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Abstract: The properties of circularly polarized light has recently been used to selectively reflect chiral
metasurfaces. Here we report the more complete basic functionalities of reflectors and absorbers
that display various optical phenomena under circularly polarized light at normal incidence as
before. For the chiral metamirrors we designed, the circular dichroism in about 0.4 reflection is
experimentally observed in visible wavelengths. The experimental results also show high reflectance
for right-handed circular polarization with preserved handedness and strongly absorbed left-handed
circular polarization at chiroptical resonant wavelengths. By combining a nanobrick and wire grating
for our design, we find and offer a new structure to demonstrate the superposition concept of the
phase in the same plane that is helpful in effectively designing chiral metamirrors, and could advance
development of their ultracompact optical components.

Keywords: metamirrors; circular dichroism; chirality; visible wavelengths

1. Introduction

The term chirality is identified as the property of an object that lacks any mirror symmetry
plane [1–7] and is a fundamental characteristic of natural molecules and artificial metamaterials
which have different optical properties for right-handed circular polarization (RCP) or left-
handed circular polarization (LCP). A famous example in nature, the Chrysina gloriosa, a
jeweled scarab beetle, can selectively reflect left-handed circularly polarized light in reflection,
because of the particular textures of its exoskeleton [8]. Moreover, this chiroptical response is
utilized by Chrysina gloriosa to perceive and communicate with its companions [9]. However,
the signal of chiroptical response is universally weaker in natural as compared to artificial
metamaterial. Therefore, in recent years the chiral metasurface [10–13] has been widely studied
to achieve a strong chiroptical response in applications such as circular polarizers [14–18],
hot-electron collection devices [19–23], optical encryption [24,25], and biosensors for analyzing
circular dichroism spectroscopy [26–30].

In this paper, we demonstrate all basic functionalities for a series of reflectors and
absorbers consisting of a metasurface on the top of a conventional mirror under circularly
polarized light at normal incidence (as shown in Figure 1) that is more complete than
before [31,32]. A conventional isotropic mirror can reverse the handedness of circularly
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polarized when light is reflected off its surface, because it can reverse the propagation
direction of the reflected electromagnetic wave of the electric field (seen in Figure 1a), as has
previously been discussed in detail [33,34]. The necessary condition for selective reflection
without preserving handedness for both LCP absorbers and RCP absorbers under circular
polarized light is only to break mirror symmetry to the perpendicular light propagation
direction of the pattern plane, illustrated in Figure 1b,c. In addition, Figure 1b,c are opposite
phenomena and mirror images of each other. Figure 1d shows an anisotropy mirror
designed as a half-wave plate with a phase difference of π [35–38] and having the property
of preserving handedness without handedness variation. The LCP and RCP mirrors
are designed to not only selectively reflect one circular polarized light while preserving
handedness, but also totally absorb the other, as shown in Figure 1e,f [30]. In addition, a
linear polarization perfect absorber composed of a metasurface and a thick backplane of
a general mirror separated by a thin lossy dielectric spacer, has been reported [39,40]. It
is important to note that an isotropic linear polarization absorber can absorb both linear
polarizations [41–43], and is the circular polarization perfect absorber to absorb both RCP
and LCP light, as shown Figure 1g. The mirrors shown in Figure 1 allow for control of the
polarization and intensity of the reflected light, which is essential when designing various
devices. This study aims to develop a metamirror with the maximum value of circular
dichroism. The metamirror analysis revealed that circular dichroism can only be obtained
by using LCP or RCP mirrors (see Figure 1e,f). For this reason, in this work we present
a simple approach that utilizes the superposition concept of the phase to design chiral
metamirrors from a single structure layer, by combining the nanobrick and the wire grating
in the same plane. Furthermore, this single patterned layer can make a good contribution
to lowering the complexity of the fabricated device and its cost. The analysis of both
simulation and experiments with reflectance coefficients spectra demonstrates the chiral
metamirrors we have designed can selectively reflect the RCP light while preserving the
handedness and absorbing the LCP light. In addition, the simulated results display good
agreement with the experimental results showing reflectance spectra and spectral shape.
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Figure 1. Schematic of all reflectors under circularly polarized light at normal incidence. (a) A
general mirror reverses the handedness of circular polarized light in reflection. (b) An LCP absorber
and (c) an RCP absorber can reflect circularly polarized light of one handedness with handedness
variation, while absorbing the other handedness, as shown as the black circle. (d) An anisotropy
mirror is designed as a half-wave plate with a phase difference of π, to preserve handedness without
handedness variation. (e) An LCP mirror and (f) an RCP mirror can reflect circular polarized light of
one handedness and preserve handedness without handedness variation, while absorbing the other
handedness. (g) An isotropic mirror absorbs both LCP and RCP light and does not reflect light as a
perfect absorber.
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2. Materials and Methods

