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Abstract: In recent years, π-conjugated liquid crystalline molecules with optoelectronic functional-
ities have garnered considerable attention, and integrating these molecules into side-chain liquid
crystalline polymers (SCLCPs) holds potential for developing devices that are operational near
room temperature. However, it is difficult to design SCLCPs with excellent processability because
liquid crystalline mesogens are rigid rods, have low solubility in organic solvents, and have a high
isotropization temperature. Recently, we developed near-room-temperature π-conjugated nematic
liquid crystals based on “bridged stilbene”. In this work, we synthesized a polyacrylate SCLCP
incorporating a bridged stilbene that exhibited a nematic phase near room temperature and could
maintain liquid crystallinity for more than three months. We conducted a thorough phase structure
analysis and evaluated the optical properties. The birefringence values of the resulting polymers were
higher than those of the corresponding monomers because of the enhanced order parameters due to
the polymer effect. In addition, the synthesized polymers inherited mesogen-derived AIE properties,
with high quantum yields (Φfl = 0.14–0.35) in the solid state. It is noteworthy that the maximum
fluorescence wavelength exhibited a redshift of greater than 27 nm as a consequence of film formation.
Thus, several unique characteristics of the SCLCPs are unattainable with small molecular systems.

Keywords: side-chain liquid crystalline polymer; nematic liquid crystal; polyacrylate; π-conjugated
mesogen; birefringence; aggregation-induced emission

1. Introduction

Liquid crystal polymers are widely used in industrial applications due to their excellent
processability and favorable material properties [1–14]. Of particular interest are side-chain
liquid crystal polymers (SCLCPs) [15–25], in which mesogenic units are attached to the
side chains of linear polymers such as polyacrylate and polymethacrylate. SCLCPs exhibit
liquid crystalline phases over a broader temperature range than small molecule liquid
crystals and mimic the behavior of small molecule liquid crystals above the glass transition
temperature (Tg). This liquid crystalline nature allows for the molecular orientation to
be controlled by external fields such as mechanical stress, electric fields, and magnetic
fields [1–14]. In addition, the molecular orientation of LC polymers can be controlled using
anisotropic surfaces (as in this study) and photoalignment (e.g., [16]). Additionally, SCLCPs
can form nanostructures through higher order smectic and columnar phases [26–29]. Below
Tg, the liquid crystal phase that exists above Tg can be vitrified, retaining its anisotropic
properties. Among liquid crystal phases, the nematic (N) phase is the most fluid, is
highly responsive to external fields, and is suitable for large-area applications [30]. These
properties, unique to the N phase, distinguish it from other liquid crystal phases and extend
its range of applications beyond traditional uses, including displays [31,32] and polarizing
films, into advanced optical materials. The properties exhibited by SCLCPs are highly
attractive for the development of materials that leverage the unique optical, luminescent,
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and electronic properties of π-conjugated systems [33–46]. In particular, SCLCPs with liquid
crystalline organic semiconductors in the side chains can be one of the most powerful tools
for fabricating film-like devices with bulk arrays of organic semiconductors. In other
words, it is effective for the realization of advanced materials based on functional liquid
crystalline π-conjugated molecules, such as displays and molecular electronics. However,
π-conjugated molecules with functional groups typically have high melting points, and
SCLCPs incorporating these as mesogens often struggle to exhibit the nematic (N) phase or
only exhibit it at elevated temperatures above 100 ◦C [45]. In addition, the introduction of
a long-chain alkyl group into the mesogen lowers the isotropization temperature but tends
to produce a smectic phase with high crystallinity and low operability [47]. As a result,
it is challenging to achieve room temperature N-phase behavior in SCLCPs that feature
π-conjugated mesogens with photo/electronic functionality.

Recently, we developed a novel aggregation-induced emission luminogen
(AIEgen) [48–54], “seven-membered bridged stilbene”, based on 4-phenyl stilbene (PST)
with a seven-membered ring structure, specifically 3,8-diphenyl-6,7-dihydro-5H-
benzo[7]annulene (DPB[7]) [55–57]. We reported that DPB[7], when modified with appro-
priate alkyl tails at both ends, exhibits the N phase around room temperature [58]. This
bridged stilbene liquid crystal (LC) possesses the unique ability to maintain the N phase
over a wide temperature range while exhibiting luminescent properties. Such π-conjugated
liquid crystals with low isotropization temperatures have the potential to overcome various
limitations of conventional SCLCPs. Using this LC, we have designed a π-conjugated
SCLCP that exhibits the N phase at room temperature.

In this study, we synthesized polyacrylate and polymethacrylate SCLCP with the
DPB[7] mesogen, which exhibits a nematic phase at room temperature. We analyzed the
detailed phase structure and evaluated the birefringence and photophysical properties.
Our findings revealed several unique properties of SCLCPs that are not achievable with
small molecule systems.

2. Results and Discussion
2.1. Synthesis of Monomers and Polymers

We synthesized side-chain liquid crystalline polyacrylates and polymethacrylates
incorporating the 3,8-diphenyl-6,7-dihydro-5H-benzo[7]annulene (DPB[7]) skeleton with
alkyl terminals (carbon number: n = 2, 4), alkoxy spacers (carbon number: m = 2, 5),
and various terminal ester groups. The chemical structures and synthetic procedures
of the monomers (M1–M4), polymers (P1–P4), and model compounds (M5 and M6)
are illustrated in Scheme 1. The synthesis of the monomers can be outlined as follows:
Suzuki–Miyaura cross-coupling reaction [59,60] between 6-bromo-1-tetralone (5) and 4-
alkylphenylboronic acid (with alkyl group carbon numbers: m = 2, 4) provided 6, followed
by a Wittig reaction to yield 7; a ring expansion reaction using hypervalent iodine reagent
[hydroxy(tosyloxy)iodo]benzene (HTIB) then produced 8; triflation of the carbonyl group
yielded 9, and subsequent Suzuki–Miyaura cross-coupling of 9 with 4-alkoxyphenylboronic
acid pinacol esters (alkoxy group carbon numbers: n = 2, 5) provided 10; deprotection
of the tert-butyldimethylsilyl (TBDMS) group of 10 using tetrabutylammonium fluoride
(TBAF) resulted in 11. Finally, the introduction of various acyl chlorides afforded the acrylic
monomers (M1 and M3), methacrylic monomers (M2 and M4), and isobutyrate derivatives
(M5 and M6). The monomers were purified via column chromatography on silica gel
and recrystallization. The chemical structures of the monomers and model compounds
were confirmed through 1H-NMR, 13C-NMR, FT-IR, and high-resolution mass spectrom-
etry (HRMS). These spectral data and the synthesis of 1–4 are provided in Supporting
Information (SI).
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Scheme 1. Synthesis of acrylic monomers (M1 and M3), methacrylic monomers (M2 and M4), and
model compounds of monomer (M5 and M6) with DPB[7] skeleton and flexible chains (m + 1, n),
and corresponding polymers (P1–P4).

