibit the action of tyrosinase [120]. Tyrosinase is an
enzyme involved in melanogenesis. It is responsible for the formation of skin pigment [121].
Inhibition of the action of tyrosinase may be effective in the fight against emerging skin
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discolorations [122]. When applied topically to the skin, coumarins show photo-protective
actions [123] and exhibit great potential for use in whitening cosmetics [124]. Recent re-
sults suggest that EOs isolated from Boraginaceae plants (e.g., Paracaryum bingoelianum,
Cordia spp.) contain bioactive compounds with antitumoral activity (e.g., β-caryophyllene,
α-humulene, α-pinene) [36,73].

The antimicrobial activity has been proven in in vitro tests; for example, the β-
phellandrene molecule isolated from Cordia species and Paracaryum bingoelianum inhibited
the development of Bacillus sp., Staphylococcus aureus, and Escherichia coli [125]. The α-
pinene molecule revealed an inhibitory effect on the growth of fungi, e.g., Rhizoctonia solani
and Colletotrichum lindemuthianum [126].

It has been evidenced that Boraginaceae EOs are crucial for delaying the skin-aging
process and are therefore suggested as ingredients in antiaging cosmetics intended for
mature skin [71,127]. In the cosmetics industry, essential oils add a pleasant scent to
cosmetic products, e.g., perfumes, deodorants, creams, balms, lotions, lipsticks, and hair
care cosmetics (shampoos, gels) [2,128,129].

4.2. Phenolic Compounds
4.2.1. Phenolic Acids

Phenolic acids are another group of compounds found in extracts obtained from
Boraginaceae members. For example, Anchusa officinalis, A. italica, Echium vulgare, and
E. russicum contain diverse phenolic molecules (e.g., salvonolic acid, lithospermic acid)
(Figure 3) [115,130–132]. The content of total phenolic acids in A. officinalis extracts has been
reported to range from 6.60 to 116.42 mg GAE/g of dry extract [131]. Among phenolic
acids, p-hydroxybenzoic acid, hydrocaffeic acid, and chlorogenic acid have also been found
in roots or shoots of Boraginaceae species [4]. However, the most common constituent
of Boraginaceae taxa is rosmarinic acid (RosA; Figure 4) (=ester of caffeic acid and α-
hydroxy-dihydrocaffeic acid; 3.4-dihydroxy-phenyllactic acid) [133,134]. In particular, high
amounts of RosA (2.5–3.3% dry wt) have been documented in shoots of A. azurea, A. undu-
lata, Pulmonaria mollis, and Buglossoides purpurocaerulea. However, other species, namely
Cerinthe minor, Omphalodes verna, P. obscura, Symphytum cordatum, Mertensia maritima, Ehretia
obtusifolia, Rindera graeca, and Trachystemon orientalis, contain RosA as well [4,90–93,135].
In the Rindera genus, caffeic acid and its derivatives, rutin, and quercetin-3-rutinoside-7-
rhamnoside (an unusual triglycoside) were identified [135]. Among flavones, apigenin
and luteolin were isolated for the first time in Boraginaceae plants by Petreska Stanoeva
et al. [132].
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RosA is classified as a strong antioxidant and anti-inflammatory molecule [115,131,132].
It has been proved that the antioxidant activity of phenolics depends on solvent polar-
ity [136]. In the skin, RosA can block or neutralize free radicals [94]. The mechanism of
the antioxidant effect may be related to inhibition of the MAPK//NF-κB pathway, which
downregulates the expression and activity of nitric oxide synthase [137]. Due to its antiox-
idative properties, RosA is considered effective in the care of wounded skin [138]. Wound
healing is a complex process that aims to rebuild the damaged skin barrier [139]. There
are reports indicating that the use of rosemary cream supports faster shrinkage of wounds
and accelerates their healing [140]. As reported by Lee et al. [23], RosA reduces chronic
inflammation common in atopic dermatitis. The anti-skin cancer effects of RosA have also
been described reviewed in [116,118]. The potential antimelanoma effect of RosA is related
to its involvement in the induction of the melanogenesis process and its contribution to
the increase in the melanin concentration [141–143]. It is suggested that RosA regulates
the signaling pathway (PKA/CREB/MITF) of the development of melanocytes in the
skin [143,144]. RosA attenuates skin tissue damage caused by reactive oxygen species
resulting from exposure to UV rays and responsible for the induction of uncontrolled cell
division in the process of carcinogenesis [23,134,144,145]. Other possible pathways for the
involvement of RosA in reducing skin cancer development are related to its ability to inhibit
the overexpression of cyclooxygenase-2 (COX-2) and other pro-inflammatory products (e.g.,
prostaglandin E2; PGE2), known as critical mediators of inflammatory response [146,147].
The beneficial role of RosA in the inhibition of uncontrolled growth of skin cancer cells
was evidenced by Osakabe et al. [148]. However, the therapeutic effect of RosA may be
impaired due to its poor bioavailability [149]. In order to increase the stability of RosA
in cosmetic preparations, microencapsulation technology is implemented, which ensures
the use of the RosA potential [150]. An important biological feature of RosA is protection
against excessive transepidermal water loss and acceleration of skin hydration; therefore,
the molecule is used in antiaging skin treatments [151].

