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Abstract: Background: Previous studies have reported associations between fatty acids and the risk of
pre-eclampsia. However, the causality of these associations remains uncertain. This study postulates a
causal relationship between specific plasma fatty acids and pre-eclampsia or other maternal hyperten-
sive disorders (PE-HTPs). To test this hypothesis, two-sample bidirectional Mendelian randomization
(MR) analyses were employed to determine the causality effects. Methods: Single-nucleotide poly-
morphisms associated with PE-HTPs and fatty acids were obtained from a genome-wide association
study (GWAS) of European ancestry. Bidirectional MR analyses were conducted using methods
such as inverse variance weighted, MR-Egger, weighted median, simple mode, and weighted mode.
Sensitivity analyses, including tests for heterogeneity, horizontal pleiotropy, and co-localization, were
conducted to assess the robustness of MR results. Results: The analyses revealed causal relationships
between PE-HTPs and several fatty acids, including monounsaturated fatty acid (MUFA), omega-6
fatty acid (n-6 FA), linoleic acid (LA), docosahexaenoic acid (DHA), and the PUFA/MUFA ratio.
Genetically predicted higher risk of PE-HTPs was significantly associated with lower plasma n-6 FA
(OR = 0.96, 95% CI: 0.93–0.99), particularly LA (OR = 0.95, 95% CI: 0.92–0.98). Conversely, increased
DHA (OR = 0.86, 95% CI: 0.78–0.96) and a higher PUFA/MUFA ratio (OR = 0.86, 95% CI: 0.76–0.98)
were associated with a reduced risk of PE-HTPs. Elevated MUFA levels (OR = 1.12, 95% CI: 1.00–1.25)
were related to an increased risk. Conclusions: This study provides robust genetic evidence support-
ing bidirectional causal relationships between PE-HTPs and specific plasma fatty acids, underscoring
the critical role of fatty acid metabolism in maternal hypertensive disorders.

Keywords: fatty acids; pre-eclampsia; mendelian randomization analysis

1. Introduction

Pre-eclampsia is a common pregnancy complication characterized by hypertension
and proteinuria [1], affecting 3% to 5% of all pregnancies [1,2]. Hypertensive disorders of
pregnancy, including pre-eclampsia, chronic hypertension, and gestational hypertension,
impact approximately 10% of pregnancies [3]. Pre-eclampsia poses significant risks to both
maternal and fetal health, notably impacting fetal cognitive function such as verbal reason-
ing and executive function in early childhood [4]. Research suggests that pre-eclampsia may
influence long-term brain and mental health, with studies indicating potential variations
in the structure and connectivity of the limbic system components [5–7]. Additionally,
pre-eclampsia is often associated with defects in placental development and function,
with susceptibility potentially driven by underlying cardiometabolic factors that modify
responses to pregnancy-induced stress [8,9].

Nutrients 2024, 16, 3748. https://doi.org/10.3390/nu16213748 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16213748
https://doi.org/10.3390/nu16213748
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-9961-199X
https://orcid.org/0009-0001-1097-2175
https://doi.org/10.3390/nu16213748
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16213748?type=check_update&version=2


Nutrients 2024, 16, 3748 2 of 12

Plasma fatty acids play a crucial role in maternal cell growth and development during
pregnancy, as well as in cell signaling [10]. They act as both structural components and
functional regulators, determining maternal fatty acid metabolism, which is essential for
fetal–placental development [11]. In particular, the preferential transport of long-chain
polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and linoleic
acid (LA) in plasma is critical for fetal brain and retina development [12,13]. An elevated
omega-6-to-omega-3 PUFA ratio (n-6/n-3 ratio) contributes to a pro-inflammatory state
in the body, promoting non-communicable chronic diseases [14], increasing mortality
from cardiovascular disease, and affecting cognitive function in children [15,16], among
other health implications. In addition, excess dietary saturated fatty acids (SFAs) and
trans fatty acids are associated with cardiovascular disease risk [17], and a higher ratio
of polyunsaturated to monounsaturated fatty acids (PUFA/MUFAs ratio) is linked to a
lower risk of cardiovascular mortality and better overall health outcomes [18]. Women with
pre-eclampsia are reported to be susceptible to lipid metabolism disorders. Maternal hyper-
tension during pregnancy can alter placental fatty acid transport, which may be caused by
the quality and quantity of fatty acids [19–21]. Although the specific mechanism behind
these placental changes in lipid transport and metabolism remains unclear, alterations in
fatty acids may contribute to changes in fetal brain development in pregnant women with
pre-eclampsia.