Radical polymerization of the acrylic monomers (M1 and M3) and methacrylic monomers
(M2 and M4) was conducted using 6.5 wt% azobisisobutyronitrile (AIBN) as the initia-
tor, resulting in the corresponding polymers (P1–P4). The crude polymers were purified
by reprecipitation in methanol. The polymer structures were confirmed by 1H-NMR
and 13C-NMR spectroscopy. The number-average molecular weight (Mn) and weight-
average molecular weight (Mw) of the polymers were determined via gel permeation
chromatography using polystyrene standards. Furthermore, thermogravimetric analysis
(TGA) measurements were performed on P1–P4 at a rate of 20 ◦C min−1 (Figures S1–S4),
determining degradation temperatures at a 10% weight loss (T10). The results are summa-
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rized in Table 1. The polymethacrylates exhibited higher molecular weights compared with
the polyacrylates.

Table 1. The results of polymerization: yields, Mn, Mw, polydispersity indexes (Mw/Mn), and
degradation temperature at 10% weight loss (T10) of P1–P4.

Entry Yield (%) Mn Mw Mw/Mn T10 [◦C]

P1 40 3000 5200 1.70 410
P2 34 10,400 20,000 1.93 409
P3 19 5000 7000 1.40 413
P4 10 17,100 26,500 1.55 412

2.2. Phase Transition Behaviors

Liquid crystalline phases of the polymers, monomers, and model compounds were
identified using polarized optical microscopy (POM). Phase transition temperatures and
enthalpies were determined through differential scanning calorimetry (DSC). POM obser-
vations suggested that M1 and M2 exhibited only the nematic (N) phase, while M3 and M4
exhibited both the N phase and the smectic A (SmA) phase. It is suspected that the vinyl
groups in M1–M4 underwent either conversion to another compound or oligomerization
owing to thermal reactions. Therefore, we synthesized model compounds (M5 and M6) in
which the (meth)acrylate group was replaced with an isobutyrate group. M5 and M6 were
used for comparison with the monomers and polymers in subsequent analyses. The phase
transition temperatures and enthalpies (∆H) of M5 and M6 and P1–P4 are summarized
in Table 2, and the typical POM images of P2 and P4 are illustrated in Figure 1. The
DSC curves for M5 (second scan), M6 (second scan), and P1–P4 (third scan) are shown in
Figures S5–S10, while the POM images for M5, M6, P1, P3, and the rest of P2 and P4 are
shown in Figures S11–S16.

Table 2. Phase transition temperature [◦C] (enthalpy ∆H [kJ mol–1]) and the range of LC phase (∆TLC

[◦C]) of DPB[7] monomers (M5 and M6) and DPB[7] polymers (P1–P4) upon heating and cooling
at a rate of 10 ◦C min–1 (Cr and Cr2: crystal phase, N: nematic phase, SmA: smectic A phase, Iso:
isotropic phase, G: glass state).

Entry
Phase Transition Behavior

Heating [a] Cooling [b]

DPB[7]-C3 [c] Cr 52.6 (11.8) N 160.4 (0.85) Iso Iso 158.3 (0.86) N 4.8 (5.68) Cr
M5 Cr 37.9 (0.15) Cr2 [d] 66.4 (0.24) N 111.6 (0.33) Iso Iso 109.8 (0.60) N
M6 Cr 77.4 (22.5) SmA 84.8 (0.49) N 109.3 (0.77) Iso Iso 107.5 (0.41) N 83.0 (0.49) SmA 29.5 (15.6) Cr
P1 G 60.6 N 176.3 (0.22) Iso Iso 173.4 (0.36) N 57.5 G
P2 N 205.0 (0.32) Iso Iso 202.5 (0.28) N
P3 G 25.6 SmA 150.3 (0.65) N 184.2 (0.32) Iso Iso 181.8 (0.46) N 152.8 (1.28) SmA 23.2 G
P4 SmA 193.8 (0.75) N 205.0 (0.19) Iso Iso 202.0 (0.44) N 181.5 (1.18) SmA

[a] Third heating for DPB[7]-C3 and P1–P4, and second heating for M5 and M6. [b] Third cooling for DPB[7]-C3
and P1–P4 and second cooling for M5 and M6. [c] Reported by Iwai et al. [54]. [d] A crystal–crystal phase transition
was observed only for M5.

M5 exhibited the N phase between 66.4 ◦C and 111.6 ◦C during the heating process,
while M6 exhibited the SmA phase between 77.4 ◦C and 84.8 ◦C and the N phase between
84.8 ◦C and 109.3 ◦C. POM images of the schlieren textures in the N phase for M5 and M6
are illustrated in Figures S11 and S12, and fan-shaped textures in the SmA phase of M6
are also presented in Figure S12. The flexible chain length, excluding the terminal ester
group, (in terms of carbon and oxygen atoms) is three or fewer for M5 and four or more for
M6. This trend is similar to our DPB[7] liquid crystals [58], where the SmA phase emerges
when the flexible chain length exceeds three atoms.
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Figure 1. Summary of phase transition behavior. (a) Phase transition temperature and range diagram
for DPB[7] monomers (DPB[7]-C3, M5, and M6) and DPB[7] polymers (P1–P4) observed by DSC
measurement in second heating (for M5 and M6) and third heating (for DPB[7]-C3 and P1–P4)
process. POM images of (b) schlieren texture for P2 at 193 ◦C and (c) fan-shape texture for P4 at
128 ◦C.