4.2.2. Flavonoids

Flavonoids, i.e., polyphenols with a variable phenolic structure, have also been isolated
from various organs of Boraginaceae taxa (Figure 5). Quercetin glycosides (rutoside and
isoquercitrin) have been reported in Anchusa azurea var. azurea herb [152] and Lithospermum
officinale leaves [153].

Flavonoid molecules are primarily used in cosmetics due to their antioxidant, ant-
inflammatory, and soothing properties [154]. The molecules also add a pleasant color
to hair, face, and body cosmetic products and cleaning products [155]. Moreover, rutin
exhibits a protective effect on blood capillary vessel walls, improves blood circulation,
and prevents platelet aggregation [156]. Quercetin has the ability to protect melanocytes
and keratinocytes from oxidative stress and has shown positive effects in the treatment
of pigmentary skin disorders [157]. Flavonoids of Boraginaceae taxa are also indicated
as valuable photoprotective molecules for use in modern cosmetic formulations as they
prevent the absorption of ultraviolet A and ultraviolet B radiation [158,159]. Moreover,
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there are suggestions of the positive effect of flavonoids in the treatment of psoriasis [157].
Anthocyanins are water-soluble phenolic pigments accumulated in vacuoles, very common
among plants [160,161]. Anthocyanins are classified by some authors as a subclass of
flavonoids and are characterized by color variability (from red through purple to blue)
related to changes in cell sap pH [162]. These molecules are synthesized in the phenyl-
propanoid pathway; i.e., they are derivatives of phenylalanine and tyrosine [163]. An-
thocyanin molecules have a flavylium cation (AH+) that acts as an acid [164]. Their
stability is also affected by light and temperature [162]. Currently, more than 630 antho-
cyanins have been identified [165]. In Boraginaceae species, high concentrations of common
anthocyanins—cyanidin and delphinidin 3-glucosides—were detected in Anchusa arvensis
and Nonea caspica [62]. A dark-red or purple anthocyanin petunidin-3-O-rutinoside as
well as delphinidin, cyanidin, peonidin, and malvidin were found in the pollen of Echium
plantagineum (Figure 6; in total 40–80 mg/100 g of anthocyanins) [63,64]. In general, bee
pollen exhibits great potential for use in cosmetology as it contains numerous active ingre-
dients (e.g., flavonoids). However, the properties of pollen are highly variable because they
depend on many factors (e.g., botanical origin, harvesting and storage conditions) [166].
For example, “Spanish bee pollen” is mainly collected from E. plantagineum; however,
pollen from other species is also present in Iberian pollen loads (e.g., Quercus sp., Cistus sp.)
and differs in its biological activity [63].
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In E. amoenum grown in Iran, the anthocyanin content was 104 mg/100 g [65]. The
potential use of anthocyanins in cosmetics is related to their high bioactivity and lack
of toxicity [66]. Therefore, extracts of anthocyanins are considered to be safe cosmetic
ingredients [167].

With the small size of their molecules, anthocyanins can easily penetrate the skin
and are emerging as one of the most promising ingredients in cosmetology [67]. The
advantageous biological features of anthocyanins important for skin care and protection
include antioxidant [68], anti-inflammatory [163], and bacteriostatic properties [168]. An
important feature of anthocyanins is the ability to absorb or block UV energy; therefore,
they are widely used in sunscreen products to minimize solar-related skin damage [69].

The protective mechanism of anthocyanins is associated with the well-established
prevention of UV radiation penetration, alleviation of oxidative stress and inflammation,
enhancement of DNA repair, inhibition of the extracellular matrix degradation in the
dermis, and inhibition of skin elasticity loss [162]. Anthocyanins have been shown to
control the composition of the gut microbiota and may play a central role in the prevention
of inflammation-mediated skin diseases (e.g., atopic dermatitis, rosacea, and psoriasis) [161].
Therefore, extensive research is suggested on the effect of anthocyanins on the bidirectional
relationship between the gut microbiome and skin health (i.e., gut–skin axis effect) [169].
Anthocyanins are also of great interest due to their potential use as colorants in cosmetics;
however, their application is still difficult due to their low ability to dissolve in oils and
susceptibility to pH changes [170]. Therefore, future research on stabilization of these
pigments in cosmetics is suggested [66].

