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Abstract: In the current work, chloro(meso-ttetrakis(phenyl)porphyrin) manganese(III) [Mn(TPP)Cl]
was synthesized following two steps: the preparation of meso-tetraphenylporphyrin (H2TPP) and
the insertion of manganese into the free porphyrin H2TPP. The compounds were characterized
using SEM, FT-IR, UV, TGA/DTA, and XRD analyses. Manganese(III) meso-porphyrins exhibited
hyper-type electronic spectra with a half-vacant metal orbital with symmetry, such as [dπ:dxz and
dyz]. The thermal behavior of [Mn(TPP)(Cl)] changed (three-step degradation process) compared
to the initial H2TPP (one-step degradation process), confirming the insertion of manganese into the
core of the free porphyrin H2TPP. Furthermore, [Mn(TPP)Cl] was used to degrade calmagite (an
azo dye) using H2O2 as an oxidant. The effects of dye concentration, reaction time, H2O2 dose, and
temperature were investigated. The azo dye solution was completely degraded in the presence of
[Mn(TPP)(Cl)]/H2O2 at pH = 6, temperature = 20 ◦C, C0 = 30 mg/L, and H2O2 = 40 mL/L. The
computed low activation energy (Ea = 10.55 Kj/mol) demonstrated the efficiency of the proposed
catalytic system for the azo dye degradation. Overall, based on the synthesis process and the excellent
catalytic results, the prepared [Mn(TPP)Cl] could be used as an effective catalyst for the treatment of
calmagite-contaminated effluents.

Keywords: chloro(meso-tetrakis(phenyl)porphyrin) manganese(III); meso-tetraphenylporphyrin; cal-
magite; degradation; H2O2

1. Introduction

The porphyrin skeleton is extensively utilized in a wide range of biological, physical,
and catalytic systems, as evidenced by numerous reports [1–6]. Porphyrins and their
derivatives are highly regarded due to their diverse applications [7,8]. This is attributed to
the metal bound to the nitrogen atoms in the core of the porphyrin ring and the substituents
attached to the tetrapyrrolic ring [9–11]. In fact, the inserted metals and the adjustment of
the out-of-plane distance within the porphyrin cavity can regulate the properties of metallo-
porphyrins. For these reasons, porphyrins and metallo-porphyrins have been extensively
applied in drug delivery, biosensing, bio-imaging, industrial, photocatalytic, nonlinear
optics, molecular photovoltaics, industrial, and analytical fields [12–17]. Moreover, it has
been demonstrated that their photophysical and biological properties are altered when
a transition metal like manganese (Mn) is inserted, changing the symmetry of the free
porphyrins [18,19]. In particular, because of the coordination of the Mn and the range of
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oxidation states (+II, +III, or +IV), Mn–porphyrins exhibit higher activity than other por-
phyrinic complexes [20–22]. The Mn(III)–porphyrin complexes were the most investigated.
Five- or six-coordinate bonds make up the Mn–porphyrin derivatives when the manganese
is in the oxidation state +III. This has to do with the metal center’s surroundings and
synchronization. Six-coordinated Mn(III)–porphyrin species are often low-spin, whereas
five-coordinated derivatives of Mn(III)–porphyrin are typically high-spin [21,22]. The
electronic characteristics of Mn(III)–porphyrin species with five coordinates differ entirely
from those of other Mn(III)–porphyrin species, such as those from Fe(II), Co(II), Mn(II), and
Ni(II). The UV–visible spectra of the high-spin Mn(III) derivatives with meso-porphyrins
are of the d-hyper type.