Most studies on plasma fatty acids in pregnant women with pre-eclampsia or other
maternal hypertensive disorders (PE-HTPs) employ case–control or cross-sectional de-
signs [21–26]. While these methodologies offer valuable insights, they inherently limit the
ability to infer causal relationships due to their observational nature and potential for con-
founding variables. To address these limitations, our study used Mendelian randomization
(MR) to evaluate the consistency of correlations with the causal hypothesis. MR leverages
genetic variation as instrumental variables in observational research, simulating random-
ized controlled trials through the random assignment of alleles to offspring at meiosis,
thereby mitigating the influence of potential confounders on exposures and controls [27].
This approach enables the detection and quantification of causality within observational
studies. In this study, genetic proxies for various types of plasma fatty acids were derived
from genetic variations, while PE-HTP outcomes were obtained from large biobanks. Our
aim was to use bidirectional MR to assess the causal association between plasma fatty acid
levels and the risk of pre-eclampsia. This research will provide a scientific foundation for
future mechanistic and interventional studies aimed at the prevention and treatment of
pregnancy-related comorbidities.

2. Materials and Methods
2.1. Study Design

MR analysis is predicated on three key assumptions. It is imperative to emphasize
that MR should exclusively incorporate objective assessments, unless explicitly denoted
as subjective. Firstly, the genetic variants serving as instrumental variables (IVs) must be
strongly correlated with the exposure trait. Secondly, these IVs must not be subject to any
confounding factors. Lastly, genetic IVs do not directly influence the outcome of circulating
fatty acids but rather exert their impact solely through indirect exposure pathways. In this
study, we employed a two-sample MR approach to examine the impact of PE-HTPs on
circulating fatty acids utilizing summary statistics from genome-wide association studies
(GWAS) [28,29]. In order to minimize the impact of population stratification, the present
study was limited to participants with European ancestry. Ten plasma fatty acid-related
outcomes were selected, including total fatty acids (TFAs), SFAs, monounsaturated fatty
acids (MUFAs), and PUFAs. Additionally, omega-3 fatty acids (n-3 FAs) and omega-6 fatty
acids (n-6 FAs) were included, as well as the main constituent fatty acids: DHAs and LAs.
Two ratios were also added as outcomes: the PUFA/MUFA ratio and the n-6/n-3 ratio.
Furthermore, a reverse MR analysis was performed to determine the causal impact of the
aforementioned fatty acids on PE-HTPs. The study design is illustrated in Figure 1.
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Figure 1. Flowchart of the study design. Abbreviations: DHA, docosahe×aenoic acid; GWAS,
genome-wide association study; IV, instrumental variable; IVW, inverse variance weighting; LA,
linoleic acid; LD, linkage disequilibrium; MR, Mendelian randomization; MR-PRESSO, MR pleiotropy
residual sum and outlier; MUFA, monounsaturated fatty acid; n-3 FA, omega-3 fatty acid; n-6
FA, omega-6 fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid; SNP, single-
nucleotide polymorphism; TFA, total fatty acid.