4.2.3. Tannins

Tannins are also classified among polyphenolic biomolecules [171]. The chemical
structure of the molecules (the presence of hydroxyl groups) enables them to establish a
permanent link with proteins and carbohydrates [169]. In plants, tannins protect against
external biological and environmental threats, e.g., against microbial and herbivore attacks
or against stress caused by drought/salinity. Tannins are found in various parts of plants
(roots, stems, bark, fruits, leaves, and seeds). In the Boraginaceae family, the genera Anchusa,
Echium, Pulmonaria, and Symphytum are characterized by the presence of tannins [75,97].
It has to be stressed that the tannin content is species-specific and may vary significantly
within a species depending on environmental conditions [36]. For example, a high amount
of tannins (38 mg/g of dry matter) was found in Echium amoenum, whereas a lower value
(26 mg/g of dry matter) was documented in E. russicum [36]. In Pulmonaria mollis, the
tannin content amounted to 7.1 mg/g of dry matter of the raw material [97].

A characteristic property of tannins is their astringent function [172]. Moreover,
tannins exhibit other important biological properties, i.e., ROS reduction and antimicro-
bial activity [173]. The activity of tannins against ROS is related to the protection of cell
membranes from peroxidation of lipid molecules and the prevention of DNA structure
damage [172]. Tannins effectively prevent premature skin aging and protect the skin against
cancer development [169]. Their high antibacterial activity makes them potentially desir-
able in cosmetics intended for acne-prone skin as they may help reduce acne breakouts and
blemishes [169]. Tannic acid (TA) (Figure 7), a form of hydrolysable tannins, is especially
valuable in cosmetic industry [174]. It has been proved that the molecule is effective in
skin protection against ultraviolet radiation and reduces the features of photoaging [98].
Moreover, TA supports the treatment of atopic dermatitis, reduces keratinization of the
epidermis, accelerates wound healing, and soothes pathological lesions [98]. Currently,
efforts are focused on improving the antioxidant properties of tannin molecules for cost-
effective and eco-friendly application in the cosmetics industry, including the replacement
of synthetic preservatives [174].
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4.3. Other Subgroups of Secondary Metabolites
4.3.1. Naphtoquinone Pigments

Naphthoquinones are a subclass of chemical compounds classified among quinonoids
(quinones). The spatial arrangement of their chemical structure is characterized by the
addition of another benzene ring connected to para-benzoquinones [8]. The presence of
quinones (pigments) is a characteristic attribute of several Boraginaceae taxa. Of these dyes,
shikonin (red pigment; Figure 8) was the first to be isolated from the roots of the Chinese
plant Lithospermum erythrorhizon in the second decade of the 20th century [175]. To date,
shikonin and its derivatives have been extracted from Borago spp., Alcanna spp., Arnebia
guttata Bunge, Arnebia euchroma, Maharanga spp., Lithospermum erythrorhizon, Onosma pan-
iculatum, Onosma hookeri, E. vulgare, E. russicum, and E. italicum [4,6–8,96,176]. Recently,
shikonin-type naphthoquinones have been reported in Rindera graeca, an endemic Greek
plant [25].
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It has been proven that shikonin and its derivatives have multidirectional biological
properties, e.g., antioxidant, anti-inflammatory, antiallergic, antibacterial, antiviral, antifun-
gal, and antithrombotic activity [6,7,30,96,177,178]. These properties make the molecules
very promising compounds for wide use in pharmaceutical and cosmetic industries [25].
The molecule can accelerate the healing of wounds and burns; therefore, it is particularly
helpful in plastic surgery and esthetic cosmetology [7]. Moreover, it improves the func-
tioning of the skin barrier, expands skin hydration, regulates skin immunology, reduces
and prevents skin inflammation, and supports the development of keratinocytes [24,30].
Shikonin and its derivatives also effectively reduce the bothersome symptoms of atopic
dermatitis [179] and support the treatment of psoriasis [180].
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The mechanisms of antioxidant action result from the presence of a phenoxy group in
shikonin, thanks to which reactive oxygen species are neutralized [24]. A trend that has been
developing very rapidly recently is the study of the mechanisms of the anticancer activity
of shikonin and its derivatives (e.g., acetylshikonin) [181]. These compounds showed
cytotoxic action against various cancer cells (lung, colon, prostate, breast, skin) [175,182].
Possibly, the inhibition of skin cancer growth is related to the induction of cancer cell
apoptosis via the MAPK pathway [183].