The removal of pollutants from wastewater is crucial because of their harmful impact
on ecosystems [23]. Specifically, synthetic dyes discharged into contaminated water bodies
have been identified as carcinogenic and hazardous. Therefore, there is a significant focus
on eliminating these dyes from aquatic systems [24]. The development of homogenous
and heterogenous catalysts has garnered specific attention due to their diverse applications
across various fields [25–27]. Among various methods reported in the literature, catalytic
oxidation is a commonly employed method for treating contaminated water, as it has
proven to be effective in removing organic dyes. This technique involves the use of
hydrogen peroxide (H2O2) as an environmental oxidizing agent [26]. Research has shown
that various catalysts can be used to decolorize dye solutions, making catalytic oxidation a
versatile and efficient process for water treatment. For example, Abir et al. [27] investigated
the degradation of Acid Orange 7 dye in aqueous solution using HFe2.5P2W18O62 23·H2O
as a catalyst and H2O2 as an oxidant. They found that, under optimum conditions, the
efficiency of degradation could reach up to 100%. Following this, Samarghandi et al. [28]
investigated the degradation of an azo dye (acid red 14) using a nano-catalytic system and
in the presence of ultraviolet light. They reported a high removal efficiency (89.3–93.94%) of
the catalytic system. Cao et al. [29] used Mn(II) ions to catalyze the oxidative degradation
of calmagite, using H2O2 and 1,2-dihydroxybenzene-3,5-disulfonate as the co-catalyst.
The percentage of degradation ranged from 91.1% to 96.0%. Karla et al. [30] studied the
degradation of Allura Red AC solution by activating H2O2 with bicarbonate, using Co2+

ions as the catalyst. Under optimal conditions, the degradation reached 99.86%. In our
previous work [31], we reported the degradation of calmagite using biopolymer-supported
MnO2 and SnO2 in the presence of H2O2.

Porphyrins play a crucial role in catalysis, especially metallo-porphyrins, which have
demonstrated enhanced catalytic activity in various chemical and photochemical processes.
Studies have shown that porphyrinic compounds are effective in degrading organic dyes.
For instance, a hybrid material consisting of magnetic CuFe2O4–porphyrin nanofibers
was utilized as a photocatalyst to degrade rhodamine B dye [32]. Additionally, complex
tetrakis(4-carboxyphenyl)–porphyrin nanofibers and ZnO nanoparticles were employed
for the photocatalytic degradation of rhodamine B under sunlight irradiation [33]. Fur-
thermore, a zinc–tetraphenylporphyrin complex was employed to photodegrade methy-
lene blue using UV light [34]. Moreover, a Co(II) complex of tetrakis-5, 10, 15, 20 (4-
hydroxyphenyl)porphyrin Co(II)TPHPP anchored to chloroacetylated poly (p-hydroxy
styrene) was utilized for the catalytic decomposition of crystal violet using H2O2 [35].

Calmagite (2-hydroxy-1-(2-hydroxy-5-methylphenylazo)-4-naphthalenesulfonic acid)
is a toxic and non-biodegradable azo dye compound. It has a half-life period of more than a
year [36]. Motivated by this, we present herein a first report on the oxidative degradation of
calmagite in water using H2O2 and chloro(meso-tetrakis(phenyl)porphyrin) manganese(III).
Calmagite has azo groups as chromophore groups, which can be easily degraded using
metallic complexes in combination with oxidizing agents. Analytical techniques including
FT-IR, SEM, XRD, UV, and TGA/DTA were used to characterize the prepared compounds.
Different experimental parameters were investigated, including temperature, time of re-
action, starting dye concentration, and H2O2 dose. To better understand the oxidative
degradation of calmagite, the experimental data were fitted to zero-, first-, and second-order
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kinetic equations. The thermodynamic parameters and the activation energy (Ea) were
also calculated.

2. Results and Discussion
2.1. Material Characterization
2.1.1. FT-IR Spectroscopy

The FT–IR spectra of H2TPP and [Mn(TPP)Cl] are given in Figure 1. The IR spectrum
exhibits the bands characteristic of meso-porphyrin H2TPP. Indeed, the vibration band ν

(NH) for the free porphyrin is detected at around 3317 cm−1. The C–H groups of H2TTP
moiety are seen in the range 2895–3084 cm−1. C=N and C=C stretching frequencies are
observed in the range 1500–1420 cm−1 and 1590 cm−1, respectively. The absorption bands
at 1147 and 1182 cm−1 are assigned to vibration ν (C-C). The strong band attributed to the
bending vibration of the CCH moieties of the porphyrin core is centered around 963 cm−1.
The absorption bands between 781 and 691 cm−1 are attributed to the ν (C-C) phenyl
group [37,38]. For the [Mn(TPP)Cl] spectrum, the disappearance of ν (NH) and the slight
displacement of the other bands prove the insertion of the Mn metal in the porphyrinic
core [38,39].
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Figure 1. FT-IR spectra of H2TPP and [Mn(TPP)(Cl)]. (*: CO2 peak).