2.2. Data Sources and Study Population

PE-HTP is a combined phenotype including pre-eclampsia or other maternal hyperten-
sion. Briefly, the PE-HTP GWAS was derived from a meta-analysis combining data from the
Finnish Genetics of Preeclampsia Consortium (FINNPEC, 1990–2011), the Finnish FinnGen
project (1964–2019), the Estonian Biobank (EstBB, 1997–2019), and the previously published
InterPregGen Consortium GWAS [28]. We used summary statistics downloaded from the
NHGRI-EBI GWAS Catalog [30] on 19 February 2024 to examine the association between
genetic variants and plasma levels of fatty acids [29]. Fatty acid data were selected from
249 metabolic traits measured by targeted high-throughput nuclear magnetic resonance
(NMR) metabolomics by Nightingale Health (biomarker quantification version 2020) in the
UK Biobank. Following the original GWAS, each fatty acid trait was normalized to have
a mean of 0 and a standard deviation of 1, using inverse rank normalization, to allow for
comparisons between derived effect estimates [29]. Further details were well described in
previous studies [31]. Ethical approval was obtained for all original studies.

2.3. SNP Selection

We selected single-nucleotide polymorphisms (SNPs) associated with PE-HTPs
(p < 5 × 10−8) in the previous GWAS meta-analysis in individuals of European ances-
try. Independent variants (r2 < 0.01 and kb > 5000) were selected using the “clump_data”
function (EUR population) of the “TwoSampleMR” R package to remove genes in linkage
disequilibrium (LD) [32]. Next, we eliminated IVs significantly associated with plasma
fatty acid phenotypes to ensure compliance with Assumption 3. The F-statistic for each
SNP was estimated as the square of the SNP-exposure association divided by the variance
of the SNP-exposure association. IVs with F-statistics below 10 are deemed weak, and thus
excluded.

2.4. MR Analyses

We mainly used random effects with inverse variance weighting (IVW) and multipli-
cation, assuming pleiotropic equilibrium. The presence of heterogeneity due to pleiotropy
was indicated by high Cochran’s Q and I2 statistics. To ensure consistency in the use of
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alleles for both exposure and outcome for palindromic SNPs (coded A/T or C/G), we
aligned them based on their effect allele frequency and coding directionality. In sensi-
tivity analyses, we also included MR estimates from alternative methods with different
assumptions, including the weighted median, MR-Egger, weighted mode and simple mode
approaches. In addition, we used MR pleiotropy residual sum and outlier (MR-PRESSO)
analysis and leave-one-out (LOO) sensitivity tests as an additional means of identifying
potential horizontal pleiotropic outliers and correcting for observed pleiotropy if necessary.
Enumerative colocalization analysis was used to evaluate instrumental variable hypothe-
ses for specific genetic regions within this study. If PE-HTP and fatty acid phenotypes
were causally influenced by different variants related to each other, this could violate
Assumption 3 in the MR analysis by providing a pathway between the genetic variants and
outcomes other than via exposure. For example, a genetic predictor of exposure could be
in LD with another variant that independently influenced the outcome [33]. All statistical
analyses were conducted using R version 4.3.1 and the “MR-PRESSO”, “TwoSampleMR”,
and “coloc” packages. Statistical significance was defined as p < 0.05.

3. Results
3.1. Study Population

The PE-HTP GWAS included up to 130,207 individuals of European ancestry from
the FINNPEC (1689 cases, 778 controls), FinnGen (9427 cases, 78,601 controls), and EstBB
(4048 cases, 35,628 controls) cohorts [25]. According to the previous study, the mean ± SD
age at diagnosis of PE-HTP for the FINNPEC, FinnGen, and EstBB cohorts was 30.3 ± 5.5,
29.5 ± 5.8, and 30.2 ± 7.2, respectively. The summary statistics of plasma levels of fatty
acids were based on a GWAS of individuals of European ancestry from the UK Biobank
(N = 115,006) [29].