Next, we describe the phase transition behaviors of P1–P4. P1 and P2 exhibited N
phases over the ranges of 25.0–176.3 ◦C and 25.0–205.0 ◦C, respectively, during the heating
process. In these polymers, the N phase was successfully maintained at room temperature
(25 ◦C), and schlieren textures were observed, as illustrated in Figure 1b. P3 displayed a
smectic A (SmA) phase between 25.0 ◦C and 150.3 ◦C and an N phase from 150.3 ◦C to
184.2 ◦C, while P4 showed a SmA phase from 25.0 ◦C to 193.8 ◦C and an N phase from
193.8 ◦C to 205.0 ◦C. In the SmA phases of P3 and P4, fan-shaped textures were observed
(Figure 1c). The glass transition temperature (Tg) was observed at 60.6 ◦C for P1, and
25.6 ◦C for P3, while no Tg was detected for P2 and P4.

The clearing points of P1 and P2 were 64.7 ◦C and 93.4 ◦C higher than those of M5,
respectively. Similarly, the clearing points of P3 and P4 were higher than those of M6 by
74.9 ◦C and 95.7 ◦C, respectively, and the N-SmA phase transition temperatures were higher
by 65.5 ◦C and 109.0 ◦C. These results, indicating higher phase transition temperatures due
to the polymer effect, are consistent with previously reported findings for SCLCPs. Notably,
these liquid crystalline phases were maintained even after more than three months, as
illustrated in Figures S13 and S14. The room temperature N phase observed in P1 and P2
offers significant advantages for optoelectronic applications operating at room temperature.
Finally, upon 25.0 ◦C, the LC temperature ranges (∆TLC) for P1–P4 were 151.3 ◦C, 180.0 ◦C,
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159.2 ◦C, and 180.0 ◦C, respectively. These values were considerably larger than those of
the model monomers M5 and M6 (∆TLC = 45.2 ◦C and 31.9 ◦C, respectively).

2.3. Structure Analysis of LC Phase

To investigate changes in the molecular arrangement of the LCs due to polymer
effect, we performed wide-angle X-ray diffraction (WAXD) measurements for P1–P4 and
the corresponding monomers M5 and M6 (Figures S17–S34). The WAXD profiles are
summarized in Figure 2, in which the magnetic field is in the vertical direction of the
paper. In the N phase, the peak observed in the small-angle region of the WAXD profile
(2θsmall) corresponded to the layer spacing (dLC) along the molecular long axis. Also,
in the SmA phase, not only the first-order peak (2θsmall) but also second- or third-order
peaks were observed for P3 and P4, while the peak in the wide-angle region (2θwide)
corresponded to the average distance between mesogens (dmesogen) along the molecular
short axis. The values of the small-angle and wide-angle peaks (2θsmall, 2θwide), along
with the corresponding d-spacing values (calculated using Bragg’s law) and the molecular
length/side-chain length (l) (obtained from DFT calculations (Figures S35 and S36, and
Tables S1 and S2)) are presented in Table 3.
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measurements were performed following our previously reported method [66–70]. For 

comparison with the corresponding polymers, ∆n measurements were also conducted for 

Figure 2. WAXD intensity profiles and expected structure in LC phase. (a) WAXD intensity profile in
nematic (N) phase for M5 (80 ◦C), P1 (40 ◦C), and P2 (30 ◦C). The 2θsmall values are shifted to small
angle region due to the polymer effect. (b) Schematic illustration of molecular packing in N phase
with cybotactic cluster for monomer (monolayer) and polymer (double-layer). (c) WAXD intensity
profile in smectic A phase for M6 (80 ◦C), P3 (30 ◦C), and P4 (30 ◦C) The 2θsmall values are shifted to
small angle region due to the polymer effect. (d) WAXD intensity profile for P2 and P4 in wide-angle
region recorded at 30 ◦C. The 2θwide value for SmA phase is slightly larger than that for N phase.
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Table 3. The 2θ peak angle in small-angle region (2θsmall [◦]) and wide-angle region (2θwide [◦])
obtained from WAXD profile, their 2θ d-spacing values (dLC and dmesogen [Å]), calculated molecular
length (l [Å]), and the value of dLC/l.

Entry 2θsmall [◦] dLC
[a] [Å] l [b] [Å] dLC/l [-] 2θwide [◦] dmesogen [Å]

M5 3.60 [c] 24.6 24.2 1.0 18.5 [c] 4.78
P1 2.09 42.4 22.4 1.9 18.9 [d] 4.71
P2 2.01 [e] 44.0 22.4 2.0 18.3 [e] 4.85
M6 2.97 [c] 29.8 30.2 1.0 18.5 [c] 4.78
P3 1.61 [e] 55.1 28.9 1.9 19.3 [e] 4.60
P4 1.61 [e] 55.1 28.9 1.9 18.9 [e] 4.69

[a] Layer spacing of LC phase (nematic phase for M5, P1, P2, and smectic A phase for M6, P3, P4) calculated
from 2θsmall [◦] value. [b] Whole molecular length (or length of side-chain for polymers) when alkyl chains are
assumed to be fully extended in all-trans (calculated using DFT calculation at the B3LYP/6-31G(d) level of theory).
[c] Measured at 80 ◦C. [d] Measured at 40 ◦C. [e] Measured at 30 ◦C.