2.1.2. UV–Visible Absorption and Optical Gap

The UV–visible spectra of H2TPP, H2TPP–calmagite, [Mn(TPP)(Cl)], and [Mn(TPP)(Cl)]-
calmagite dye were recorded in dichloromethane and are shown in the scheme below. As is
observed, the free base meso-tetraphenylporphyrin H2TPP depicts a Soret Band at 417 nm
and Q bands at 515, 550, 595, and 646 nm (Figure 2a) [11,40,41]. The manganese(III) meso-
porphyrins for [Mn(TPP)(Cl)] are notable for having hyper-type electronic spectra with
a half-vacant metal orbital with symmetry, such as [dπ:dxz and dyz] [22,39]. The Soret
or charge transfer band is the name given to the strongest band detected at 467 nm. The
transfer of the porphyrin’s a1u(π) and a2u(π) orbitals to the manganese orbitals, e.g., [dπ:
dxz and dyz], is responsible for this band. In addition, in the UV spectra, two other bands,
which are less intense than the Soret band, are detected between 378 and 400 nm. In the
visible spectra, two bands named QIII and QIV are displayed from 565 to 610 nm, while
the QI and QII bands are moved into the UV–vis spectra and, consequently, they cannot
be observed in the spectra (Figure 2a), along with the reduction in the number of Q-bands
from four to two bands [22,42]. This confirms the insertion of the manganese into the core
of free meso-porphyrin H2TPP, and this result aligns well with FT-IR data. For H2TPP–
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calmagite and [Mn(TPP)(Cl)]–calmagite, we observe a slight shifting of the position of the
prominent peaks, which suggests the interaction of calmagite molecules with H2TPP and
[Mn(TPP)(Cl)] (Figure 2b,c).
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Figure 3 gives the curves of (αhυ)2 against the photon energy E of H2TPP (1), H2TPP +
calmagite dye (3), [Mn(TPP)(Cl)] (2), and [Mn(TPP)(Cl)] + calmagite dye (4). The optical
gap (Eg-op) values are calculated using the Tauc plot method [43,44]. The Eg-op values for
1–4 are 2.360 eV, 2.008 eV, 1.729 eV, and 1.045 eV, respectively, typical for semiconductors.
These values are similar to other meso- and metallo-porphyrin compounds [45].
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2.1.3. SEM Features

Figure 4 gives the SEM image of H2TPP and [Mn(TPP)(Cl)] compounds before and
after their interaction with calmagite dye. As is observed, H2TPP exhibits smooth particles
with irregular and different shapes. After interaction with the azoic dye molecules, these
particles become too small and well swollen. The same observation was also made for the
compound [Mn(TPP)(Cl)]. This observation confirms that the prepared compounds reacted
strongly with calmagite molecules through the reactive groups existing in each structure.
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Scheme 1 gives the probable interactions between calmagite dye and chloro(meso-
tetrakis(phenyl)porphyrin) manganese(III). [Mn(TPP)Cl] and calmagite dye interacted
through intermolecular O–H. . .|Cl, S–H. . .|O and C–H. . .|O hydrogen bonds and by weak
C–H. . .Cg π interactions involving several centroids (Cg) of the pyrrole and meso-porphyrin
phenyl. The proposed mechanism aligns with previously studied meso-tetrakis (2,4,6-
trimethylphenyl) porphyrinto) zinc(II) supported by sodium alginate during the adsorption
of methylene blue [46].
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2.1.4. XRD Patterns