3.2. Association Between Genetically Estimated PE-HTP and Plasma Fatty Acids

After excluding LD with r2 < 0.01, eight SNPs associated with PE-HTPs reached
suggestive genome-wide significance (p < 5 × 10−8). The F-statistics of all instrumental
variables ranged from 32 to 54, indicating a relatively low risk of weak instrument bias in
MR analyses. Upon removing palindromic SNPs, Supplementary Materials’ S1 presents
the summary statistics for the genetic variants related to PE-HTP.

Figure 2 presents the results of a univariable MR analysis that explored the causal
effect of genetically estimated PE-HTPs on various types of plasma fatty acids. In the
IVW MR analysis, genetically predicted higher risk of PE-HTPs was related to increased
plasma n-3 FA levels (odds ratio (OR) = 1.04, 95% confidence interval (CI): 1.00–1.07,
p = 0.024), and decreased plasma n-6 FA levels (OR = 0.96, 95% CI: 0.93–0.99, p = 0.011).
Specifically, the genetic proxies of PE-HTPs were associated with reduced LA levels
(OR = 0.95, 95% CI: 0.92–0.98, p = 0.003) for n-6 FA. The effect estimate remained sig-
nificant in the weighted median analyses for n-6 FA (OR = 0.95, 95% CI: 0.91–0.99, p = 0.037)
and LA (OR = 0.95, 95% CI: 0.91–0.99, p = 0.008). A higher genetically determined risk
of PE-HTP was associated with the n-6/n-3 ratio in the IVW analysis (OR = 0.94, 95% CI:
0.91–0.97, p < 0.001). Besides the IVW method, the weighted median, weighted mode, and
simple mode methods obtained p values lower than 0.05. However, gene-predicted PE-HTP
was not significantly associated with other plasma fatty acids (TFAs, SFAs, MUFAs, and
PUFAs) or the PUFA/MUFA ratio, with p values above 0.05 calculated by the IVW method
and other four methods.
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n-6/n-3 ratio Inverse variance weighted 0.94 (0.91-0.97) <0.001***
Weighted median 0.94 (0.90-0.98) 0.003**
MR Egger 0.91 (0.82-1.02) 0.150
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Figure 2. Results of Mendelian randomization (MR) analysis of pre–eclampsia or other maternal
hypertensive disorder (PE–HTP) and multiple plasma fatty acids. Forest plots show odd ratios and
95% confidence intervals. The results are shown for the different methods of MR analyses used in this
study: inverse variance weighted, weighted median, MR–Egger, weighed mode, and simple mode.
p values are indicated by stars, * p < 0.05, ** p < 0.01, *** p < 0.001. Abbreviations: CI, confidence
interval; DHA, docosahexaenoic acid; LA, linoleic acid; MUFA, monounsaturated fatty acid; n-3 FA,
omega-3 fatty acid; n-6 FA, omega-6 fatty acid; OR, odds ratio; PUFA, polyunsaturated fatty acid;
SFA, saturated fatty acid; TFA, total fatty acid.

3.3. Association Between Genetically Estimated Plasma Fatty Acids and PE-HTPs

In the reverse MR analysis with the IVW method, higher genetically estimated levels
of n-3 FA (OR = 0.89, 95% CI: 0.82–0.97, p = 0.008) and DHA (OR = 0.86, 95% CI: 0.78–0.96,
p = 0.006) were found to reduce the risk of PE-HTPs significantly. Additionally, the increased
n-6/n-3 ratio was significantly associated with a higher risk of PE-HTP (OR = 1.12, 95%
CI: 1.02–1.23, p = 0.014). Similar findings were observed in the weighted median, MR
Egger, and weighted analyses, which also showed associations of n-3 FA, DHA levels,
and n-6/n-3 ratio with PE-HTPs. Furthermore, the IVW analysis indicated that elevated
levels of genetically determined MUFAs increased the risk of PE-HTPs (OR = 1.12, 95% CI:
1.00–1.25, p = 0.044), while an increased PUFA/MUFA ratio significantly decreased the risk
of PE-HTP (OR = 0.86, 95% CI: 0.76–0.98, p = 0.019). However, no association was found
between TFAs, SFAs, PUFAs, n-6 FAs, and LAs with PE-HTPs (Figure 3).
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PE-HTP was not affected by heterogeneity. Similarly, the p values for each fatty acid in the 
pleiotropy assessment were also above 0.05, suggesting that the analyses of the individual 
fatty acid outcomes are not affected by pleiotropy, thus not violating Assumption 3. 

