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Abstract: Insect farming generates a new type of chitinous waste in the form of dead specimens that
have died of natural causes and insect moults (puparia), particularly large amounts of which are
generated during the rearing of holometabolous insects. Following the circular economy paradigm,
we treated waste in the form of puparia and dead adults of H. illucens as a valuable material,
i.e., as sources of chitin, and tested it as a sorbent for cerium, a lanthanide of great industrial
importance. For comparison, non-treated, raw insect materials and commercial chitosans were also
investigated. Chitin extracted from H. illucens showed an adsorption capacity at the same level
as commercially available, marine-source chitin (approximately 6 mg Ce·g−1). However, more
interestingly, raw materials exhibited much higher adsorption capacities—dead adults were similar
to commercial chitosans (approximately 32 mg Ce·g−1), while puparia demonstrated twice the
performance (approximately 60 mg Ce·g−1). This indicates that unprocessed waste can be used
as environmentally friendly, cost-effective Ce biosorbents with comparable or even better sorption
capacity than chitosans, whose production requires intense chemical processing.

Keywords: black soldier fly; chitin; waste biomass; cerium; biosorbent; rare earth elements;
Hermetia illucens; waste

1. Introduction

Rare earth elements (REE) are represented by all the elements of the lanthanide
group, as well as scandium and yttrium [1]. These elements are characterized by having
similar physical and chemical properties, and their potential in technological applications
depends on their unique catalytic [2], magnetic [3] and optical [4] properties. Their use
in various technological processes is highly indispensable. REE are applicable in areas
such as electronics and various medical fields, as well as manufacturing, technology, and
renewable energy [5].

One of the most mentioned lanthanides is cerium. Its abundance in the earth’s crust
is approximately 63 mg·kg−1 [6]. In industrial applications, it is most commonly used as
a catalyst, e.g., in chemical processes, automotive technologies or petroleum refining, in
polishing techniques, or as a luminophore in electronic devices [7]. However, it is also
utilized in biomedical applications in the form of antimicrobial nanocompounds [8], and it
may have potential usage in hydrogen production [9].

The consequence of the wide use of cerium in industry is the need to recover it at the
end of the life cycle of the products in which it is found. This is important for both envi-
ronmental and economic reasons. The extraction of cerium, whether from ore or through
its recovery from end-of-life products containing it, mainly involves the phenomenon of
sorption. This is because this procedure can be highly selective and can also process low-
concentration sources. A broad variety of substances, including biosorbents, carbon-based
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supports and inorganic sorbents, as well as chelating and ionic-exchange resins, have been
evaluated for their use in the sorption of cerium and REE [10].

Biosorbents are particularly interesting materials because they usually do not require
pre-processing, or when they do it is quite simple to carry out. The basis of biosorp-
tion depends on the ability to bind various compounds (e.g., metals) on the surface of a
given material (biosorbent) [11]. In the case of Ce sorption, there are a number of studies
on different types of biosorbents. Among them, we can find methacrylic acid-grafted
chitin with a sorption capacity of 147 mg Ce/g [12], marine chitosan and its analogues
(29.45–119.48 mg Ce/g) [13], thiosalicylic-modified/ion-imprinted chitosan (164 mg Ce/g) [14],
active carbons modified by KMnO4 (48–71 mg Ce/g) [15]. The given examples of biosor-
bents, despite their high sorption capacity, require operating costs and are not neutral to
the environment due to the use of various chemicals for their production. More environ-
mentally friendly examples of biosorbents include plant-based biosorbents, e.g., Platanus
orientalis leaf powder, which showed a sorption capacity of 32.05 mg/g Ce [16], bacte-
rial biomass of Spirulina (38.2 mg Ce/g) [17], and algal biosorbents of Turbinaria conoides
(152.9 mg Ce/g) [18]. In the case of these examples, sorption occurred on unprocessed ma-
terials, but their biomass was still produced specifically for these purposes. This indicates
the need to find biomaterials with already high sorption properties for, e.g., the removal of
heavy metals or precious elements, such as REE. The search for biosorbents with a high
capacity for Ce should align with the circular economy paradigm, which is based on the
utilization of waste materials from one industrial branch as a source substrate for others, or
its direct usage in new contexts. An example of such an approach can be the use of waste
in the form of crab shell particles, which had a sorption capacity of 144.9 mg Ce/g, but
this material needed acid pretreatment to remove excess calcium carbonate contained in
it [19]. The less processed/modified the biosorbent is, the better it is in terms of costs and
environmental aspects (no energy inputs and no consumption of chemical reagents).

In recent years, the market for the production of insects has been developing quite
intensively. Their relatively simple breeding process allows for obtaining a high-protein
product used in the feed industry [20]. One example of such insects is Hermetia illucens,
which belongs to the family Stratiomyidae from the Diptera order [21]. This fly represents
one of the holometabolous insects, which are characterized by a developmental cycle that
passes through the pupa stage. This is followed by the adult form (imago), which leaves
puparia (empty pupae molts) after hatching [22]. This kind of insect waste has various
applications, including as a substrate for biochar production [23] or material for insect
chitin extraction [24]. Increased interest in insect production will result in larger amounts
of post-breeding residues as well as chitinous insect wastes, like puparia or dead adults
after the end of their life cycle, which should be managed while taking into account the
environmental policy of a circular economy.