Figure 5 displays the XRD patterns of H2TPP (1), H2TPP + calmagite dye (3),
[Mn(TPP)(Cl)] (2), and [Mn(TPP)(Cl)] + calmagite dye (4). As is shown, the free por-
phyrin H2TPP reveals sharp peaks at 2θ that equal 8.5◦, 11.50◦, 15.82◦, 17.95◦, 20.26◦, 22.95◦,
25.88◦, and 30.11◦. [Mn(TPP)Cl] exhibits sharp peaks at 2θ equal to 7.85◦, 8.90◦, 11.50◦,
14.60◦, 16.70◦, 19.50◦, 20.90◦, 22.20◦, 24.60◦, 27.50◦, and 29.00◦. These peaks suggest the
crystalline nature of the prepared porphyrin compounds [47,48]. After the interaction of
H2TPP and [Mn(TPP)(Cl)] with calmagite, the shifting of the position of the main peaks
reveals that the dye molecules interacted with compounds H2TPP and [Mn(TPP)(Cl)].
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[Mn(TPP)(Cl)] + calmagite dye (4).

2.1.5. Thermal Analysis

The TGA/DTG results of meso-tetraphenyl porphyrin and chloro(meso-tetrakis(phenyl)
porphyrin) manganese(III) before and after dye adsorption are shown in Figure 6. The
studied compounds reveal initial thermal events, which are observed at <100◦C for all
investigated compounds and are attributed to adsorbed water loss [49]. The residual masses
for H2TPP and [Mn(TPP)(Cl)] are equal to 49.88% and 63.14%, respectively. In contrast, the
thermal behavior of the compound [Mn(TPP)(Cl)] appears different from that of the starting
material H2TPP. Indeed, [Mn(TPP)(Cl)] displays a three-step degradation process. The first
thermal event occurs at 110.7 ◦C. The second thermal event occurs at 218.9 ◦C. The final
thermal event proceeds at 499.2 ◦C. The latter two events are absent for the starting material.
This result confirms the incorporation of manganese into the core of free porphyrin H2TPP.
The difference in mass remaining after the interaction between the porphyrin compounds
and calmagite molecules could be explained by some new structural changes.
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2.1.6. XRF Characterization

X-ray fluorescence (XRF) spectroscopy data of the relative abundance of elements
present in the prepared [Mn(TPP)Cl] are depicted in Table 1. As is shown, the manganese
metal is present in the studied compound with a high relative amount of 70.59%. We also
note the presence of other elements, such as Cl (28.60%), Co (0.706%), Nb (0.044%), and Mo
(0.035%). The obtained results confirm the incorporation of manganese into H2TPP.

Table 1. Relative abundance of elements present in [Mn(TPP)Cl].

m/m (%)

Elements [Mn(TPP)Cl]
Mn 70.59
Cl 28.60
Co 0.706
Nb 0.044
Mo 0.035
In 0.016

2.2. Degradation of Calmagite in the Presence of [Mn(TPP)(Cl)]
2.2.1. Effect of Experimental Conditions

The effect of contact time on the oxidative degradation of calmagite dye solution
(T = 20 ◦C, pH = 6, C0 = 30 mg/L, and H2O2 = 40 mL/L) is reported in Figure 7a. First, it
is noted that the calmagite solution is initially not affected by the presence of H2O2, and
no degradation yield is recorded during the investigated period of time. In addition, the
free porphyrin exhibits only a small attraction to calmagite, which is explained by weak
bonding. In contrast, the calmagite solution is completely degraded in the presence of
the system [Mn(TPP)(Cl)]/H2O2 after 25 min of reaction (Figure 7b). The azo groups of
calmagite are easily degraded due to the combination of the radical OH· and [Mn(TPP)(Cl)].
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Figure 7. (a) Spectrum showing the evolution of absorbance versus time, (b) evolution of Ct/C0

in the existence of various systems, (c) effect of H2O2, (d) starting calmagite concentration, and
(e) temperature.