Exposure Method OR (95%CI) P-value
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MR Egger 0.94 (0.76-1.17) 0.593
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SFA Inverse variance weighted 0.98 (0.86-1.12) 0.812
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MR Egger 0.83 (0.68-1.01) 0.062
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n-3 FA Inverse variance weighted 0.89 (0.82-0.97) 0.008**
Weighted median 0.82 (0.75-0.90) <0.001***
MR Egger 0.83 (0.73-0.93) 0.003**
Weighted mode 0.82 (0.75-0.89) <0.001***
Simple mode 1.09 (0.83-1.44) 0.519

n-6 FA Inverse variance weighted 0.98 (0.88-1.09) 0.699
Weighted median 0.97 (0.84-1.13) 0.727
MR Egger 0.85 (0.68-1.06) 0.146
Weighted mode 0.80 (0.59-1.09) 0.157
Simple mode 0.81 (0.57-1.15) 0.242

DHA Inverse variance weighted 0.86 (0.78-0.96) 0.006**
Weighted median 0.83 (0.75-0.91) <0.001***
MR Egger 0.81 (0.69-0.95) 0.013*
Weighted mode 0.82 (0.75-0.90) <0.001***
Simple mode 0.79 (0.60-1.04) 0.102

LA Inverse variance weighted 0.98 (0.86-1.11) 0.732
Weighted median 0.98 (0.83-1.16) 0.819
MR Egger 0.85 (0.65-1.12) 0.262
Weighted mode 0.71 (0.45-1.10) 0.128
Simple mode 0.74 (0.51-1.06) 0.104

PUFA/MUFA ratio Inverse variance weighted 0.86 (0.76-0.98) 0.019*
Weighted median 0.75 (0.65-0.87) <0.001***
MR Egger 0.91 (0.73-1.13) 0.399
Weighted mode 0.76 (0.65-0.88) 0.001**
Simple mode 0.83 (0.60-1.15) 0.260

n-6/n-3 ratio Inverse variance weighted 1.12 (1.02-1.23) 0.014*
Weighted median 1.22 (1.12-1.32) <0.001***
MR Egger 1.26 (1.12-1.42) 0.001**
Weighted mode 1.22 (1.12-1.32) <0.001***
Simple mode 1.05 (0.78-1.43) 0.749

10.4 1 1.6

Figure 3. Mendelian randomization (MR) results for effect of genetically predicted fatty acid levels
on asthma pre–eclampsia or other maternal hypertensive disorder (PE–HTP). Forest plots show odd
ratios and 95% confidence intervals. The results are shown for the different methods of MR analyses
used in this study: inverse variance weighted, weighted median, MR–Egger, weighed mode, and
simple mode. p values are indicated by stars, * p < 0.05, ** p < 0.01, *** p < 0.001. Abbreviations: CI,
confidence interval; DHA, docosahexaenoic acid; LA, linoleic acid; MUFA, monounsaturated fatty
acid; n-3 FA, omega-3 fatty acid; n-6 FA, omega-6 fatty acid; OR, odds ratio; PUFA, polyunsaturated
fatty acid; SFA, saturated fatty acid; TFA, total fatty acid.