In order to design the circular dichroism metamirrors, conditions including breaking
mirror symmetry and the n-fold (n > 2) rotational symmetry [8] must be satisfied. Therefore,
we combined the nanobrick and the wire grating in the same plane. Figure 2 shows a
three-dimensional illustration of the gold nanobrick–wire grating complex structure. The
schematic configuration is designed as a 60 nm gold structure on top of a 130 nm silicon
dioxide spacer, underneath which is a layer of thick gold reflector and a glass substrate.
Due to the optically thick gold reflector in this design, transmission can be neglected; the
chiroptical response can be tremendously enhanced by providing a resonant cavity. The
width of both the nanobrick and the wire grating was g = l = 70 nm, and the length of the
nanobrick was w = 190 nm. The unit cell was replicated in a two-dimensional square lattice
along the x and y axes with period Px = Py = P = 250 nm. The nanobrick was rotated by
45 degrees with respect to the z-axis to break the mirror symmetry and the n-fold (n > 2)
rotational symmetry. It is worth noting that we demonstrate that the gold nanobrick-wire
grating complex structure of the chiral metamirrors planar photonic structures with a single
patterned layer not only produces a chiral optical response, but also lowers the complexity
of a fabricated device and the cost.
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Figure 2. Schematic configuration of the chiral metamirrors consisting of the nanobrick and the wire
grating in the same plane for breaking mirror symmetry and the n-fold (n > 2) rotational symmetry. A
unit cell of the metasurface consists of a gold structure which is separated from a thick gold reflector
by a thin SiO2 spacer. Geometrical parameters: P = 250 nm, g = l = 70 nm, w = 190 nm, ts = 130 nm,
tAu = 200 nm.