Indeed, the mechanistic pathway of the decomposition of calmagite in the presence
of the proposed system [Mn(TPP)(Cl)]/H2O2 could comprise the following steps. The
first step involves the complexation of the azo calmagite dye molecules to [Mn(TPP)(Cl)],
followed by peroxymetalation of the azo moiety. Then, the resulting complex could de-
compose to azoxy product. The degradation of the azoxy product could further afford
quinolinones and diazonium salts, as established in the literature [50].

Figure 7c describes the effect of the variation in H2O2 dose on the degradation process
(C0 = 30 mg/L, T = 20 ◦C, pH = 6). The oxidative degradation yield reaches its maximum
when the dose of H2O2 is equal to 40 mL/L. These results show that using high dosages of
H2O2 (more than 40 mL/L) decreases the degradation yield. Indeed, a high dose of H2O2 in
calmagite solution undergoes self-quenching of OH·, which produces HO2· radicals [51–54].
Figure 7d gives the effect of the variation in the initial calmagite concentration on the
degradation yield (T = 20 ◦C, H2O2 = 40 mL/L, pH = 6). As is observed, the degradation
yield falls with the rise in the starting calmagite concentration. At concentration = 60 mg/L,
the degradation yield decreases to 51%. This result confirms that there is an optimum



Molecules 2024, 29, 5217 14 of 21

dose of H2O2 for each initial calmagite concentration. In addition, the degradation yield
is enhanced with the rise in temperature (Figure 7e). This trend indicates that theta
degradation is favored at high energy values.

2.2.2. Kinetic Modeling and Thermodynamic Investigation

Theoretical kinetic equations including zero-, first- and second-order reaction kinet-
ics [55] were used to understand the mechanism of the degradation of calmagite using
[Mn(TPP)(Cl)].

Ct = C0 − k0t (1)

Ct = C0.e−k1t (2)

1
Ct

=
1

C0
+ K2t (3)

where
Ct and C0 are instant and starting calmagite concentrations.
k0, k1, and k2 are the kinetic-rate constants of zero-, first-, and second-reaction kinetics,
respectively.

Plots of Ct, Ln (Ct/C0), and 1/Ct against time for the various considered experi-
mental parameters (H2O2 dose, calmagite concentration, and temperature) are given in
Figures 8–10. Table 2 summarizes the regression coefficients and apparent kinetic rate pa-
rameters. First-order reaction kinetics display regression coefficients (R2) ranging from 0.93
to 0.99, which are much higher than those obtained using second-order (0.88 < R2 < 0.96)
and zero-order (0.59 < R2 < 0.90) kinetic equations. Thus, the results suggest that the degra-
dation of the calmagite solution using [Mn(TPP)(Cl)]/H2O2 fitted well to the first-order
reaction model.
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Figure 10. Experimental data modeling through second-order kinetic equation: (a) H2O2 concentra-
tion, (b) dye concentration and (c) Temperature.

Table 2. A summary of the calculated kinetic rates and thermodynamic parameters for the degrada-
tion of calmagite using [Mn(TPP)(Cl)]/H2O2.

Kinetics Zero-Order First-Order Second-Order

K0 R2 K1 R2 K2 R2

H2O2 amount (mL)
20 1.43 0.86 0.06 0.99 0.44 0.96
40 1.2 0.73 0.14 0.95 3.72 0.88
60 1.24 0.75 0.11 0.96 0.60 0.93
80 1.30 0.76 0.09 0.97 0.28 0.93

Calmagite concentration (mg/mL)
30 1.2 0.73 0.14 0.95 3.72 0.88
40 1.4 0.82 0.07 0.98 0.58 0.94
50 1.49 0.87 0.05 0.96 0.34 0.93
60 1.58 0.90 0.03 0.98 0.61 0.92

Temperature (◦C)
20 1.20 0.73 0.15 0.95 3.72 0.88
40 1.12 0.67 0.18 0.96 21.66 0.90
50 1.04 0.59 0.23 0.93 30.29 0.93

Thermodynamic parameters
Temperature

(◦C)
Ea

(Kj/mol)
∆S◦

(j/mol/K)
∆H◦

(kj/mol)
∆G◦

(kj/mol)
20 56.33
40 10.57 −163.3 8.46 59.60
50 61.24

The calculated kinetic rate constants obtained at the studied temperature range are
listed in Table 2 and were used to determine either the thermodynamic parameters or the
activation energy. The activation energy, abbreviated as (Ea, kJ mol−1), was determined
following the Arrhenius equation [56].