3.4. Evaluation of the Assumptions of MR

For Assumption 1, SNPs associated with PE-HTPs and plasma fatty acids were selected
from large-sample GWAS, with a genome-wide significance threshold of p < 5 × 10−8

strictly. F statistics for each SNP were all greater than 30, which ensures that the selected IVs
have strong associations with exposure and avoid instrumental bias. The total proportions
of variance (R2) in the PE-HTPs explained by their corresponding SNPs was about 0.2%,
and 5% to 10% in the fatty acids. In addition, for Assumption 2, we used LDtrait to
search for whether the IVs were previously associated with a trait or disease that could
be a confounder [34]. A significant association was found between the SNP rs1421085
and the phenotypes of weight, waist circumference, and body mass index (BMI), which
may introduce confounding effects. Consequently, rs1421085 was excluded from further
analysis, and identical findings were observed. Finally, for Assumption 3, we assessed
heterogeneity and pleiotropy, respectively. The results are presented in Table 1. The p values
for each fatty acid were greater than 0.05 using both the MR-Egger and IVW methods,
indicating that the analysis of the association between different fatty acids in plasma by
PE-HTP was not affected by heterogeneity. Similarly, the p values for each fatty acid in the
pleiotropy assessment were also above 0.05, suggesting that the analyses of the individual
fatty acid outcomes are not affected by pleiotropy, thus not violating Assumption 3.
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Table 1. Results of heterogeneity and pleiotropy testing.

Outcomes

Heterogeneity Test Pleiotropy Test

MR-Egger IVW Egger
Intercept 2 SE p-Value

Q 1 p-Value Q 1 p-Value

TFA 6.804 0.339 9.866 0.196 −0.010 0.006 0.151
SFA 7.149 0.307 11.028 0.137 −0.011 0.006 0.121
MUFA 5.042 0.538 7.061 0.423 −0.008 0.006 0.205
PUFA 6.286 0.392 8.216 0.314 −0.008 0.006 0.224
n-3 FA 5.041 0.539 6.093 0.529 −0.006 0.006 0.345
n-6 FA 5.968 0.427 7.544 0.375 −0.007 0.006 0.256
DHA 2.388 0.881 2.498 0.927 −0.002 0.005 0.751
LA 4.023 0.674 5.323 0.621 −0.006 0.006 0.298
PUFA/MUFA
ratio 2.912 0.820 3.342 0.852 0.004 0.006 0.536

n-6/n-3 ratio 3.594 0.731 3.918 0.789 0.003 0.006 0.590
1 In two-sample Mendelian randomization (MR) settings, Cochran’s Q statistic represents the heterogeneity
statistic for the MR-Egger and IVW models. When the Q statistic is considerably larger than its degrees of freedom
(the number of instrumental variables minus one), it provides evidence for heterogeneity and invalid instrumental
variables IVs. 2 To address the possibility of horizontal pleiotropy, we utilized the MR-Egger approach, a standard
technique in this context. This method is designed to detect horizontal pleiotropy by examining the significance
of its intercept. Abbreviations: DHA, docosahexaenoic acid; IVW, inverse variance weighting; LA, linoleic acid;
MR, Mendelian randomization; MUFA, monounsaturated fatty acid; n-3 FA, omega-3 fatty acid; n-6 FA, omega-6
fatty acid; PUFA, polyunsaturated fatty acid; SE, standard error; SFA, saturated fatty acid; TFA, total fatty acid.

In further GWAS-GWAS colocalization analyses for each fatty acid outcome, we
examined the genetic region within 100 kilobase pairs on either side of each IV and found
that the posterior probability of H1 (PP.H1) explained more than 85% of all the outcomes,
whereas the posterior probability of H4 (PP.H4), representing shared variation, was less
than 10% for all (Figure 4, Supplementary Data S2). This indicates that the exposure and
the outcome were not affected by the same variant, demonstrating that the IVs used in this
study were not pleiotropic and were only strongly associated with exposure.
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eleven independent SNPs associated with PE-HTP were subjected to colocalization analysis with fatty
acid traits in plasma. We depict the PP.H4 (evidence of colocalization) in dot size and the group of
fatty acids in dot color. Numerical results are shown in Supplementary Materials S2. Abbreviations:
DHA, docosahexaenoic acid; LA, linoleic acid; MUFA, monounsaturated fatty acid; n-3 FA, omega-3
fatty acid; n-6 FA, omega-6 fatty acid; PP.H4, posterior probability of H4; PUFA, polyunsaturated
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4. Discussion
4.1. Principal Findings