In the N phase of M5 (at 80 ◦C), P1 (at 40 ◦C), and P2 (at 30 ◦C), broad scattering
peaks in the wide-angle region and sharp peaks in the small-angle region were observed
(Figure 2a). In the N phase, there was no long-range positional order, and typically, only
broad scattering in the wide-angle region was detected in WAXD measurements. Therefore,
the observed small-angle peaks suggest the formation of smectic-like micro aggregates,
specifically cybotactic clusters. The azimuthal profiles of diffraction in the small-angle
region for M5, P1, and P2 (Figures S19, S25 and S28) demonstrated that the scattering in the
small-angle region was orthogonal to that in the wide-angle region. These results indicate
that the cybotactic clusters [61–63] are SmA-type, with no uniform tilt in the domain.
Notably, the ratio of the small-angle peak intensity to the wide-angle peak intensity was
more than 10 times greater in P1 and P2 than in M5, suggesting that cybotactic clusters
form more readily in P1 and P2 than in M5.

The 2θsmall values for M5, P1, and P2 were 3.60◦, 2.09◦, and 2.01◦, respectively, cor-
responding to dLC values of 24.6 Å, 42.4 Å, and 44.0 Å, respectively. DFT calculations
revealed that the molecular lengths (l) for M5, P1, and P3 were 24.2 Å, 22.4 Å, and 22.4 Å,
respectively, when the flexible chains were in the all-trans configuration and fully extended.
Consequently, the dLC/l ratios for M5, P1, and P3 were calculated to be 1.0, 1.9, and 2.0, re-
spectively. This indicates that the cybotactic clusters in the N phase of M5 form a monolayer
structure, while those in P1 and P3 form a double-layer structure (Figure 2b).

In the SmA phase of M6 (80 ◦C), P3 (30 ◦C), and P4 (30 ◦C), broad scattering peaks
were observed in the wide-angle region, while sharp peaks appeared in the small-angle
region. The azimuthal profiles of diffraction in the small-angle region for M6, P3, and
P4 (Figures S22, S31, and S34) showed that the scattering in the small-angle region was
orthogonal to that in the wide-angle region, a characteristic of the SmA phase. The 2θsmall
values for M6, P3, and P4 were 2.97◦, 1.61◦, and 1.61◦, respectively, corresponding to dLC
values of 29.8 Å, 55.1 Å, and 55.1 Å. DFT calculations revealed l = 30.2 Å, 28.9 Å, and 28.9 Å
for M6, P3, and P4, respectively, from which the dLC/l ratios were determined to be 1.0, 1.9,
and 1.9. This suggests that M6 has a monolayer structure in the SmA phase, while P3 and
P4 exhibit double-layer structures (Figure 2b).

In summary, M5 and M6 exhibit monolayer structures in the LC phase, while P1–P4
form double-layer structures. The formation of a double-layer structure is commonly
reported in SCLCPs [64,65]. The 2θwide values observed in the N phase of M5, P1, and P2
were 18.5◦, 18.9◦, and 19.3◦, respectively, while those observed in the SmA phase of M6, P3,
and P4 were 18.5◦, 18.9◦, and 19.3◦, respectively. Consequently, dmesogen values for M5, P1,
P2, M6, P3, and P4 were calculated to be 4.78 Å, 4.71 Å, 4.85 Å, 4.78 Å, 4.60 Å, and 4.69 Å,
respectively. Although there was no difference between the dmesogen values of M5 and M6,
the values of P3 and P4 were 0.02–0.25 Å smaller than those of P1 and P2.



Molecules 2024, 29, 5220 8 of 18

2.4. Birefringence Properties

To evaluate the optical properties of P1–P4, temperature-variable birefringence (∆n)
measurements were performed following our previously reported method [66–70]. For
comparison with the corresponding polymers, ∆n measurements were also conducted
for M5 and M6 because of the lack of heat stability of M1–M4. First, the nematic liquid
crystals (NLCs) were filled into homogeneously aligned polyimide cells. When preparing
LC cells for P1–P4, the acrylic polymers P1 and P3 could be filled into the polyimide cells
via capillary force; however, the methacrylic polymers P2 and P4 could not be filled due to
their high viscosity, likely caused by differences in molecular weight. To confirm uniaxial
orientation, POM observations were carried out. The prepared LC cells appeared dark
when the polarizer was aligned with the rubbing direction and brightest when at 45◦ to the
rubbing direction (Figure S37). These results confirm that the nematic director was aligned
with the rubbing direction.

Next, we employed a micro-spectroscopic method, observing the transmitted light
through the LC cell as a function of wavelength (λ) under cross-polarized conditions.
The nematic director was set at 45◦ to the polarizer. A typical transmission light plot is
shown in Figure S38 (dot). The transmitted light intensity (I) was fitted using the following
Equation (1) and Cauchy’s Equation (2) to determine the coefficients a, b, and c, where A is
a constant.

I
I0

= A sin2
(

π∆nd
λ

)
sin2 θ (1)

∆n = a +
b

λ2 +
c

λ4 (2)

The theoretical curve obtained from Equation (2) fitted well to the transmitted light
plot (Figure S38 (solid line)). From this fitting, we obtained the ∆n data presented in
Figure 3. Figure 3a illustrates the wavelength dependence of ∆n at T/Ti = 0.9 (Ti; isotropic
temperature), while Figure 3b shows ∆n plotted against temperature for M5, M6, P1, and
P3 at 550 nm. As shown in Figure 3a, the ∆n values of P1 and P3 were higher than those of
M5 and M6, indicating that ∆n increased as a result of polymerization. Additionally, P1
and P3 exhibited ∆n values of 0.24 and 0.20 at room temperature (25 ◦C), respectively.
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P3. (a) Measured at the same reduced temperature (T/Ti = 0.9) in each LC phase. (b) Plotted against
temperature at 550 nm and fitted by Equations (3) and (4). For M6 and P3, the fitting was performed
within the nematic phase.

As illustrated in Figure 3b, ∆n decreased with increasing temperature. The relationship
between ∆n and temperature can be explained by the temperature dependence of the order
parameter (S) of the nematic director, which is described by Haller’s approximation:

∆n = ∆n0S (3)
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S =

(
1 − T

Ti

)β

(4)

where ∆n0 is the extrapolated value for the perfectly oriented birefringence (S = 1) of the
N LC, Ti is the clearing point, and β is a material constant characteristic of the NLC. The
theoretical curve obtained from Equation (4) fitted well to the plot of ∆n for each compound
(Figure 3), and the values of β and ∆n0 were determined. Additionally, the order parameter
S was calculated using Equation (3) from the measured ∆n values and the corresponding
∆n0 values.