Therefore, the main aim of this research was to examine the sorption properties of
H. illucens post-breading remains (in the form of the puparia and dead adults of the insect)
in relation to cerium ions. We hypothesized that such unprocessed material would be a
good cerium sorbent. However, due to the fact that chitin sorbents obtained from other
organisms are available on the market, an additional aim of this work was to check the
sorption capabilities of pure chitin isolated from breeding pristine wastes—also from
puparia and dead adults of the insect. The hypothesis underlying the implementation
of the additional aim was the assumption that cerium sorption on chitin from H. illucens
would be at least as effective as on commercially available chitin from marine origins.

2. Materials and Methods
2.1. Insect Breeding

H. illucens larvae were reared in the laboratory of the Institute of Agrophysics of the
Polish Academy of Sciences in Lublin (Poland). The larvae were fed with commercial carp
fish feed (FloraZoo, Chełmża, Poland) with the following composition (values given per
dry weight): 54.80% carbohydrates, 25.00% protein, 5.00% fat and oil, 5.80% crude fiber,
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5.70% ash, 1.25% lysine, 1.00% calcium, 0.97% phosphorus and 0.40% methionine. The
culture temperature was 27 ± 1 ◦C with a substrate humidity of 50%–80% [25]. The insects
were kept in darkness until the pupae occurred after 16 days. They were then collected and
transferred to the breeding container where the adults emerged (photoperiod 12/12, air
relative humidity 60%, 25 ± 1 ◦C). The empty puparia were collected for further processing
at this stage. Under these conditions, the adult flies reproduced and lived for up to five
days. During this time, they were provided with access to water. After mating, the adults
died of natural causes and were removed from the chamber.

2.2. Chitin Extraction

Sodium hydroxide, hydrochloric acid, ethanol and hydrogen peroxide (30%) were
acquired from Standard (Lublin, Poland). The empty puparia and dead flies were cleaned
utilizing ethanol and water, then dried at 60 ◦C for 24 h and ground. Size distribution
can be found in Table S1 (in the Supplementary Materials). Chitin extraction was then
performed (Figure 1) according to Złotko et al. [26].
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Figure 1. Scheme of chitin extraction from H. illucens puparia and dead flies.

2.3. Sorbents

The following materials have been used for the experiments assessing the adsorption
of Ce(III) ions: commercial chitin, chitin obtained from H. illucens adults (flies)—Ch-A,
chitin derived from H. illucens puparia—Ch-P, the ground form of H. illucens adults—A, the
ground form of H. illucens puparia—P, high-molecular-weight commercial chitosan—CS-
HW, medium-molecular-weight commercial chitosan—CS-MW, and low-molecular-weight
commercial chitosan—CS-LW.

Commercial chitin derived from shrimp shells was purchased from Sigma Aldrich
(Burlington, MA, USA) (chemical formula: (C8H13NO5)n, powder form). In addition,
chitosan samples of different molecular weights (CS-HW, CS-MW and CS-LW) acquired
from Sigma Aldrich (Burlington, MA, USA) were used to compare the efficiency of the
removal of cerium(III) ions from aqueous solutions. All types of chitosan have the chemical
formula C12H24ClN2O9 and occur in a powder form.

Prior to analysis, samples of Ch-A, Ch-P, A and P were ground with an IKA laboratory
mill (Tube Mill Control, DanLab, Białystok, Poland). The characterization of the particle
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distribution of the obtained powders was carried out with an automated particle classifica-
tion system, Morphology G3 (Malvern Panalytical, Malvern, Great Britain). Particle size
distributions are given in Table S1.

2.4. Physicochemical Characterization

The materials underwent X-ray diffraction (XRD) characterization and infrared spec-
troscopy attenuated total reflectance Fourier-transform infrared (ATR-FTIR) analysis was
conducted before the sorption process. Measurements of N2 adsorption/desorption
isotherms were carried out using the accelerated surface area and porosimetry system
(ASAP) method before sorption. Subsequently, scanning electron microscopy (SEM), cou-
pled with energy-dispersive X-ray spectroscopy (EDX), was employed to examine the
materials after the sorption process.

For the X-ray diffraction analysis, the mineral composition was determined using
the powder method with the Panalytical X’Pert PROMPD X-ray diffractometer, which
featured the PW 3050/60 goniometer and operated in the 2θ angle range of 5–65 degrees
(Malvern Panalytical, Malvern, Great Britain). The X-ray source utilized was a copper lamp
(CuK = 0.154178 nm). The ground, well-distributed sample was placed in a special XRD
holder, which is made of a material that does not reflect X-rays. The basis of the XRD
method is the phenomenon of X-ray diffraction on the crystal lattice of a substance. Data
analysis was performed with the X’Pert High Score software.

In the case of ATR-FTIR spectroscopy, the spectra of the eight sorbents were recorded
before the sorption using the ATR technique. This analysis was conducted within the
wavelength range of 550–4000 cm−1, employing the Agilent Cary 630 FTIR spectrometer
(Agilent Technologies, Santa Clara, CA, USA). ATR-FTIR spectra were performed by placing
a sample of about 0.2 g directly on a diamond crystal and pressing the sample against the
crystal to ensure adequate contact. The spectroscope then collects the data without further
sample processing. Spectral data were recorded with the Micro Lab PC program, and a
subsequent evaluation of the spectra was carried out with the Agilent Resolutions Pro
software (Agilent Technologies, Santa Clara, CA, USA).