3. Results
3.1. Simulated Results

Simulated results of the reflectance spectra under RCP and LCP incident light based on
the three-dimensional Finite-Difference Time-Domain method are illustrated in Figure 3a,b.
To better describe the observed chiroptical response, the corresponding circular dichroism
is illustrated in Figure 3a. The circular dichroism spectrum was characterized by different
absorption between RCP and LCP light (CD = ALCP – ARCP). The total reflectance spectra
indicated clearly different reflection under RCP and LCP incident light, and the circular
dichroism was ~0.48 at a wavelength of 640 nm. In contrast to the phenomenon of the RCP
light, which was reflected, the LCP was absorbed by our chiral metamirrors. Moreover, the
corresponding reflecting behavior of the reflectance coefficients of the co-polarization and
cross-polarization components of the chiral metamirrors under RCP and LCP incident light
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is depicted in Figure 3b. The reflectance coefficient |rRR|2 (|rLR|2) is defined as the RCP
(LCP) light reflected off the surface of the chiral metamirrors under RCP incident light, while
|rRL|2 (|rLR|2) indicates the cross polarization of circularly polarized light. As expected,
|rRL|2 and |rLR|2 were exactly the same because of the symmetry of the unit cell [44].
In addition, Figure 3b demonstrates our chiral metamirrors not only selectively reflected
the RCP light, but also preserved the handedness at the chiroptical resonance wavelength
of 640 nm, while all LCP components were completely absorbed. In order to preserve
handedness, there is a need to design the anisotropy structure with a phase difference of π
as a half-wave plate. For our designed dichroism metamirrors, the superposition concept
of the phase is illustrated in Figure 3c. First, we modified two different lengths of brick to
create two kinds of phase difference. Then, we combined these two structures to superpose
the phase to create the phase difference of π, to preserve the handedness that is one of the
necessary conditions for designing chiral metamirrors. Consequently, we have successfully
demonstrated this simple way to design chiral metamirrors which produce the chiroptical
response while preserving handedness by combining the nanobrick and the wire grating in
the same plane. The chiral selective reflectance spectra demonstrated the distinct resonance
modes under the RCP and LCP incident light. To better describe the fundamental physical
mechanism of the chiral resonance at a wavelength of 640 nm while the value of circular
dichroism is maximal, the cuts in the electric field distribution through the middle of the
gold metasurface were as shown in Figure 3d,e. In the near field distribution, the electric
field localizes to a different position, which means the resonance mode is different, resulting
in different reflectance spectra. Furthermore, it is evident that the stronger field restriction
on both sides of long axis of the nanobrick corresponded to the lower reflectance under
LCP light.
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Figure 3. Simulated results of the chiral metamirrors. (a) Total reflectance spectra and (b) reflectance
coefficients of the co-polarization and cross-polarization components of the chiral metamirrors under
RCP and LCP incident light. (c) Phase difference of reflected light for the three types of structure
under circularly polarized light. Electric field distributions for the chiral metamirrors at the maximum
chiroptical response wavelength of 640 nm under (d) LCP and (e) RCP incident light.

In principle, the circular polarizations can be decomposed into two linear polarizations
with orthogonal direction in a 90◦ phase shift. The anisotropy of our designed structure can
produce the phase difference and the transformation of the linear polarization state into its
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orthogonal one. This phase difference will lead to destructive interference and constructive
interference for linear polarizations under LCP and RCP light, respectively. The ideal
conditions of the phase and the amplitude for maximizing circular dichroism (maximiz-
ing LCP absorption, minimizing RCP absorption) in the planar chiral metamaterial are
as follows [19]:

ϕxx + 90◦ = ϕxy = ϕyx = ϕyy + 270◦ (1)

|rxx| = |ryy| = |rxy| = |ryx| (2)

As mentioned above, our chiral metamirrors have also satisfied these two conditions
in achieving the maximizing circular dichroism at the resonant wavelength of 640 nm as
shown in Figure 4. As shown in Equation (2) and Figure 4b, the same amplitude will not
only cancel out the same linear polarizations of the reflected light for destructive interfer-
ence, but also enhance the intensity of the other polarization for constructive interference.
A more detailed description of the process for achieving the required phase difference and
producing a half-wave plate metasurface has been presented in our previous work [38].
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3.2. Experimental Results