The values of S at 90 ◦C were calculated, as this was the temperature at which M5,
M6, P1, and P3 could be measured, and are shown in Table 4 along with the corresponding
values of β and ∆n0. The ∆n0 values for M5, M6, P1, and P3 were 0.21, 0.26, 0.31, and 0.26,
respectively, and the β values were 0.18, 0.23, 0.22, and 0.23, respectively. The S values at
90 ◦C were 0.60, 0.50, 0.69, and 0.69, respectively. Comparison of these values indicates an
improvement in S due to the polymer effect [21].

Table 4. Determined values of ∆n0 and β by Haller’s approximation and estimated birefringence (∆n)
and order parameter (S) at 90 ◦C.

Entry ∆n0 β ∆n (90 ◦C) S (90 ◦C)

M5 0.21 0.18 0.12 0.60
M6 0.26 0.23 0.13 [a] 0.50 [b]

P1 0.31 0.22 0.22 0.69
P3 0.26 0.23 0.18 [a] 0.69 [b]

[a] Value in smectic A phase. [b] calculated using ∆n (90 ◦C) value in smectic A phase.

Furthermore, a comprehensive evaluation of the S values, combined with the results
from DSC and WAXD measurements, led to the conclusion that the significant increase in
the higher phase transition temperatures (SmA–N and N–isotropic transitions) of P1–P4
might be attributed to the enhancement of S, which resulted from the formation of a
double-layer structure in the liquid crystalline phase.

2.5. Fluorescence Properties

To investigate the fluorescence properties of M1–M4 and P1–P4, absorption spectra,
fluorescence spectra, and fluorescence quantum yields (Φfl) were measured in a dilute
THF solution and in the solid state. Additionally, the fluorescence spectra of cast films of
P1–P4 were measured. The obtained values for maximum absorption wavelength (λabs),
maximum fluorescence wavelength (λfl), and Φfl for M1–M4 and P1–P4 are summarized
in Table 5.

The λabs values for all the monomers (M1–M4) in THF were 316 nm. The Φfl values
for M1–M4 in THF solution were 0.02, while in the solid state, they were 0.43, 0.58, 0.61,
and 0.48, respectively. This indicates that M1–M4 exhibited aggregation-induced emission
(AIE) properties. The AIE properties were further confirmed by aggregation experiments
on M2 and P2 (Figure 4). The λfl values for M1–M4 in the THF solution were approximately
400 nm, while in the solid state (polycrystalline state), they were 417, 407, 413, and 408 nm,
respectively. These results suggest that the fluorescence in the solid state may be derived
from aggregates rather than isolated monomers. This behavior was similar to that of our
previously reported AIEgen, bridged stilbene [55].

The λabs value for P1–P4 in THF was 316 nm. The Φfl value for P1–P4 in the THF
solution was approximately 0.03, while in the solid state, the values were 0.14, 0.15, 0.35,
and 0.18, respectively. P1–P4 exhibited the same AIE properties as the monomers, and
aggregation experiments with P2 and P4 yielded similar results to those of the monomers
(Table S3). Similar redshifts in the λfl values for P1–P4 in both the THF solution and
the solid state were observed, mirroring the behavior of the monomers. These findings
revealed that the luminescence properties of the bulk polymers and monomers were nearly
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identical. Interestingly, the λfl values for P1–P4 in the polymer films were 442, 456, 469,
and 473 nm, respectively, redshifted by more than 27 nm compared with those in the solid
state (polycrystalline state) (Figure 5). The relationship between the λfl of the films and
the liquid crystalline phase at room temperature was also investigated. The λfl values for
P1 and P2 (which exhibited the N phase) were around 450 nm, while those for P3 and P4
(which exhibited the SmA phase) were around 470 nm. These results suggest that the λfl
in the films may vary depending on the liquid crystalline phase, with a relatively shorter
wavelength shift in the N phase and a longer wavelength shift in the SmA phase. This
indicates that the molecular orientation and interactions in different LC phases may affect
the fluorescence properties.

Table 5. Spectroscopic properties for M1–M4 and P1–P4 in THF solution, solid state, and film.

Entry
λabs [nm] Φfl [-] λfl [nm]

THF THF Solid [a] THF Solid [a] Film

M1 316 0.02 0.43 399 417 -
M2 316 0.02 0.58 399 407 -
M3 316 0.02 0.61 401 413 -
M4 316 0.02 0.48 400 408 -
P1 316 0.03 0.14 407 415 442
P2 316 0.02 0.16 399 413 456
P3 316 0.03 0.35 400 413 469
P4 316 0.03 0.18 407 413 473

[a] Polycrystalline solid.
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3. Experimental
3.1. Materials

Unless otherwise noted, all solvents and chemicals were commercially available
and used without further purification. Column chromatography was performed on
silica gel (Silica Gel 60N, 63–210 µm, Kanto chemical Co., Inc., Tokyo, Japan). [Hy-
droxy(tosyloxyl)iodo]benzene, tetrakis(triphenylphoshine)palladium (0) (Pd(PPh3)4), [1,1-
bis(diphenylphosphino)ferrocene]palladium (0) (Pd(dppf)Cl2·CH2Cl2), and 6-bromo-1-
tetralone were purchased from TCI (Tokyo, Japan).