An ASAP 2420M (Micromeritics Instrument Corporation, Norcross, GA, USA) sorption
analyzer was used to calculate the low-temperature N2 adsorption/desorption isotherms.
The materials (0.1 g) were degassed at 105 ◦C in a glass tube before the measurements
were taken for removing volatile components of the samples. Both the surface area and
the pore size distribution were calculated with the Barrett-Joyner-Halenda (BJH) and
Brunauer-Emmett-Teller (BET) methods, respectively.

The Quanta 250 FEG scanning electron microscope (SEM) (FEI, Hillsboro, OR, USA)
equipped with energy-dispersive X-ray spectroscopy (EDX) was used to study the mi-
crostructural morphology and elemental composition following the sorption process. Be-
fore the surface morphology was measured, a sample was placed on a special pad, sputtered
with a carbon-conductive material, and then placed in the chamber of the microscope.

2.5. Batch Sorption Test

To evaluate the effectiveness of the sorption process, batch sorption tests were con-
ducted involving the removal of Ce(III) ions using eight biopolymers from water media. As
a source of cerium(III) ions, cerium nitrate hexahydrate (Avantor Performance Materials,
Gliwice, Poland) was utilized at a concentration of 1000 mg·L−1. First, the effect of the
solution pH (2.0–6.0) on the sorption process was tested by weighing 0.04 g of sorbents
(commercial chitin, CS-HW, CS-MW, CS-LW) and shaking in a solution of cerium(III) ions
(20 mL) with an initial concentration of 50 mg·L−1 for 300 min. Studies of the optimal pH
selection (pHM82, Radiometer, Copenhagen, Denmark) were performed for the commer-
cial biopolymers due to the limited amount of remains. Then, after applying the same
starting concentration of 50 mg·L−1, the kinetic investigation was carried out at various
adsorption times (0–300 min). In addition, evaluations of the effect of the initial concentra-
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tion (10–200 mg·L−1) on the sorption process (isotherm studies) were also performed at a
constant shaking time of 300 min.

In summary, shaking was carried out at various times (0–300 min) and initial con-
centrations (10–200 mg·L−1) at a pH of 3.0 (optimum pH) and a temperature of 25 ◦C,
at a rate of 180 rpm. A laboratory shaker (type 458A, Elpin Plus, Lubawa, Poland) was
used for static tests. Nitric acid and/or sodium hydroxide (Chempur, Piekary Śląskie,
Poland) solutions in small amounts were added to adjust the pH, which was measured by
a pHM82 pH meter (Radiometer, Copenhagen, Denmark). Each time, the suspension was
immediately filtered after the specified time period and the concentration of cerium(III)
ions was detected by inductively coupled plasma optical emission spectroscopy (ICP-OES,
type 720, Varian, Palo Alto, CA, USA). The concentration of Ce(III) ions was determined
with the following parameters: wavelength of 446.021 nm, resolution of 0.004 nm, reading
time of 10 s, sampling delay of 15 s, pump speed of 15 s and rinse time in the range of
12–15 s. Filtration was performed using quantitative-medium sieves to separate the sorbent
from the solution, which made it possible to determine the concentration of Ce(III) ions in
the solution after the sorption process. Errors were noted during the triplicate testing and
are represented in the figures as 5% error margins.

2.6. Analytical Methods

This subsection presents (in the Supplementary Materials) the formulas used to cal-
culate the amounts of adsorbed ions, equilibrium capacities, and nonlinear forms of the
kinetic and isotherm models, as well as the correlation coefficient and Chi-square error.

3. Results and Discussion
3.1. The Change in the Physicochemical Properties of Biopolymers
3.1.1. Mineral Composition

The mineral composition of the eight sorbents, as determined by X-ray diffraction
(XRD), is shown in Figure 2.
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Figure 2. X-ray diffractometry analysis of (a) commercial chitin, chitin obtained from H. illucens
adults (Ch-A), chitin derived from H. illucens puparia (Ch-P), (b) the ground form of H. illucens
adults (A), (c) the ground form of H. illucens puparia (P), (d) high-molecular-weight commercial
chitosan (CS-HW), medium-molecular-weight commercial chitosan (CS-MW), and low-molecular-
weight commercial chitosan (CS-LW).
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In the case of commercial chitin, the primary peak occurs at 2θ = 19.2. This is a
diffraction peak corresponding to the N-glucosamine in the chain, while the secondary
peak at 2θ = 9.1 is smaller and is due to the presence of N-acetyl-D-glucosamine [27]. The
existence of these peaks indicates the crystalline structure of chitin, which can occur in three
forms: α, β or γ [28]. Additional peaks at 2θ angles of 26.2 and 38.9 are characteristic of
silica. The similarity of the spectra of chitin samples (Ch-A and Ch-P) to the XRD spectrum
of commercial chitin testifies to the efficiency of chitin synthesis based on these waste
materials. In the case of Ch-A and Ch-P, there are two characteristic diffraction peaks in the
spectrum with the highest intensities at 2θ angles of 9.1 and 19.1. These results agree with
those obtained by Waśko et al. [29], who characterized chitin obtained from the puparium
of H. illucens and determined its α form of crystallinity. Other peaks with low intensities at
2θ angles 26.2, 34.6 and 38.9 are characteristic of silica.