4.3.2. Saponins

The other constituents in Boraginaceae are saponins—natural chemicals comprising an
aglycone unit (triterpene or steroid) linked to carbohydrate chains (hexose and/or uronic
acid) [11,184]. The INCI list contains several hundred registered patents showing the
possibility of using saponins in cosmetics [185]. Among Boraginaceae taxa, oleanane-type
saponins (e.g., acetylanchusoside-9, malonylanchusoside-2, malonylanchusoside-7) were
isolated from A. officinalis L. roots [95]. In turn, triterpenoid saponins leontoside-A and B
and symphytoxide-A were extracted from S. officinale. Similarly, the presence of various
saponins was found in E. italicum L. stems [11] and Trichodesma indicum Linn. roots [186].
However, saponins detected in Cordia piauhiensis turned out to be inactive [184].

It is known that saponins enhance blood flow in skin capillaries and are employed in
treatments reducing cellulite symptoms [27]. These biomolecules also show antibacterial
activity [187]. In the cosmetology industry, saponins are regarded as natural alternatives to
surfactants or emulsifiers [188]. Traditionally, these molecules are used as natural additives
in shampoos and shower gels as well as moisturizing ingredients in creams [2,188].

4.3.3. Allantoin

Allantoin (2,5-dioxo-4-imidazolidinyl)urea; Figure 9 is a chemical compound pro-
duced from uric acid [189]. A high concentration of allantoin was detected in Symphytum
officinale and S. cordatum [20,59,190]. Echium italicum, E. russicum, Lithospermum anchu-
soides, Symphytum cordatum, Pulmonaria obscura, and P. mollis (c.a. 2–3.5% dry wt) are other
commonly known sources of allantoin. Lower amounts were found in E. vulgare, L. offic-
inale, Cynoglossum creticum, Omphalodes verna, Buglossoides purpurocaerulea, and Cerinthe
minor L. [4]. Allantoin was also identified in Mertensia maritima (3.7% dry wt) [50]. In
folk medicine, it was used to encourage wound healing and various skin disorders [2].
Currently, allantoin is used in body and face care products at a concentration range of 0.5%
to 2% [189,190]. It is regarded as a safe and hypoallergenic compound with skin smoothing
and softening properties [159]. Presumably, allantoin acts via a reduction in the level of
interleukins (e.g., IgE, IL-5); it therefore helps to reduce skin inflammation symptoms
(redness, swelling, itching) [191]. At the same time, allantoin stimulates the proliferation
of fibroblasts and contributes to the wound-healing process [60]. The effectiveness of this
molecule for skin conditioning was reported for more than 1300 products [189].
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4.3.4. Mucilages

Mucilages belong to the group of carbohydrates and have a complex chemical struc-
ture [83]. Plant mucilages are a mixture of sugar molecules (e.g., rhamnose, galactose) along
with other organic and inorganic compounds (vitamin C, lecithin). In terrestrial plants, they
help to maintain and store moisture in tissues [84]. Among Boraginaceae plants, mucilages
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were described in B. officinalis [85], E. amoenum [86], S. officinale [87], and C. dichotoma [84].
These biomolecules possess many characteristics (stabilizing potential, viscosity enhance-
ment, emulsifying effects, adhesive properties, extensive adaptability) which make them
highly desirable by the textile, food, and cosmetic industry [192]. In cosmetics, mucilage
biomolecules enhance the moisturizing, softening, and elasticizing effect on the skin [83].
Therefore, mucilages are used to combat skin diseases; they are suitable for the care of dry,
dehydrated, sagging skin and skin with eczema [84]. Mucilages widen skin pores and are
applied before cosmetic and medicine delivery to the dermis [88]. Due to the presence
of phenolic compounds, mucilages also have antioxidant properties [89]. Additionally,
they play an important role in the wound-healing process and limit wound infection by
the creation of hydrogels on the basis of mucus and acting against microbes [84]. Topical
application is proven to be most effective in the case of skin lesions, wounds, abscesses,
varicose veins, rashes, and warts [193,194].