To experimentally realize the chiral metamirrors, we demonstrate a series of experi-
ments in the visible wavelengths. E-beam lithography was used to fabricate the metasurface.
First, the 200 nm gold film and 130 nm amorphous SiO2 were deposited via sputter on
the glass substrate. The PMMA A4 photoresist with a thickness equal to 200 nm was spin
coated on the substrate at 1500 rpm for 15 s and 8000 rpm for 30 s, respectively. Then, it
was prebaked at 180◦C for 90 s. The lower spin speed was for flatness, and higher spin
speed for controlling thickness. The E-beam lithography system (ELS−7500EX, ELIONIX,
Wellesley, MA, USA) was used to define the pattern, and the photoresist was developed
using developers (MIBK:IPA = 1: 3) for 30 s. Then, 60 nm gold film was deposited us-
ing the electron gun evaporation system (VT1-10CE, ULVAC, Munich, Germany) with a
0.5 Å/s deposition rate in 5 × 10−6 Torr. The sample was immersed in acetone liquid to lift
off residual photoresist and unnecessary gold film. During the gold deposition process, we
encountered an issue with its adhesion to the SiO2 surface. To address this, we deposited
a thin 5 nm titanium film on the SiO2 prior to applying the gold. The scanning electron
microscope image of the fabricated structure is shown in Figure 5a. Figure 5c shows the
measured total reflectance spectra at wavelengths between 400 nm and 900 nm under RCP
and LCP incident light. A comparison of the experimental spectra with the theoretical
ones (see Figure 3a) reveals that the Q-factor of the resonance in the actual experiment is
significantly lower than in the simulation. This significant decrease in Q-factor is due to the
inclusion of a thin titanium layer, which was necessary to enhance the adhesion between
gold and SiO2. The simulated reflection spectra for the structure with a thin titanium film
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under RCP and LCP incident light are shown in Figure 5b. As expected, a clearly chiral
selective reflection appears, as shown in Figure 5b,c. The minimum reflectance for LCP
waves reached ~5% at the chiroptical resonant wavelength in the measurement. However,
by comparing the simulated and experimental results we can observe the reflectance spectra
under circular polarized light underwent a blue shift because of the wider width of the wire
grating of ~15 nm in the experiment. Nevertheless, the experimental results match well
with the simulated results. Figure 5e,f plot the reflectance coefficients of the co-polarization
and cross-polarization components of the chiral metamirrors under RCP and LCP incident
light, fully providing information on the chiroptical response. We observed the RCP light
can be reflected with preserved handedness on our chiral metamirrors at the resonant
wavelength of 670 nm, and the LCP components were absorbed almost simultaneously,
as shown in Figure 5f. Nonetheless, the reflectance coefficients spectra also underwent a
slight blue shift because of the inaccuracy from the sample fabrication, as mentioned above,
and show a slight imprecision due to the optical components at longer than 800 nm.
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Figure 5. Experimentally measured results of optical reflectance spectra of the chiral metamirrors with
a thin adhesion layer of titanium. (a) Scanning electron microscopy image of the fabricated sample of
the chiral metamirrors. The scale bar is 500 nm. (b) Simulated and (c) experimental results of the total
reflectance spectra under LCP (black) and RCP (red) incident light. (d) Optical microscopy images of
the metamirrors show good uniformity in e-beam lithography. The scale bar is 100 µm. (e) Simulated
and (f) experimental results of reflectance coefficients of the co-polarization and cross-polarization
components of the chiral metamirrors under RCP and LCP incident light.

4. Discussion

In summary, we have presented more complete basic functionalities of reflectors and
absorbers than previously demonstrated, and an approach to the superposition concept of
the phase in the same plane that is helpful in designing chiral metamirrors. We have also
demonstrated the design of our metamirrors offers significant magnitudes of chiroptical
response in both simulated and experimental results in the visible wavelengths. The
theoretical reflectance is nearly absorbed at the chiroptical resonant wavelength under LCP
incident light, while a reflectance of ~5% is experimentally proven. We believe that the high
resolution for chiral selection in reflection is an attractive feature for many applications in
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optical components such as circular polarizers and absorbed filters. In addition, applying
the characteristic of preserving handedness to circular polarizers could avoid transforming
one polarization state into the other. This transformation can complicate an optical system
and influence the measurement of samples in ways we do not expect. It is important to
note that our designed single-patterned layer is a useful contribution to decreasing the
complexity of fabrication requirements such as the high cost of a multilayered patterned
layer [8] and the accurate alignment, and can also achieve a highly efficient chiroptical
response. Finally, the proposed structure, consisting of nanowires coupled with nanobricks,
can be used in the design of beam steering devices [45,46]. As in previous studies, the
nanowires do not connect, allowing them to be used as electrical contacts and, consequently,
to change the diffraction grating period. The advantage of this proposed chiral metamirror
in contrast to conventional nanostrips is that it allows for the creation of a diffraction
grating. The proposed metamirror allows control of the diffraction angles, as well as the
intensity of diffraction orders and the polarization.
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