In the case of the spectrum of the sample derived from grinding the adults (A), a
number of peaks appear, and two of them at 2θ angles 22.0 and 31.9 are matched by calcium
and aluminum silicate. This spectrum shows a raised background, indicating the presence
of amorphous substances in this sample. As for the spectrum of the sample attained by
grinding H. illucens fly puparia (P), peaks matching calcium carbonate were obtained at
the following 2θ angles: 23.0, 29.3, 35.9, 39.4, 43.3, 47.5 and 48.5. For all the chitosan
samples (CS-HW, CS-MW, CS-LW), two characteristic broad peaks are observed in the
X-ray diffraction spectrum. The primary peak of chitosan corresponds to -NH2 groups in
amine II and occurs at 2θ equal to 19.9. At 2θ equal to 9.4 there is a secondary peak. This is
a less intense diffraction peak, which is related to the existence of -N-CO-CH3 groups in
amine I contained in the structure of chitosan [30].

3.1.2. The Presence of Functional Groups

Based on ATR-FTIR analysis (Figure 3), it is possible to indicate the characteristic
surface functional groups of the materials. For all the sorbents, the peaks in the range
of 3800–3400 cm−1 and 3350–3200 cm−1 correspond to O-H and N-H bonding stretching
vibrations, respectively [31,32]. In the case of sorbent A, these peaks have the lowest inten-
sities. High-intensity peaks at approximately 2920–2850 cm−1 are considered responsible
for the C-H stretching vibration in aliphatic chains [33]. In some cases, such as in the Ch-P
and A samples, there are two peaks associated with these vibrations. The existence of a
peak at approximately 1640 cm−1 (stretching of C=O groups in amide groups, amide I
band) has been used to confirm the presence of residual N-acetyl groups. The amide II
band (1550 cm−1) corresponds to the bending vibrations of N-H groups in amide [34–36].
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surface areas of 0.11 m2·g−1 and 0.03 m2·g−1, respectively, suggesting that they have fewer 
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Figure 3. ATR-FTIR method of (a) commercial chitin, chitin obtained from H. illucens adults (Ch-A),
chitin derived from H. illucens puparia (Ch-P), (b) the ground form of H. illucens adults (A), (c) the
ground form of H. illucens puparia (P), (d) high-molecular-weight commercial chitosan (CS-HW),
medium-molecular-weight commercial chitosan (CS-MW), and low-molecular-weight commercial
chitosan (CS-LW).
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In the case of the chitosans (CS-HW, CS-MW, CS-LW), the intensity of the peaks at
1640 and 1550 cm−1 is lower than that of the commercial chitin, Ch-A and Ch-P samples.
This difference can be attributed to the deacetylation reaction, during which some of the
acetamide groups of chitin are converted to amino groups [37,38]. In the A, P and CS-HW
samples, the peaks appear at approximately 1420 cm−1, originating from the bending
vibrations of CH2 groups. In some sorbents, including the commercial chitin, Ch-A, Ch-P,
CS-HW, CS-MW and CS-LW samples, peaks emerge at approximately 1370 cm−1, linked to
the presence of deformation vibrations from CH3 groups. With the exception of sample P,
the amide III band (1310 cm−1) indicates the existence of C-N groups in the sorbents [34,35].
These peaks are characterized by less intense absorbance. In addition, C-O-C vibrations
are associated with the band between 1070 and 1000 cm−1 [39,40]. The occurrence of C-N
and C-C groups is further evidenced by small peaks that become visible at approximately
870 cm−1 [41].

3.1.3. Porosity Characteristics

Based on the gas porosimetry method, the specific surface area, pore diameter and
pore volume of the eight materials have been determined. The results are shown in Table 1.

Table 1. Physical characteristics of commercial chitin, chitin obtained from H. illucens adults (Ch-A),
chitin derived from H. illucens puparia (Ch-P), the ground form of H. illucens adults (A), the ground form
of H. illucens puparia (P), high-molecular-weight commercial chitosan (CS-HW), medium-molecular-
weight commercial chitosan (CS-MW), and low-molecular-weight commercial chitosan (CS-LW).

Materials BET Surface Area
(m2·g−1)

Average Pore Diameter
(nm)

Pore Volume
(cm3·g−1)