4.3.5. Pyrrolizidine Alkaloids

Several studies have reported pyrrolizidine alkaloids (PAs) with strong toxic effects
isolated from Boraginaceae species [195]. The best recognized are the alkaloids from
different species of the genus Symphytum (S. asperum, S. caucasicum, S. cordatum S. of-
ficinale, S. tuberosum, and S. × uplandicum) [61]. Among pyrrolizidine alkaloids, lasio-
carpine, lycopsamine, 7-acetyllycopsamine, asperumine, echimidine, intermedine, symlan-
dine, and symphytine, including their related N-oxides, were detected with the highest
quantities [5,20,31,51,196,197]. The total content of pyrrolizidine alkaloids in S. officinale L.
depended on the plant organ. For example, it ranged widely from ca. 1300 to 8300 µg/g in
roots and from 10 to 60 µg/g in leaves [198]. The alkaloid lycopsamine was isolated from S.
uplandicum, whereas anadoline and echimidine were detected in S. tuberosum L. [199,200].
Another alkaloid, e.g., indicine-N-oxide (a derivative of L-ornithine), was detected in
Cynoglossum creticum and Heliotropium indicum, whereas europine and ilamine and their
N-oxides were found in H. crassifolium [201]. Diverse PAs were identified in Echium sabuli-
cola ssp. decipiens and Solenanthus lanatus [55]. PAs are regarded as the most toxic among
plant alkaloids [198,202]. They can trigger or promote carcinogenesis [203]. However, no
adverse effects have been documented after external application, which suggests that the
skin absorption of these compounds is negligible [40]. However, due to the possible toxic
properties, the internal use of Symphytum extracts in therapy is restricted in many countries,
e.g., in Poland, Germany, Denmark, Austria, Canada, and the USA [5]. The EU commission
recommends external use for no longer than 4–6 weeks reviewed in [193]. Pyrrolizidine
compounds do not appear on the INCI list of cosmetic compounds, but extracts made from
plants that produce these compounds are used in cosmetic products [185]. Therefore, the
possibility of the potential use of cosmetic products that may contain pyrrolizidine alkaloids
should be based on a risk assessment and determination of a margin of safety indicating
the maximum dose of a substance that the skin can be exposed to per day, considering that
dermal administration is associated with 100% skin penetration by PAs [52,196].

5. Bioelements
Silicon (Si) and Silicon Dioxide (SiO2)

Silicon is a microelement taken up by roots and accumulated in the form of SiO2
(silica, silicon dioxide, silicophytoliths; Figure 10) on the surfaces of cell walls and inter-
cellular spaces [204]. Silicophytoliths are commonly found in trichomes on the surface of
leaves/stems in Boraginaceae plants [10]. Mineralized trichomes with high concentrations
of silicon are characteristic of B. officinalis, E. vulgare, and S. officinale [205]. In plants, silicon
molecules are not necessary; however, they are beneficial for plant resistance to environmen-
tal conditions [204]. In humans, they are essential for proper bone mineralization and are
involved in the growth of hair and nails [206]. Silicon is necessary for the synthesis of elastin
and collagen and is thus responsible for the durability and flexibility of skin tissues [89].
Traditionally, silicon is used as a food supplement to strengthen nails, counteract hair loss,
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combat fungal infections, and treat acne (acne vulgaris, rosacea) [207]. Silicon also reduces
capillary permeability and improves skin-wound-healing outcomes [88]. The possibility of
synergistic action of silicon molecules with other molecules present in plants (e.g., flavones,
tannins) means that silicon of plant origin exerts a better effect on the body than silicon
of synthetic origin [207]. In cosmetics, the silicon molecule occurs mainly in the form of
inorganic silicates (silicon and oxygen anions) and organic silanols (hydroxyl-containing
compounds) [89]. They are used in cleansing cosmetics, toothpastes, and body scrubs [208].
Diverse forms of silicon can be applied to improve skin moisture by the enhancement
of water binding in the skin; therefore, they are used in skin moisturizing and antiaging
cosmetics [206]. Their water-resistant properties are desirable in sunscreens to ensure the
adherence and formation of an appropriate amount of film on the skin surface [88].

Molecules 2024, 29, x FOR PEER REVIEW 19 of 29 
 

 

leaves/stems in Boraginaceae plants [10]. Mineralized trichomes with high concentrations 
of silicon are characteristic of B. officinalis, E. vulgare, and S. officinale [205]. In plants, silicon 
molecules are not necessary; however, they are beneficial for plant resistance to environ-
mental conditions [204]. In humans, they are essential for proper bone mineralization and 
are involved in the growth of hair and nails [206]. Silicon is necessary for the synthesis of 
elastin and collagen and is thus responsible for the durability and flexibility of skin tissues 
[89]. Traditionally, silicon is used as a food supplement to strengthen nails, counteract hair 
loss, combat fungal infections, and treat acne (acne vulgaris, rosacea) [207]. Silicon also 
reduces capillary permeability and improves skin-wound-healing outcomes [88]. The pos-
sibility of synergistic action of silicon molecules with other molecules present in plants 
(e.g., flavones, tannins) means that silicon of plant origin exerts a better effect on the body 
than silicon of synthetic origin [207]. In cosmetics, the silicon molecule occurs mainly in 
the form of inorganic silicates (silicon and oxygen anions) and organic silanols (hydroxyl-
containing compounds) [89]. They are used in cleansing cosmetics, toothpastes, and body 
scrubs [208]. Diverse forms of silicon can be applied to improve skin moisture by the en-
hancement of water binding in the skin; therefore, they are used in skin moisturizing and 
antiaging cosmetics [206]. Their water-resistant properties are desirable in sunscreens to 
ensure the adherence and formation of an appropriate amount of film on the skin surface 
[88]. 