Combining bidirectional MR analyses revealed no clear causal relationship between
PE-HTP and overall plasma fatty acids. However, for specific types of fatty acids, we found
that PE-HTP may reduce plasma n-6 FA and, particularly, LA. Additionally, MUFAs may be
a risk factor for PE-HTP, whereas DHAs and the PUFA/MUFA ratio may have protective
roles.

4.2. Comparison with Other Studies

Previous studies have suggested that PE-HTPs may cause disturbances in lipid
metabolism in pregnant women, affecting plasma fatty acid composition. The findings of
previous observational studies have indicated a transient reduction in maternal plasma
n-3 FA and DHA at 16–20 weeks of gestation in pre-eclampsia, without subsequent al-
terations [23,25,35]. This study also verified decreased DHA and n-3 FA concentrations
in umbilical cord blood of affected neonates [23], a phenomenon echoed by additional
research [36]. Several intervention trials have been conducted to determine whether supple-
mentation of n-3 FAs from fish oil affects maternal outcomes associated with pre-eclampsia,
but the results were largely invalid [37]. However, because the ability of fatty acids such
as DHA to be transferred across the placenta to the fetus is impaired in patients with pre-
eclampsia, we cannot simply assume that the results of existing studies are contrary to our
study [38–40]. Future studies are needed to determine whether increased prenatal intake of
n-3 FA by pregnant women improves cord blood DHA levels and developmental outcomes
in infants born to pre-eclamptic mothers. Interestingly, previous studies found increased
DHA levels in the breast milk of pre-eclampsia women and no significant difference in LA,
which may have a similar mechanism to the results of the present study [24,41,42].

LA, an n-6 FA, is a precursor for the synthesis of other important fatty acids in the body
and is essential for maintaining cell membrane integrity and normal physiological function.
Evidence suggests that plasma levels of LA may be significantly affected in patients with
pregnancy-induced hypertension (PIH). Studies have shown that pregnant women with
pre-eclampsia have decreased plasma LA [43,44] but increased serum LA compared with
normal pregnancies [45]. This change may be related to factors such as inflammatory
responses, oxidative stress, or abnormalities in vascular endothelial function caused by
PIH. Inflammatory responses can often lead to alterations in fatty acid metabolic pathways
that may affect the synthesis and release of LA. These studies support our findings on
LA changes.

Similar to the reverse MR analyses, a study has used MR analysis to investigate the
impact of maternal fatty acid levels on PIH [46]. This study found that increasing n-3 FAs
and DHAs may reduce the risk of PIH, whereas increasing the n-6/n-3 ratio may increase
the risk of PIH. The effects of other fatty acids, including TFAs, SFAs, and n-6 FAs, on PIH
were not confirmed by MR analyses. These results are consistent with those of our reverse
MR analyses.

4.3. Possible Mechanisms

The precise mechanisms through which pre-eclampsia and gestational hypertension
affect maternal plasma fatty acid levels remain unclear. Most mechanistic research focuses
on n-3 fatty acids and DHA, with less exploration of other mechanisms. Alterations in n-3
FA transport and metabolism are evident in pre-eclampsia, characterized by reduced n-3
FA levels in placental tissue and umbilical cord blood compared to normal pregnancies.
In cases of severe eclampsia and gestational hypertension, reduced mRNA expression of
MFSD2A (2A containing the major facilitator superfamily structural domain) in the placenta
may lead to increased maternal DHA levels and reduced fetal DHA exposure, possibly due
to compromised placental transfer mechanisms [12,47]. In addition, differences in seafood
intake between pre-eclamptic and normal pregnant women suggest that changes in plasma
DHA levels are not entirely attributable to dietary differences [48].
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n-6 FA is a significant group of unsaturated fatty acids, with LA being the most
common representative. These fatty acids play a crucial role in maintaining cell membrane
integrity, modulating inflammatory responses, and supporting nervous system function.
Numerous studies have investigated the association and potential mechanisms between
n-6 FA and LA and hypertensive disorders [49,50]. However, the mechanisms through
which they are associated with blood-pressure-related disorders during pregnancy remain
unknown. Some studies have suggested that consuming adequate amounts of LA may
help to lower blood pressure [50]. Conversely, excessive linoleic acid intake may be
associated with an increased risk of hypertension. Excessive intake of n-6 FA may lead
to an inflammatory response, affecting blood vessel function and causing high blood
pressure [49]. Therefore, it is important to control the intake of n-6 FA and LA while
ensuring adequate intake to maintain cardiovascular health.