Commercial chitin 5.28 15.8 0.0238
Ch-A 2.15 7.7 0.0068
Ch-P 0.11 22.7 0.0043

A 1.46 12.1 0.0053
P 0.03 41.4 0.0039

CS-HW 0.32 32.8 0.0017
CS-MW 1.21 11.9 0.0038
CS-LW 0.60 34.9 0.0036

The gas adsorption porosimetry results reveal significant variations in the surface
area and pore size distribution of the tested biopolymers. Commercial chitin exhibits the
highest specific surface area at 5.28 m2·g−1, indicating that there is a relatively high surface
area available for adsorption processes. In contrast, Ch-P and P have the lowest specific
surface areas of 0.11 m2·g−1 and 0.03 m2·g−1, respectively, suggesting that they have fewer
exposed surface areas for adsorption. Of the chitosan groups, CS-MW has the largest
specific surface area of 1.21 m2·g−1. Regarding the pore diameter, P has the largest pores,
with an average diameter of 41.4 nm, followed by CS-LW with a pore diameter of 34.9 nm.
Ch-A has the smallest pores, with an average diameter of 7.7 nm. From these data, it is
possible to determine which pore sizes dominate in each material. Mesopores and even
macropores are dominant in sample P. In addition, a predominance of mesopores is found
in the samples of commercial chitin, Ch-P, A, CS-HW, CS-MW and CS-LW. In contrast,
mesopores and micropores are present in the Ch-A sample. Pore diameter is an essential
parameter as it can influence the types of molecules that can be adsorbed. In addition, the
pore volume was also determined. Among the tested commercial sorbents, the highest
pore volume was obtained for chitin 0.0238 cm3 g−1. From the group of Ch-A, Ch-P, A and
P sorbents, the largest pore volume was obtained for Ch-A 0.0068 cm3 g−1.

3.1.4. Morphology and Elemental Composition

SEM analysis shows the surface shape of the isolated chitin particles as well as the
starting materials (Figure 4a–d). The surface of the chitins is much smoother than that of raw
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adults and puparia. The chitin from adults is particularly smooth, and in the foreground,
the exoskeleton covering the insect’s compound eye can likely be observed. Individual
cavities in this fragment correspond to the single ommatidia. Chitin from puparia (Ch-P)
has a surface composed of superimposed plates dotted with numerous pits.
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Figure 4. Morphology of the samples under 500x magnification in SEM: (a) chitin obtained from
H. illucens adults (Ch-A), (b) chitin derived from H. illucens puparia (Ch-P), (c) the ground form of
H. illucens adults (A), (d) the ground form of H. illucens puparia (P), (e) EDS patterns for Ch-A, Ch-P,
A, P after Ce sorption.
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The ground exoskeletons of adults and puparia exhibit a clearly visible structure
approximately resembling a honeycomb. The description of this type of surface also
appears in other publications characterizing the microstructure of H. illucens [23,24,42]. In
the case of the adults, numerous sensory hairs are visible, while the puparium surface in
the captured fragment contains a much smaller number of them.

Samples of investigated materials after Ce(III) adsorption were also analyzed through
energy-dispersive spectroscopy (Figure 4e). EDS spectra for commercial chitin and chi-
tosans are presented in Figure S1 (in the Supplementary Materials). All the materials show
the presence of Ce. In the samples of Ch-A and Ch-P, the occurrence of Si can be connected
to silica identified by XRD in both of the samples. In A and P, a peak for Ca is clearly visible,
which is not seen in the Ch-P and Ch-A samples, and which can be linked to the incidence
of CaCO3 in the H. illucens exoskeleton [43]. This compound has also been detected by
XRD analysis in the P sample. The occurrence of CaCO3 may influence the higher sorp-
tion capacity of Ce (III) ions by A and P compared to their chitin isolates. The presence
of this compound may lead to carbonate ions-mediated microprecipitation process and
subsequent deposition on the “rough” surface of these materials (Figure 3a,b) [19]. Other
elements like Mg, Al, Na, Si, P, S, and K, detected in minor qualities in the samples, occur
naturally in H. illucens in significant quantities [44]. In research publications it can be found
that demineralization of the sample during chitin extraction is never complete, which is
why the EDS spectra for Ch-P and Ch-A also contain mineral peak (Figure 3). For example,
Hahn et al. [45] also using hydrochloric acid obtained mineral removal of approximately
90% for puparia. For other types of reagents, e.g., formic acid, demineralization of 85% was
achieved for puparia and 87% for flies [46]. However, higher efficiencies can be obtained
with natural deep eutectic solvents of approximately 98% [47].

3.2. Cerium(III) Ions Sorption Characteristics
3.2.1. pH Test

In general, pH is regarded as a significant factor that regulates the processes of ad-
sorption at water-adsorbent interfaces. The impact of the initial solution pH (Figure 5) was
investigated in order to establish the ideal conditions for the cerium(III) ions sorption on
biopolymers. Due to the limited number of Ch-A, Ch-P, A and P samples, studies of the
effect of pH were conducted only on commercially purchased materials.
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line indicated the most interesting result.
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Figure 5 shows that the sorption efficiency has a strong dependence on the solution
pH. The optimum is found at a pH of 3.0 and the qe values are equal to 5.16 mg·g−1 for
commercial chitin, 25.13 mg·g−1 for CS-HW, 20.50 mg·g−1 for CS-MW and 22.72 mg·g−1

for CS-LW. At this pH value, the amine groups are protonated to -NH3
+ and the hydroxyl

ones to -OH2
+. In the case of amide groups, protonation occurs through oxygen [48]. At a

pH in the range of 4.0 to 6.0, a significant reduction in the amount of adsorbed Ce(III) ions is
observed, which may be due to cerium(III) hydroxide precipitation at higher pH values [49].
On the other hand, the low sorption capacity at low pH 2 may be due to competition of
Ce(III) ions with H3O+ ions [50]. The significant difference between the sorption properties
of commercial chitin and chitosans (Figure 4), may be explained by the higher crystallinity
of chitin than chitosan. In turn, crystallinity may affect the availability of reactive functional
groups by reducing the level of hydration of the biopolymer molecule [51].