Further, the parameters ∆S◦ (J mol−1 K−1) and ∆H◦ (kJ mol−1) were calculated using
Equation (4) [57]:

Ln
(

K
T

)
= Ln

(
Kb
h

)
+

∆S◦

R
− ∆H◦

RT
(4)

The activation energy was calculated from the plot representing the values of Ln K1
against 1/T (Figure 11a). However, plots of Ln (K1/T) vs 1/T were used to determine the
values of ∆S◦ and ∆H◦ (Figure 11b). The free activation energy (kJ mol−1) was calculated
using Equation (5):

∆G
◦
= ∆H

◦ − T∆S
◦

(5)
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Figure 11. (a) Arrhenius plot and (b) plot of Ln (K1/T) versus the inverse of the temperature for the
degradation of calmagite solution.

The entropy of the system is equal to −163.3 J mol−1 K−1. This negative value explains
the reduction in the disorder during the process of degradation. The enthalpy is equal to
8.46 kJ mol−1. This positive value confirms the endothermic nature of the system.

The calculated value of Ea is equal to 10.57 kj mol−1, which is considered a low
value. This result suggests that the decomposition of calmagite solution can be effectively
achieved using the [Mn(TPP)(Cl)]/H2O2 system. Notably, the calculated Ea value agrees
with results obtained during the oxidative degradation of various organic compounds
utilizing some other prepared catalysts in the literature. For instance, [bis (2-methylallyl-
1,5-cycloctadienne) ruthenium (II)–chitosan] was used for the oxidative degradation of
calmagite and acid blue 25 solutions. The results showed that the Ea values varied from
11.16 to 27.028 kJ mol−1 [58]. The oxidative degradation of Eriochrome blue black b and cal-
magite solutions using chiral Ru(II) and Pd(II) complexes gave an Ea of 31.091 kJ mol−1 [51].
The Ea value calculated during the oxidative degradation of Eriochrome blue black b using
palladium–oxazoline was 16.66 kJ mol−1 [50]. The Ea values were found to vary between
17 and 26 kJ mol−1 for the degradation of nitrophenol using palladium–chitosan [59]. The
Ea calculated during the degradation of 4-nitrophenol using titania suspension was equal
to 8 kJ mol−1 [60].

3. Materials and Methods
3.1. Chemicals and Reagents

Calmagite (Chemical formula: C17H14N2O5S, M. W = 385.37 g/mol, λmax in
water = 538 nm, purity = 60.0%) was purchased from Sigma Aldrich (St. Luis, MO, USA).
Diluted solutions of H2SO4 (97%) and NaOH (reagent grade, 97%, powder) were used to
regulate pH values. Aqueous colored solutions were prepared using distilled water.

3.2. Synthesis of Chloro(meso-tetrakis(phenyl)porphyrin) Manganese(III)

The synthesis of [Mn(TPP)Cl] (2) was carried out in two stages: (i) The Alder and
Longo technique [45] was used to prepare meso-tetraphenylporphyrin (H2TPP) (1) as the
first step. (ii) In order to generate [Mn(TPP)Cl] (2), the metal must be inserted into the free
porphyrin H2TPP in the second step. The obtained compound, shown in Scheme 2, was
analyzed using IR and elemental techniques. Anal. Calc. For [Mn(TPP)(Cl)]: C44H28N4Mn
(667.66 g/mol). C, 47.85; H, 2.31; N, 5.01%. Found: C, 46.91; H, 2.45; N, 4.95%. IR (cm−1):
3140–2095; ν(CH) porphyrin, 1600–1400; ν(C=N) porphyrin, 1610; ν(C=C) porphyrin,
1217–1170; δ(C-C) porphyrin, 1005; δ(CCH) porphyrin, 811–696; ν(C-C) phenyl group. UV–
visible (CH2Cl2): λmax nm (logε): 378(5,44), 400(5,30), 467(5.70), 565 (4.89), and 610 (4.50).
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3.3. Sample Characterization