 
Figure 10. Chemical structure of silica (silicon dioxide). 

6. In Vitro Production of Secondary Metabolites 
The growing industrial demand for biologically active compounds has resulted in 

the development of methods of their production using modern biotechnology and genetic 
engineering [135,177]. Biotechnological production of desirable metabolites is of key im-
portance because natural methods of obtaining appropriate amounts of raw material and 
its metabolites are problematic, e.g., due to the long wait time for a noticeable production 
capacity for plants [182,209]. 

Among others, plant cell culture technologies are widely involved to provide effec-
tive tools for delivering plant-derived molecules for industrial applications (i.e., food 
products, cosmetics, drugs) [210,211]. Examples of effective methods of increasing the bi-
oactive phytochemical content in plant cells include the optimization of culture systems, 
elicitation, and genetic transformation [7,24]. 

Novel procedures for efficient commercial-scale, cost-effective technology for obtain-
ing natural metabolites were introduced by Mibelle Biochemistry company, which devel-
oped effective methods of establishing callus cultures derived from Symphytum officinale 
roots [209]. The PhytoCellTec™ Symphytum (Mibelle Biochemistry, Buchs, Switzerland) 
product has the power to enhance the regeneration of epidermal cells and improve the 
function of the skin barrier [209]. 

Another cosmetic ingredient, shikonin, is commercially obtained by Mitsui Petro-
chemical Industries Ltd. (Tokyo, Japan) [209]. The shikonin production is performed in 
Lithospermum erythrorhizon cell cultures. The cell cultivation protocol covers two phases: 
(i) the suspension of cell cultures in the growth medium and (ii) the growth of cell cultures 

Figure 10. Chemical structure of silica (silicon dioxide).

6. In Vitro Production of Secondary Metabolites

The growing industrial demand for biologically active compounds has resulted in
the development of methods of their production using modern biotechnology and genetic
engineering [135,177]. Biotechnological production of desirable metabolites is of key
importance because natural methods of obtaining appropriate amounts of raw material and
its metabolites are problematic, e.g., due to the long wait time for a noticeable production
capacity for plants [182,209].

Among others, plant cell culture technologies are widely involved to provide effective
tools for delivering plant-derived molecules for industrial applications (i.e., food products,
cosmetics, drugs) [210,211]. Examples of effective methods of increasing the bioactive
phytochemical content in plant cells include the optimization of culture systems, elicitation,
and genetic transformation [7,24].

Novel procedures for efficient commercial-scale, cost-effective technology for obtain-
ing natural metabolites were introduced by Mibelle Biochemistry company, which devel-
oped effective methods of establishing callus cultures derived from Symphytum officinale
roots [209]. The PhytoCellTec™ Symphytum (Mibelle Biochemistry, Buchs, Switzerland)
product has the power to enhance the regeneration of epidermal cells and improve the
function of the skin barrier [209].

Another cosmetic ingredient, shikonin, is commercially obtained by Mitsui Petro-
chemical Industries Ltd. (Tokyo, Japan) [209]. The shikonin production is performed in
Lithospermum erythrorhizon cell cultures. The cell cultivation protocol covers two phases:
(i) the suspension of cell cultures in the growth medium and (ii) the growth of cell cultures
in the production medium using a bioreactor with an air stirrer to provide oxygen [177,212].
The in vitro production of shikonin using a two-stage culture system was also established
for the manufacture thereof in cell cultures from L. canescens [213], Echium plantagina-
tum [214], E. italicum [215], Arnebia euchroma [216], and Onosma paniculatum [217]; however,
the systems have not been commercialized yet.

Recently, research has been carried out to develop an effective technology for intensifi-
cation of the biosynthesis of biologically active compounds in a culture of transgenic roots
of Rindera graeca, a potential source of naphthoquinones [218].
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7. Conclusions

This multidirectional study indicated the popularity of biologically active molecules
contained in various parts of species belonging to the Boraginaceae family as cosmetic
ingredients. The most valuable activities for skin care, protection, and conditioning are their
antioxidant, anti-inflammatory, antibacterial, antiviral, antifungal, anti-irritant, antiaging,
photoprotective, moisturizing, softening, and elasticizing properties. Detailed research
of the CosIng database showed that 39 raw materials originating from 19 species have
been accepted for use in cosmetics. Future research should focus on the identification
of bioactive compounds in other Boraginaceae species, including rare and endangered
species. Furthermore, since a multi-component mixture of bioactive compounds is present
in plant material, optimization of extraction, isolation, and separation methodologies
(using a combination of chromatographic and non-chromatographic techniques) is required.
Since pyrrolizidine alkaloids (PAs) are common in Boraginaceae, the safe application of
Boraginaceae derivative compounds in cosmetics requires the development of strategies
for purification thereof. Considerable attention to cell cultures should also be paid.
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88. Jędrzejko, K.; Kowalczyk, B.; Bacler-Żbikowska, B. Rośliny Kosmetyczne, 3rd ed. 2012. Available online: https://ppm.edu.pl/info/