3.2.2. Sorption Time Effect and Kinetic Fitting

Another variable that has a significant impact on the speed of the sorption process
is the phase contact time. Figure 6 shows the effect of phase contact time (1–300 min) of
Ce(III) ions sorption on eight biopolymers at a concentration of 50 mg·L−1.
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Figure 6. Contact time effect for the Ce(III) ions sorption on commercial chitin, chitin obtained from
H. illucens adults (Ch-A), chitin derived from H. illucens puparia (Ch-P), the ground form of H. illucens
adults (A), the ground form of H. illucens puparia (P), high-molecular-weight commercial chitosan
(CS-HW), medium-molecular-weight commercial chitosan (CS-MW), and low-molecular-weight
commercial chitosan (CS-LW) (C0 50 mg·L−1, pH 3.0, t 1–300 min., T 25 ◦C, 180 rpm).

As can be seen in Figure 6, the kinetic diagram of the adsorption of Ce(III) ions consists
of a fast phase at the beginning, where adsorption is rapid before it becomes constant
after reaching equilibrium, indicating the exhaustion of access to sorption sites [52,53].
The initial stage’s quick adsorption of Ce(III) ions may have been facilitated by the larger
concentration gradient and greater availability of free adsorption sites [54]. As is evident
from Figure 6, commercial chitin, Ch-A and Ch-P reach equilibrium after 60 min. For A,
P and all the chitosan samples, equilibrium is reached after 120–180 min. This is due to
the fact that higher amounts of adsorbed Ce(III) ions were obtained for these materials.
The qt values achieved after a time of 300 min are 5.20, 3.82, 4.58, 15.06, 24.45, 25.83, 19.49
and 23.23 mg·g−1 for commercial chitin, Ch-A and Ch-P, A, P, CS-HW, CS-MW and CS-LW,
respectively. In the chitin group, the best results have been attained for commercial chitin,
but the qt values observed for Ch-P are only slightly lower. These are immediately followed
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by sample P with a small qt difference. In general, chitins show significantly lower sorption
capacities for Ce(III) ions compared to chitosans. Satisfactory results have been acquired for
the ground form of H. illucens adults. This last observation should be considered positive
because it opens up the possibility of the potential use of H. illucens puparia and flies
without requiring their conversion into chitin.

Based on a kinetic analysis, the rate and mechanism of the Ce(III) ions adsorption can be
assessed. The experimental data have been correlated using three kinetic models in nonlinear
forms: the pseudo-first-order (PFO), pseudo-second-order (PSO) and Elovich models. The
parameters are listed in Table 2. The nonlinear fitting of kinetic models for Ce(III) ions sorption
on biopolymers are presented in Figure S2 (in the Supplementary Materials).

Table 2. Cerium(III) ions sorption parameters for nonlinear kinetic modelling.

Model
Parameters

Sorbent

chitin Ch-A Ch-P A P CS-HW CS-MW CS-LW

qe 5.20 3.82 4.58 15.06 24.45 25.83 19.49 23.23

PFO

k1 0.717 0.310 0.290 0.310 3.232 2.128 0.708 0.853
q1 4.70 3.31 3.89 13.75 24.06 24.52 17.40 21.36
R2 0.903 0.933 0.782 0.902 0.998 0.987 0.949 0.847
χ2 0.222 0.095 0.372 2.038 0.128 0.719 1.580 7.320

PSO

k2 0.227 0.132 0.133 0.040 0.087 0.240 0.067 0.054
q2 4.9 3.47 4.02 14.17 24.19 24.87 18.07 22.42
R2 0.966 0.954 0.883 0.950 0.999 0.994 0.978 0.940
χ2 0.078 0.065 0.200 1.041 0.498 0.326 0.670 2.871

Elovich

α 1.88 × 103 18.935 55.600 2.84 × 102 7.47 × 1022 9.73 × 1015 1.97 × 104 1.93 × 102

β 2.692 2.536 2.428 0.723 4.321 1.680 0.796 0.628
R2 0.992 0.921 0.980 0.960 1.000 0.998 0.965 0.979
χ2 0.018 0.112 0.034 0.835 0.079 0.106 1.081 1.010

Non-linear kinetic models: pseudo-first-order (PFO), pseudo-second-order (PSO) and Elovich model. Chitin
obtained from H. illucens adults (Ch-A), chitin derived from H. illucens puparia (Ch-P), the ground form of
H. illucens adults (A), the ground form of H. illucens puparia (P), high-molecular-weight commercial chitosan
(CS-HW), medium-molecular-weight commercial chitosan (CS-MW), and low-molecular-weight commercial
chitosan (CS-LW).

The PFO model assumes that sorption occurs only at localized sites without interaction
with other adsorbed ions. The PSO model, on the other hand, presumes that the amount
adsorbed depends not only on time, but also on the concentration of the substance in
solution. The third model used to describe the kinetics is the Elovich model. It infers that
the activation energy increases as the sorption time increases, and the sorbent surface is
considered to be heterogeneous. This model explains the occurrence of adsorption on
localized sites and allows for interactions between adsorbed ions [55,56].