4.4. Strengths and Limitations

The strengths of this study include the use of two-sample MR analysis, which mitigates
confounding bias and explores causality. The GWAS meta-data on hypertension in preg-
nancy was applied, combining different cohorts to obtain a larger sample size and facilitate
the utilization of large-scale genetic data on hypertension in pregnancy. Additionally, this
study found that PE-HTP had different effects on two PUFAs, n-3 FA and n-6 FA.

However, this study has some limitations. The dataset primarily used in our study pre-
dominantly comprises individuals of European ancestry, a strategic choice that was made
to minimize the confounding effects of ethnicity on our findings. While this approach has
strengthened the internal validity of our results, it may somewhat limit the generalizability
of our conclusions to populations with different ancestral backgrounds. Additionally, the
MR methodology relied on publicly available GWAS summary data, which encompasses
a more limited range of fatty acid types and lacks the provision of average values for
various density lipoproteins for certain groups. These markers reflect the degree of lipid
metabolism, thereby constraining our capacity to conduct a comprehensive investigation
into the impact of PE-HTP on a broader spectrum of fatty acid types. Furthermore, it should
be noted that the collection and analysis of these data were not specifically intended to
investigate the correlation between hypertension and fatty acids during pregnancy, and
therefore cannot provide time-series information on the impact of PE-HTP on changes in
fatty acids. Finally, due to the nature of the GWAS data, detailed information on lifestyle
and environmental factors of individuals was not available to adequately account for po-
tential confounders, such as diet, lifestyle habits, and environmental exposures, which may
impact this study’s results. These limitations serve as a reminder to exercise caution when
interpreting this study’s results.

5. Conclusions and Public Health Implications

In conclusion, our study found that genetic proxies of PE-HTP significantly affect
maternal plasma fatty acid composition. In light of clinical trials that have challenged
the relationship between PE-HTPs and fatty acids, our findings may support the role of
specific fatty acids in the prevention of hypertensive disorders during pregnancy and the
potential for dietary intervention in patients with PE-HTPs. Notably, this study showed an
increase in n-3 FA and a decrease in n-6 FA. However, the decrease in n-6 FA, specifically
LA, suggests that more attention should be given to the modification and roles of n-6 FA in
patient interventions.

In the future, it will be necessary to gain a better understanding of these relationships
through longitudinal studies of large-scale maternal and fetal cohorts. Direct analysis of
breast milk components or biochemical markers in the offspring could provide valuable
insights into the impact of pregnancy complications on maternal and infant health. Fur-
thermore, it would be beneficial to conduct studies to explore genetic variation in fatty acid
metabolism and its impact on pregnancy complications among different populations. Fu-
ture studies should seek to establish causality and reveal underlying mechanisms through
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which hypertensive disorders interact with maternal health and fetal development. This
will facilitate the development of personalized nutritional strategies to optimize pregnancy
outcomes and maternal and child health.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nu16213748/s1, Supplementary Data S1. Summary statistics of genetic
variants. Supplementary Data S2. Numerical results of posterior probability of H4 (PP.H4) in the
colocalization analyses.
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