book/SUM0f975af5bc994879bcb6e6af0fcee768/ (accessed on 20 August 2024).
89. Jurkowska, S. Tezaurus. Substancje Czynne Wykorzystywane w Kosmetykach, 1st ed.; Wydawnictwo Oficyna Wydawnicza MIRIAM,
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134. Ekiert, H.; Kwiecień, I.; Szopa, A. Rosmarinic Acid Production in Plant in Vitro Cultures. Pol. J. Cosmetol. 2013, 16, 49–58.
135. Ganos, C.; Aligiannis, N.; Chinou, I.; Naziris, N.; Chountoulesi, M.; Mroczek, T.; Graikou, K. Rindera graeca (Boraginaceae)

Phytochemical Profile and Biological Activities. Molecules 2020, 25, 3625. [CrossRef]
136. Ghasemzadeh, A.; Jaafar, H.Z. Effects of Solvent Type on Phenolics and Flavonoids Content and Antioxidant Activities in Two

Varieties of Young Ginger (Zingiber officinale Roscoe) Extracts. J. Med. Plant Res. 2011, 5, 1147–1154.
137. Yang, J.H.; Kim, S.C.; Shin, B.Y.; Jin, S.H.; Jo, M.J.; Jegal, K.H.; Kim, Y.W.; Lee, J.R.; Ku, S.K.; Cho, I.J.; et al. O-Methylated

Flavonol Isorhamnetin Prevents Acute Inflammation through Blocking of NF-κB Activation. Food Chem. Toxicol. 2013, 59, 362–372.
[CrossRef]

138. Abu-Al-Basal, M.A. Healing Potential of Rosmarinus officinalis L. on Full-Thickness Excision Cutaneous Wounds in Alloxan-
Induced-Diabetic BALB/c Mice. J. Ethnopharmacol. 2010, 131, 443–450. [CrossRef]

139. de Macedo, L.M.; Santos, É.M.D.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis
L., Syn Salvia Rosmarinus Spenn.) and Its Topical Applications: A Review. Plants 2020, 9, 651. [CrossRef]

140. Nejati, H.; Farahpour, M.; Neyriz Naghadehi, M. Topical Rosemary officinalis Essential Oil Improves Wound Healing against
Disseminated Candida Albicans Infection in Rat Model. Comp. Clin. Path 2015, 24, 1377–1383. [CrossRef]

141. Anwar, S.; Shamsi, A.; Shahbaaz, M.; Queen, A.; Khan, P.; Hasan, G.M.; Islam, A.; Alajmi, M.F.; Hussain, A.; Ahmad, F. Rosmarinic
Acid Exhibits Anticancer Effects via MARK4 Inhibition. Sci. Rep. 2020, 10, 10300. [CrossRef] [PubMed]

142. Pilut, C.N.; Manea, A.; Macasoi, I.; Dobrescu, A.; Georgescu, D.; Buzatu, R.; Faur, A.; Dinu, S.; Chioran, D.; Pinzaru, I.; et al.
Comparative Evaluation of the Potential Antitumor of Helleborus Purpurascens in Skin and Breast Cancer. Plants 2022, 11, 194.
[CrossRef] [PubMed]

143. Ijaz, S.; Iqbal, J.; Abbasi, B.A.; Ullah, Z.; Yaseen, T.; Kanwal, S.; Mahmood, T.; Sydykbayeva, S.; Ydyrys, A.; Almarhoon, Z.M.;
et al. Rosmarinic Acid and Its Derivatives: Current Insights on Anticancer Potential and Other Biomedical Applications. Biomed.
Pharmacother. 2023, 162, 114687. [CrossRef]

144. Lin, R.-J.; Wu, M.-H.; Ma, Y.-H.; Chung, L.-Y.; Chen, C.-Y.; Yen, C.-M. Anthelmintic Activities of Aporphine from Nelumbo nucifera
Gaertn. Cv. Rosa-Plena against Hymenolepis Nana. Int. J. Mol. Sci. 2014, 15, 3624–3639. [CrossRef] [PubMed]

145. Fernando, P.M.D.J.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Hewage, S.R.K.M.; Chae, S.W.; Hyun, J.W. Rosmarinic Acid Attenuates Cell
Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells. Biomol.
Ther. 2016, 24, 75–84. [CrossRef] [PubMed]