To identify the model that best describes the sorption process of Ce(III) ions, the values
of determination coefficients and Chi-square errors are compared. The best fit occurs with
the Elovich model, for which the highest R2 values and lowest errors were obtained. The
exceptions are the Ch-A and CS-MW samples, for which a better fit is shown by the PSO
model. In the case of sorbent W, there is a very good fit with all three kinetic models. This
may indicate an interaction of a chemical nature between Ce(III) ions and biopolymers [57].

3.2.3. Effect of Solution Concentration, Isotherm Fitting, and Sorption Comparison

Figure 7 presents the effect in terms of Ce(III) ions sorption of the initial concentration
of the solution (10–200 mg·L−1) on eight biopolymers at a time of 300 min.

Based on Figure 7, by increasing the initial concentration, the equilibrium capacity of
Ce(III) ions increases. With a change in initial concentration from 10 to 200 mg·L−1, the
qe values change as follows: 1.54–6.98 mg·g−1 for commercial chitin, 1.31–7.30 mg·g−1

for Ch-A, 1.71–9.27 mg·g−1 for Ch-P, 5.31–33.31 mg·g−1 for A, 3.61–60.96 mg·g−1 for P,
5.32–37.26 mg·g−1 for CS-HW, 5.13–26.90 mg·g−1 for CS-MW and 5.13–33.95 mg·g−1 for
CS-LW. This is because the mass transfer is substantially higher, and the beads’ active
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adsorption sites saturate more quickly. The diffusion of the molecules into the solid is
slower for a low starting concentration (10 mg·L−1) [58,59]. As in the case of the study of
the contact time effect, it is chitin that adsorbs Ce(III) ions with the lowest efficiency. The
chitosans and sample A are in second place. For higher concentrations, sample P shows the
highest equilibrium capacities. This is an important observation that suggests that samples
of only ground fly forms A and P retain their sorption properties in their natural state and
do not require additional processing to achieve higher sorption efficiencies.
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Figure 7. Initial concentration of solution effect for the Ce(III) ions sorption on commercial chitin,
chitin obtained from H. illucens adults (Ch-A), chitin derived from H. illucens puparia (Ch-P), the
ground form of H. illucens adults (A), the ground form of H. illucens puparia (P), high-molecular-
weight commercial chitosan (CS-HW), medium-molecular-weight commercial chitosan (CS-MW),
and low-molecular-weight commercial chitosan (CS-LW) (C0 10–200 mg·L−1, pH 3.0, t 300 min.,
T 25 ◦C, 180 rpm).

A total of three sorption isotherms were proposed to describe the Ce(III) ions sorption
on biopolymers: the Langmuir, Freundlich and Temkin isotherms in nonlinear forms. The
isotherm parameters are summarized in Table 3. The nonlinear fitting of the isotherm mod-
els for Ce(III) ions sorption on biopolymers is shown in Figure S3 (in the
Supplementary Materials).

The Langmuir isotherm assumes that the adsorbate covers the adsorbent monolayer at
specific sorption sites. Additionally, the adsorbate molecules are unable to migrate across
the adsorbent’s surface and do not interact with one another [60]. On the other hand, the
Freundlich model presupposes that there is multilayer adsorption on a heterogeneous sur-
face as opposed to monolayer adsorption on a homogenous material surface [61]. Temkin’s
model primarily considers the interactions between the adsorbent and adsorbate that take
place during the sorption process. Additionally, it assumes that the heat of adsorption of
adsorbed molecules linearly decreases as the sorption area’s coverage increases [62].

After observing the values of the determination coefficients calculated from the
isotherms, the best fit to the Langmuir model can be found. This may indicate a ho-
mogeneous and flat adsorption surface, with equally valuable adsorption sites and no
interactions between adsorbate molecules at adjacent sites. A good fit, moreover, occurs for
the Temkin model. This may suggest some involvement of electrostatic interactions, such
as between biopolymer surfaces and Ce(III) ions in the sorption process.
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Table 3. Cerium(III) ions sorption parameters for nonlinear isotherm modelling.

Model Parameters
Sorbent

chitin Ch-A Ch-P A P CS-HW CS-MW CS-LW

Langmuir

qm 8.08 10.73 12.62 44.93 69.35 37.00 26.48 31.85
KL 0.035 0.011 0.017 0.030 0.225 0.804 0.360 0.797
R2 0.965 0.948 0.985 0.886 0.959 0.903 0.976 0.916
χ2 0.138 0.218 0.115 14.859 20.096 15.040 1.509 9.051

Freundlich

KF 1.247 0.447 0.865 5.436 20.856 17.554 10.561 13.998
N 2.947 1.853 2.109 2.531 3.478 5.582 4.866 5.121
R2 0.874 0.978 0.953 0.821 0.738 0.834 0.901 0.868
χ2 0.494 0.092 0.371 23.326 129.643 25.572 6.199 14.298

Temkin

A 0.398 0.187 0.210 11.640 2.777 47.800 10.572 21.623
B 1.666 1.890 2.591 4.051 13.305 4.620 3.875 4.404

R2 0.942 0.911 0.963 0.697 0.896 0.901 0.971 0.914
χ2 0.227 0.377 0.291 52.569 51.667 15.229 1.826 9.179

Chitin obtained from H. illucens adults (Ch-A), chitin derived from H. illucens puparia (Ch-P), the ground form
of H. illucens adults (A), the ground form of H. illucens puparia (P), high-molecular-weight commercial chitosan
(CS-HW), medium-molecular-weight commercial chitosan (CS-MW), and low-molecular-weight commercial
chitosan (CS-LW).