3.2. Instruments
1H-NMR and 13C-NMR spectra were recorded on BRUKER 500 (Yokohama, Japan)

(500 MHz) and JEOL 400 (Tokyo, Japan) (100 MHz) spectrometers, respectively, for CDCl3
solution using tetramethylsilane (TMS) as an internal standard. 1H-NMR spectra were
reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet,
q = quartet, m = multiplet), integration, and coupling constants in units of Hz. 13C-NMR
spectra were reported as chemical shifts in ppm. The FT-IR spectra were recorded on a
JASCO FT-IR 4600 spectrometer (Tokyo, Japan). High-resolution EI mass spectra (HRMS)
were recorded on a double-focusing mass spectrometer JEOL JMS-700, measured at the
Tokyo Institute of Technology Open Facility Center. This center is independent of our
laboratory to ensure fairness. Size exclusion chromatography (SEC) was performed using
a JASCO system (PU-2080, CL-NETII/ADC, CO-2060, UV-2075, RI-2031, Tokyo, Japan)
equipped with TSK gel columns (TOSOH G3000H xl, Tokyo, Japan) with THF as the
eluent at the following rate of 0.85 mL min−1 at 40 ◦C after calibration with polystyrene
standards. Polarized optical microscopy (POM) was performed using a Leica DM2500P
microscopy (Wetzlar, Germany) with a Mettler FP90 hot stage (Greifensee, Switzerland).
Differential scanning calorimetry (DSC) was performed using PerkinElmer DSC 8500
equipment (Waltham, MA, USA) at a scanning rate of 10 ◦C min−1 under a flow of dry
nitrogen. Thermo-gravimetric analysis (TGA) was performed using a Rigaku Thermo
Plus EVO2 series TG-DTA 8122 (Tokyo, Japan) at a heating rate of 20 ◦C min–1 under a
flow of dry nitrogen. The initial mass of the samples was 3–6 mg. X-ray investigations
were carried out with samples kept in glass capillary tubes (1.0 mm diameter) for oriented
patterns under a magnetic field. Wide-angle X-ray diffraction (WAXD) patterns were
obtained using a Bruker D8 DISCOVER (Billerica, MA, USA) equipped with a Vantec-
500 detector and Cu Kα radiation. UV-Vis spectra were recorded on a JASCO V-670
UV-vis spectrophotometer (Tokyo, Japan) and fluorescence spectra were recorded on
a JASCO FP-6500 spectrofluorometer (Tokyo, Japan). Absolute quantum yields were
measured by Hamamatsu Photonics Quantaurus QY apparatus (Hamamatsu City, Japan).
All sample solutions were de-aerated by bubbling with argon for 15 min prior to the
quantum yield measurement.

3.3. Birefringence

Measurement of birefringence was performed in uniaxially aligned LC cells containing
indium tin oxide (ITO) purchased from EHC. The cell gap (d) of 3–5 µm was determined by
the interferometric method [66–70].

3.4. Theoretical Calculations

Theoretical calculations were carried out on the Gaussian 16 program [71]. Geometry
optimizations were carried out using DFT methods at the B3LYP with the 6-31G(d) basis.
Whether the optimized geometry was at the stationary point without any imaginary
frequency was checked by the frequency calculation performed at the optimized geometries
using their level of theory.
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3.5. Synthesis

6-(4-ethylphenyl)-3,4-dihydronaphthalen-1(2H)-one (6a)

To a solution of 6-bromo-1-tetralone (5) (3.4 g, 15 mmol), 4-alkylphenylboronic acid
(3.4 g, 22 mmol), potassium phosphate (9.5 g, 45 mmol) in solvent (30 mL/12 mL/6 mL;
toluene/water/methanol), Pd(PPh3)4 (0.55 g, 0.48 mmol) was added under argon atmo-
sphere, and the mixture was refluxed (100 ◦C) for 3 hours. After the reaction, the mixture
was cooled to room temperature, then extracted with dichloromethane. The organic layer
was washed with water three times, dried over MgSO4, filtrated, and evaporated in vacuo.
The residue was purified by column chromatography on silica gel (6/1 (v/v) hexane/ethyl
acetate) to afford 6a as a brown solid; yield 96%; 1H-NMR (500 MHz, CDCl3) δ 8.09 (d,
J = 8.2 Hz, Ar-H, 1H), 7.56–7.52 (m, Ar-H, 3H), 7.47–7.45 (m, Ar-H, 1H), 7.31–7.29 (m, Ar-H,
2H), 3.02 (t, J = 6.1 Hz, -CH2-, 2H), 2.73–2.67 (m, -CH2-, 4H), 2.20–2.15 (m, -CH2-, 2H), 1.28
(t, J = 7.6 Hz, -CH3, 3H) ppm (Figure S47).

6-(4-ethylphenyl)-1-methylene-1,2,3,4-tetrahydronaphthalene (7a)

Methyltriphenylphosphonium bromide (7.1 g, 19 mmol) was dissolved in THF (40 mL)
under argon atmosphere. The solution was cooled to 0 ◦C, and then potassium tert-
butoxide (2.4 g, 21 mmol) was added. Following stirring for 10 minutes, 6a (14.5 mmol) was
added, warming to room temperature and stirring overnight. The reaction mixture was
quenched by adding NH4Cl aq to the solution and extracted with ethyl acetate. The organic
layer was washed with water three times, dried over MgSO4, filtrated, and evaporated
in vacuo. The residue was purified by column chromatography on silica gel (4/1 (v/v)
hexane/dichloromethane) to afford 7a as a colorless solid; yield 90%; 1H-NMR (500 MHz,
CDCl3) δ 7.71 (d, J = 8.2 Hz, Ar-H, 1H), 7.51 (d, J = 8.2 Hz, Ar-H, 2H), 7.40–7.37 (m, Ar-H,
1H), 7.33–7.32 (m, Ar-H, 1H), 7.26 (d, J = 7.6 Hz, Ar-H, 2H), 5.51 (s, C=CH, 1H), 4.96 (s,
C=CH, 1H), 2.90 (t, J = 6.3 Hz, -CH2-, 2H), 2.69 (q, J = 7.6 Hz, -CH2-, 2H), 2.57 (t, J = 6.1 Hz,
-CH2-, 2H), 1.94–1.89 (m, -CH2-, 2H), 1.27 (t, J = 7.6 Hz, -CH3, 3H) ppm (Figure S49).