146. Habtemariam, S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic
Acid and Carnosol. Biomedicines 2023, 11, 545. [CrossRef]

https://doi.org/10.3390/cosmetics10050143
https://doi.org/10.1016/j.ejmech.2023.115655
https://www.ncbi.nlm.nih.gov/pubmed/37482020
https://doi.org/10.1093/jxb/erg111
https://www.ncbi.nlm.nih.gov/pubmed/12598579
https://doi.org/10.3390/molecules26082346
https://doi.org/10.1016/j.jep.2004.08.039
https://doi.org/10.3390/molecules26041093
https://doi.org/10.3390/molecules24183270
https://doi.org/10.1016/j.envres.2011.01.013
https://doi.org/10.3389/fphar.2022.956541
https://doi.org/10.1016/j.lwt.2013.08.017
https://doi.org/10.1002/cbdv.202201149
https://www.ncbi.nlm.nih.gov/pubmed/37026584
https://doi.org/10.3390/molecules25163625
https://doi.org/10.1016/j.fct.2013.05.049
https://doi.org/10.1016/j.jep.2010.07.007
https://doi.org/10.3390/plants9050651
https://doi.org/10.1007/s00580-015-2086-z
https://doi.org/10.1038/s41598-020-65648-z
https://www.ncbi.nlm.nih.gov/pubmed/32587267
https://doi.org/10.3390/plants11020194
https://www.ncbi.nlm.nih.gov/pubmed/35050083
https://doi.org/10.1016/j.biopha.2023.114687
https://doi.org/10.3390/ijms15033624
https://www.ncbi.nlm.nih.gov/pubmed/24583851
https://doi.org/10.4062/biomolther.2015.069
https://www.ncbi.nlm.nih.gov/pubmed/26759705
https://doi.org/10.3390/biomedicines11020545


Molecules 2024, 29, 5088 25 of 27

147. Huang, N.; Hauck, C.; Yum, M.-Y.; Rizshsky, L.; Widrlechner, M.P.; McCoy, J.-A.; Murphy, P.A.; Dixon, P.M.; Nikolau, B.J.; Birt,
D.F. Rosmarinic Acid in Prunella Vulgaris Ethanol Extract Inhibits Lipopolysaccharide-Induced Prostaglandin E2 and Nitric
Oxide in RAW 264.7 Mouse Macrophages. J. Agric. Food Chem. 2009, 57, 10579–10589. [CrossRef]

148. Osakabe, N.; Yasuda, A.; Natsume, M.; Yoshikawa, T. Rosmarinic Acid Inhibits Epidermal Inflammatory Responses: Anticarcino-
genic Effect of Perilla Frutescens Extract in the Murine Two-Stage Skin Model. Carcinogenesis 2004, 25, 549–557. [CrossRef]

149. Huerta-Madroñal, M.; Caro-León, J.; Espinosa-Cano, E.; Aguilar, M.R.; Vázquez-Lasa, B. Chitosan—Rosmarinic Acid Conjugates
with Antioxidant, Anti-Inflammatory and Photoprotective Properties. Carbohydr. Polym. 2021, 273, 118619. [CrossRef]

150. Kim, H.-J.; Kim, T.-H.; Kang, K.-C.; Pyo, H.-B.; Jeong, H.-H. Microencapsulation of Rosmarinic Acid Using Polycaprolactone and
Various Surfactants. Int. J. Cosmet. Sci. 2010, 32, 185–191. [CrossRef]

151. Sharma, A.; Kuhad, A.; Bhandari, R. Novel Nanotechnological Approaches for Treatment of Skin-Aging. J. Tissue Viability 2022,
31, 374–386. [CrossRef] [PubMed]

152. Kuruüzüm-Uz, A.; GÜVENALP, Z.; Demirezer, L.Ö. Phenolic Compounds from the Roots of Anchusa azurea Var. Azurea. Turk. J.
Pharm. Sci. 2013, 10, 177–184.

153. Adamtsevich, N.Y.; Zakrzheuskaya, Y.I.; Feskova, E.V.; Leontiev, V.N.; Titok, V.V. Development and Validation of a Method to
Quantify Flavonoids in Leaves of Lithospermum officinale (Boraginaceae). Dokl. Biol. Sci. 2023, 512, 354–359. [CrossRef] [PubMed]

154. Arct, J.; Pytkowska, K. Flavonoids as Components of Biologically Active Cosmeceuticals. Clin. Dermatol. 2008, 26, 347–357.
[CrossRef]

155. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [CrossRef]
156. Choi, J.-H.; Kim, D.-W.; Park, S.-E.; Lee, H.-J.; Kim, K.-M.; Kim, K.-J.; Kim, M.-K.; Kim, S.-J.; Kim, S. Anti-Thrombotic Effect of

Rutin Isolated from Dendropanax morbifera Leveille. J. Biosci. Bioeng. 2015, 120, 181–186. [CrossRef]
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