In the literature, a growing number of sorbents have been utilized to examine their
sorption potential for the removal of cerium(III) ions from aqueous solution (Table 4). Com-
paring the equilibrium capacities obtained during the study, it can be seen that the results
obtained for sample P are comparable to the results obtained using other sorbents. Impor-
tantly, this waste does not require processing and is itself a good biosorbent for cerium(III)
ions, and its amount is increasing year by year. The use of unmodified waste does not
require energy consumption, does not generate additional chemical waste associated with
modification, and its use aligns with the principles of a closed-loop economy.

Table 4. Comparison of equilibrium capacities calculated according to the Langmuir model for
cerium(III) ions with the literature data.

Sorbent Equilibrium Capacity (mg·g−1)
According to the Langmuir Model References

Sodium alginate coated magnetite
nanoparticles (Alg-Fe3O4) 33.11 [63]

SBA-15 mesoporous silica 27.67 [64]
Clinoptilolite 30.58 [65]

Chitosan-functionalized
magnetite-pectin 9.72 [66]

Magnetite (MNP) 76.92 [67]
Pinus brutia leaf powder 17.24 [68]
Magnetic chitosan/yeast 73.53 [69]

Chitin 8.08

This paper

Ch-A 10.73
Ch-P 12.62

A 44.93
P 69.35

CS-HW 37.00
CS-MW 26.48
CS-LW 31.85

Summarizing our findings, the best adsorption of Ce(III) ions among the investigated
samples obtained from H. illucens and the commercial materials occurred at pH 3. At a
starting concentration of 50 mg Ce·L−1, all the chitins reached equilibrium faster (60 min)
than the raw materials and chitosans (120–180 min). Under these conditions and after
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300 min, the highest adsorption properties were expressed by high-molecular-weight
commercial chitosan (25.83 mg·g−1), although the ground form of H. illucens puparia
(24.45 mg·g−1) was very close to this level. The second raw material, the ground form of
H. illucens adults (15.06 mg·g−1), was placed in an intermediate position between high-
molecular-weight commercial chitosan and chitins. The weakest adsorption properties were
shown by chitins and the difference between commercial ones and those from H. illucens
was minimal (5.20 mg·g−1 commercial vs. 3.82 mg·g−1 for chitin obtained from H. illucens
adult flies and 4.58 mg·g−1 for chitin derived from H. illucens puparia).

The effect of the initial Ce(III) concentration on its adsorption measured after 300 min
was not considerable for all the chitins studied (the max qe values for the commercial chitin,
chitin obtained from H. illucens adults flies, and chitin derived from H. illucens puparia
were 6.98, 7.30, and 9.27 mg·g−1, respectively). The most interesting finding was that the
material with the highest adsorption capacity was the ground form of H. illucens puparia
(60.96 mg·g−1), while the ground form of H. illucens adults (33.31 mg·g−1) was placed
at a level similar to all the commercial chitosans tested (37.26, 26.90, and 33.95 mg·g−1

for high-molecular-weight commercial chitosan, medium-molecular-weight commercial
chitosan, and low-molecular-weight commercial chitosan—CS-LW, respectively). All the
tested materials under these conditions had the best fit to the Langmuir model, with the
exception of chitin obtained from H. illucens adults flies, where the best fit occurred for the
Freundlich model.

4. Conclusions

The results of this research clearly showed that wastes from H. illucens breeding in
the form of puparia and dead adults did not require processing and were themselves
good biosorbents for cerium. Untreated chitinous waste had significantly better sorption
properties for Ce(III) than the purified chitin extracted from them. However, chitins from
H. illucens had slightly better adsorption properties than commercial marine chitin, but the
difference was low. The use of unmodified waste does not require any energy inputs and
does not cause additional chemical waste after chemical modification. Due to increase in
insect breeding worldwide, the amount of this type of waste will be also increasing. Thus,
the use of this waste fits particularly well with the principles of the circular economy. In the
future, on the basis of our findings, testing the ability for absorption of other ions should
be checked. This study provides a good justification for the broad testing of puparia and
dead adults as biosorbents for real wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17215255/s1, Figure S1: EDS patterns for (a) commercial chitin,
(b) CS-HW, (c) CS-MW, (d) CS-LW.; Figure S2: Nonlinear fitting of kinetic models for the Ce(III) ions
sorption on (a) commercial chitin, (b) Ch-I, (c) Ch-W (d) I, (e) W, (f) CS-HW, (g) CS-MW, (h) CS-LW.;
Figure S3: Nonlinear fitting of isotherm models for the Ce(III) ions sorption on (a) commercial
chitin, (b) Ch-I, (c) Ch-W (d) I, (e) W, (f) CS-HW, (g) CS-MW, (h) CS-LW.; Table S1: Circle Equivalent
(CE) diameter distribution of tested materials presented in percentiles sections. CE diameter is the
diameter of a circle with the same area as the 2D image of the particle.
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