2-(4-ethylphenyl)-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-one (8a)

To a solution of 7a (13 mmol) in solvent (38 mL/2 mL; methanol/water), HTIB ([hy-
droxy(tosyloxy)iodo]benzene; 5.6 g, 14 mmol) was added under air, and stirred at room
temperature for 20 min. After the reaction, the mixture was extracted with dichloromethane.
The organic layer was washed with water three times, dried over MgSO4, filtrated, and
evaporated in vacuo. The residue was purified by column chromatography on silica gel (6/1
(v/v) hexane/ethyl acetate) to afford 8a as a colorless solid; yield 92%; 1H-NMR (500 MHz,
CDCl3) δ 7.51 (d, J = 8.2 Hz, Ar-H, 2H), 7.41–7.38 (m, Ar-H, 2H), 7.27 (d, J = 8.2 Hz, Ar-H,
2H), 7.21 (d, J = 7.6 Hz, Ar-H, 1H), 3.76 (s, -CH2-, 2H), 3.01 (t, J = 6.4 Hz, -CH2-, 2H), 2.69
(q, J = 7.6 Hz, -CH2-, 2H), 2.60 (t, J = 7.0 Hz, -CH2-, 2H), 2.06–2.01 (m, -CH2-, 2H), 1.28 (t,
J = 7.6 Hz, -CH3, 3H) ppm (Figure S51).

3-(4-ethylphenyl)-6,7-dihydro-5H-benzo[7]annulen-8-yl trifluoromethanesulfonate (9a)

The mixture of 8a (12 mmol) and THF (30 mL) was cooled to −20 ◦C, and then tert-
butoxide (2.4 g, 21 mmol) was added. The mixture was stirred at 0 ◦C for 1 h, and then
cooled to −20 ◦C, then N-phenylbis(trifluolomethanesulfonimide) (5.3 g, 15 mmol) was
added, and stirred at −20 ◦C for a further 1 h, and then warmed to 0 ◦C, and stirred for
4 h. After that, the reaction was quenched by the dropwise addition of water (20 mL), and
organic products were extracted with ethyl acetate. The organic layer was washed with
water three times, dried over MgSO4, filtrated, and evaporated in vacuo. The residue was
purified by column chromatography on silica gel (6/1 (v/v) hexane/ethyl acetate) to afford
9a as a slight yellow solid; yield 98%; 1H-NMR (500 MHz, CDCl3) δ 7.51 (d, J = 7.9 Hz,
Ar-H, 2H), 7.43–7.40 (m, Ar-H, 1H), 7.34–7.33 (m, Ar-H, 1H), 7.27 (d, J = 8.2 Hz, Ar-H, 2H),
7.22 (d, J = 7.9 Hz, Ar-H, 1H), 6.62 (s, Ar-CH-, 1H), 2.95 (t, J = 5.2 Hz, -CH2-, 2H), 2.81 (t,
J = 6.4 Hz, -CH2-, 2H), 2.70 (q, J = 7.6 Hz, -CH2-, 2H), 2.06–2.01 (m, -CH2-, 2H), 1.28 (t,
J = 7.6 Hz, -CH3, 3H) ppm (Figure S53).



Molecules 2024, 29, 5220 13 of 18

tert-butyl(2-(4-(3-(4-ethylphenyl)-6,7-dihydro-5H-benzo[7]annulen-8-yl)phenoxy)ethoxy)-
dimethylsilane (10a)

To a solution of 9 (8 mmol), 4a (16 mmol), K3PO4·nH2O (2.4 g, 16 mmol) in THF
(40 mL), Pd(PPh3)4 (0.28 g, 0.24 mmol) was added under argon atmosphere, and stirred
at 50 ◦C overnight. After the reaction, the mixture was cooled to room temperature,
then extracted with dichloromethane. The organic layer was washed with water three
times, dried over MgSO4, filtrated, and evaporated in vacuo. The residue was purified by
column chromatography on silica gel (4/1 (v/v) hexane/dichloromethane) to afford 10a as
a colorless solid; yield 54%; 1H-NMR (500 MHz, CDCl3) δ 7.55 (d, J = 7.9 Hz, Ar-H, 2H),
7.45–7.39 (m, Ar-H, 4H), 7.27–7.26 (m, 3H), 6.91 (d, J = 8.5 Hz, Ar-H, 2H), 6.77 (s, Ar-H, 1H),
4.07 (t, J = 5.3 Hz, -CH2-, 2H), 3.99 (t, J = 5.0 Hz, -CH2-, 2H), 2.87 (t, J = 6.0 Hz, -CH2-, 2H),
2.72–2.66 (m, -CH2-, 4H), 2.23 (t, J = 6.3 Hz, -CH2-, 2H), 1.28 (t, J = 7.6 Hz, -CH3, 3H), 0.92 (s,
CH3, 9H), 0.12 (s, -CH3, 6H) ppm (Figure S55).

2-(4-(3-(4-ethylphenyl)-6,7-dihydro-5H-benzo[7]annulen-8-yl)phenoxy)ethan-1-ol (11a)

To a solution of 10a (2.6 mmol) in THF (5.0 mL), 12M HCl aq (4.0 mL) was added,
and stirred at room temperature for 10 min. After that, the reaction was quenched by
the dropwise addition of NaHCO3 aq (20 mL), and organic products were extracted with
dichloromethane. The organic layer was washed with water three times, dried over MgSO4,
filtrated, and evaporated in vacuo. Purification by recrystallization (CHCl3/Hex) gave
11a as a colorless solid; yield 87%; 1H-NMR (500 MHz, CDCl3) δ 7.55 (d, J = 8.2 Hz, Ar-H,
2H), 7.46 (d, J = 8.7 Hz, Ar-H, 2H), 7.42 (dd, J = 7.8, 2.0 Hz, Ar-H, 1H), 7.39 (s, Ar-H, 1H),
7.28–7.26 (m, 3H), 6.93 (d, J = 8.9 Hz, Ar-H, 2H), 6.78 (s, Ar-H, 1H), 4.12 (t, J = 4.6 Hz, -CH2-,
2H), 4.00–3.97 (m, -CH2-, 2H), 2.88 (t, J = 6.1 Hz, -CH2-, 2H), 2.72–2.66 (m, -CH2-, 4H),
2.26–2.21 (m, -CH2-, 2H), 1.28 (t, J = 7.5 Hz, -CH2-, 3H) ppm (Figure S57).