The Perkin Elmer Spectrum Two ATR-FTIR with a UATR unit was utilized to identify
the chemical structures of the prepared compounds and evaluate any changes that resulted
from their interaction with dyes. FT-IR spectra were studied in 32 scans from 400 to
4000 cm−1 at a resolution of 4 cm−1. UV–vis measurement and titration were acquired using
WinASPECT PLUS (https://winaspect-plus.software.informer.com/4.0/#google_vignette,
accessed on 11 October 2024). A JEOL JSM-5400 Scanning Electron Microscope (JEOL,
Peabody, MA, USA) was used to examine the morphological features of the studied samples.
The samples were coated with gold using a vacuum sputter coater to improve the quality
of the pictures and increase the conductivity of the samples. The acceleration voltage was
20 kV. A PANalytical X’Pert PRO MPD device (Malvern Panalytical Ltd., Westborough, MA,
USA) was used to evaluate the XRD patterns, which were examined in the 2-theta range of
10 to 90. TGA/DTA analysis (NETZSCH STA 449F3 instrument, NETZSCH, Burlington,
MA, USA) was performed at a heating rate of 10◦/min, in air flow, using platinum crucibles.
An energy dispersive X-ray fluorescence spectrometer (EDXRF) unit, JSX-3202-M, was used
to analyze the elements present in porphyrinic complexes.

3.4. Oxidative Degradation of Dyes

Erlenmeyer flasks with 0.001 g of [Mn(TPP)(Cl)] and 10 mL of calmagite were used
for the degradation studies. A measured dose of H2O2 was then added. At 125 rpm, the
solution was continuously swirled. At the completion of each experiment, the contents
of each flask were filtered, and a UV–Vis spectrophotometer was used to measure each
solution’s absorbance at 538 nm. Experiments were evaluated at various temperatures (20
to 50 ◦C), dye concentrations (30 mg/L to 60 mg/L), contact periods (0 to 60 min), and
H2O2 dosages (20–80 mL/L).

4. Conclusions

To summarize, H2TPP and [Mn(TPP)(Cl)] were successfully synthesized and thor-
oughly characterized. The compounds were analyzed using several analytical techniques,
including FT-IR, SEM, UV, TGA/DTA, and XRD. Manganese(III) meso-porphyrins revealed
a hyper-type electronic spectra with a half-vacant metal orbital with symmetry. The ther-
mal behavior of [Mn(TPP)(Cl)] changed significantly compared to the starting H2TPP.
The XRD result exhibited the crystalline nature of the prepared porphyrin compounds.
The SEM showed smooth particles with irregular and different shapes. The XRF results
confirmed the incorporation of the manganese into the core of free porphyrin H2TPP. The
prepared compounds were used as catalysts for the oxidative degradation of calmagite
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using H2O2. The degradation mechanism depended on reaction time, H2O2 dose, initial
dye concentration, and temperature. The calmagite solution was decolourized entirely in
the presence of the system [Mn(TPP)(Cl)]/H2O2 with the following conditions: pH = 6,
temperature = 20 ◦C, C0 = 30 mg/L, and H2O2 = 40 mL/L. The calculated low activation
energy Ea (10.55 Kj/mol) demonstrated the efficiency of the proposed system. Given
the synthesis method and exceptional catalytic characteristics, the produced catalyst has
the potential to be used in water purification. Because the preparation of these catalysts
was simple and due to their ease of recovery, future experiments might be expanded to
design new catalytic systems and identify the by-products obtained during the catalytic
decomposition.
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