2-(4-(3-(4-ethylphenyl)-6,7-dihydro-5H-benzo[7]annulen-8-yl)phenoxy)ethyl acrylate (M1)

To a solution of compound 11a (1.3 mmol) and triethylamine (0.27 mL, 2.0 mmol) in
dichloromethane (5.0 mL) was added acyl chloride (1.7 mmol) and the mixture was stirred
at room temperature for 1 h. After the reaction, the solvent was removed by evaporation,
and the residue was filtered with hexane. The organic layer was washed with water three
times, dried over MgSO4, filtrated, and evaporated in vacuo. The residue was purified
by column chromatography on silica gel (1/1 (v/v) hexane/ethyl acetate) to afford crude
M1-M6. Purification by recrystallization (hexane/dichloromethane) gave pure M1 as a
colorless solid; yield: 53%; 1H-NMR (500 MHz, CDCl3) δ 7.55 (d, J = 8.2 Hz, Ar-H, 2H),
7.47–7.39 (m, Ar-H, 4H), 7.27–7.25 (m, 3H), 6.93 (d, J = 8.5 Hz, Ar-H, 2H), 6.77 (s, Ar-H, 1H),
6.48–6.44 (m, =CH, 1H), 6.18 (dd, J = 17.4, 10.4 Hz, -CH=, 1H), 5.87 (dd, J = 10.5, 1.4 Hz,
=CH, 1H), 4.53 (t, J = 4.7 Hz, -CH2-, 2H), 4.25 (t, J = 4.9 Hz, -CH2-, 2H), 2.88 (t, J = 6.1 Hz,
-CH2-, 2H), 2.72–2.66 (m, -CH2-, 4H), 2.23 (t, J = 6.1 Hz, -CH2-, 2H), 1.28 (t, J = 7.6 Hz, -CH3,
3H) ppm (Figure S59); 13C-NMR (100 MHz, CDCl3) δ 166.2, 157.9, 143.4, 142.3, 141.6, 139.2,
138.4, 137.4, 136.4, 131.5, 131.1, 128.4, 128.2, 127.7, 127.5, 127.4, 127.0, 124.5, 114.5, 66.1,
63.0, 35.0, 33.1, 30.3, 28.6, 15.7 ppm (Figure S60). HRMS (EI) Calcd for C30H30O3: 438.5664,
Found 438.2195 (Figure S57).

Poly[2-(4-(3-(4-ethylphenyl)-6,7-dihydro-5H-benzo[7]annulen-8-yl)phenoxy)ethyl]
acrylate (P1)

To a pressure-resident tube, which contained M1 (0.37 g, 0.83 mmol) and a portion of
THF (3.0 mL), AIBN (azobis(isobutyronitrile), 9.0 mg, 6.5 wt%, was added, and the mixture
was stirred at 60 ◦C for 24 h. The mixture was poured dropwise with an excess amount
of methanol, and it was filtered. The solids were purified by column chromatography on
SephadexTM G100 (eluted with THF), and reprecipitated with methanol; colorless solid;
yield 40.3%; 1H-NMR (500 MHz, CDCl3) δ 7.50–7.05 (brm, Ar-H, 9H), 6.88–6.71 (brm, Ar-H,
3H), 4.26–4.10 (brm, 4H), 2.88–2.36 (brm, 6H), 2.17–2.13 (brm, 2H), 1.84 (br, 1H), 1.26 (br,
3H) ppm (Figure S71); 13C-NMR (100 MHz, CDCl3) δ 174.7, 157.8, 143.3, 142.1, 141.6, 139.0,
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138.3, 138.2, 137.2, 136.3, 135.9, 131.2, 128.3, 127.4, 127.3, 126.9, 125.6, 124.5, 114.5, 65.8, 62.9,
41.3, 41.2, 35.0, 34.3, 33.1, 31.6, 30.4, 30.1, 29.6, 28.6, 21.3, 15.7 ppm (Figure S72).

4. Conclusions

We synthesized P1–P4 as SCLCPs with varying flexible chain lengths by radical poly-
merization of acrylate monomers containing π-extended bridged stilbene mesogens. The
resulting polymers exhibited liquid crystalline phases over a temperature range exceeding
150 ◦C. P1 and P2 exhibited a nematic phase at room temperature, which was maintained
for more than three months. These stable nematic phases are highly advantageous for
device applications operating at room temperature. WAXD measurements revealed that
the polymers possessed a double-layer structure in the liquid crystalline phase. Addition-
ally, the polymers demonstrated larger order parameter (S) values compared with small
molecules and exhibited higher birefringence. The polymers were also found to retain
the AIE characteristics of the DPB[7] skeleton, with high quantum yields (Φfl = 0.14–0.35)
in the solid state (polycrystalline). Furthermore, film formation resulted in a redshift of
the maximum fluorescence wavelength (λfl) by more than 27 nm, yielding λfl values in
the range of 442–473 nm. The magnitude of the redshift may be related to the liquid
crystalline phase exhibited at room temperature, though further investigation is required
to clarify the details. These optically and luminescent-functionalized SCLCPs hold promise
for applications in luminescent semiconductors and optoelectronic materials, including
holograms [72–74] and polarized light-emitting devices [75–85].

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules29215220/s1: Figures S1–S4: TGA curves; Figures S5–S10:
DSC thermogram; Figures S11–S16: POM images; Figures S17–S34: 1D- or 2D-WAXD profiles;
Figures S35 and S36: Optimized structure (DFT calculation); Figure S37: POM images of nematic
phase in polyimide cell; Figure S38: Wavelength dependence of light transmittance; Figure S39: Ab-
sorption spectra; Figure S40: Fluorescence spectra; Figures S41–S78: NMR spectra; Figures S79–S84:
FT-IR spectra; Figures S85–S88: HRMS spectra; Tables S1 and S2: Atomic coordination and absolute
energy (DFT calculation); Table S3: Aggregation experiments.
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