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Abstract: Background/Objectives: Glehnia littoralis is a medicinal plant, but the scientific basis is still
unclear. This study thoroughly investigated phenols from Glehnia littoralis extract (GLE) to determine
their potential as anti-inflammatory and antioxidant agents. Methods: High-performance liquid
chromatography (HPLC) and mass spectrometry (MS) were used to analyze the compounds in GLE.
In addition, we performed GLE in vitro in macrophages after lipopolysaccharide (LPS)-induced
inflammation. Results: The extract contained eight peaks representing phenolic compounds and one
peak representing riboflavin, with the corresponding mass spectrometry data documented. These
biologically active compounds were purified by ultrafiltration using LC to determine their ability to
target cyclooxygenase-2 (COX-2) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The results showed that
significant compounds were identified, demonstrating a binding affinity for both COX-2 and DPPH.
This suggests that the compounds showing excellent binding affinity for COX-2 and DPPH may be
the main active ingredients. Vital inflammatory cytokines, including COX-2, inducible nitric oxide
synthase (iNOS), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB),
were found to be down-regulated during the treatment. In addition, we revealed that the selected
drugs exhibited potent binding capacity to inflammatory factors through molecular docking studies.
In addition, we confirmed the presence of phenolic components in GLE extract and verified their
possible anti-inflammatory and antioxidant properties. Conclusions: This study provided evidence
for an efficient strategy to identify critical active ingredients from various medicinal plants. These data
may serve as a baseline for further investigations of applying GLE in the pharmaceutical industry.

Keywords: COX-2; iNOS; MAPK; NF-κB; antioxidant; Glehnia littoralis; HPLC-MS/MS

1. Introduction

Glehnia littoralis is a perennial herb found in sandy coastal regions. It is classified
within the Apiales order, Apiaceae family, Apioideae subfamily, and Selineae tribe. This
herb, discovered in regions such as Korea, Japan, and Taiwan, exhibits efficacy in the treat-
ment of chronic bronchitis and alleviation of associated symptoms [1]. Research findings
indicate that Glehnia littoralis extract has a preventive effect on memory disorders and
neuroinflammation [2]. Another study found that Glehnia littoralis effectively treats acute
and chronic skin inflammation [3]. Previous research has identified multiple phenolic
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compounds in the roots of Glehnia littoralis, known for their antioxidant and immunomodu-
latory properties [4,5]. Natural materials are employed in the synthesis of antioxidants and
anti-inflammatory medications as a substitute for synthetic pharmaceuticals [6].

Inflammation serves as a protective mechanism in the body by combating pathogens
and facilitating wound healing. Innate immune cells such as neutrophils, mast cells, fibrob-
lasts, and macrophages become activated in response to infection. Activated macrophages
release pro-inflammatory cytokines that exacerbate various inflammatory conditions [7].
Oxidative stress is intricately connected with the inflammatory response. The accumulation
of reactive oxygen species leads to tissue and cellular injury, resulting in prolonged inflam-
mation [8]. Reactive oxygen species trigger the activation of NF-κB by phosphorylating
IκBα, resulting in heightened inflammation due to the transcription of inducible nitric
oxide (NO) synthase [9]. The inflammatory response is the immune system’s reaction to a
specific stimulus. The cell membrane of Gram-negative bacteria contains LPSs, which in-
duce inflammatory responses in macrophages [10]. LPSs induce the release of the following
inflammatory mediators: NO and prostaglandin E2 (PGE2) [11]. The levels of inflammatory
cytokines, such as COX-2 and iNOS, are elevated upon activation of specific pathways [12].
This has prompted extensive research on inflammation related to lipopolysaccharides.
Research indicates a potential connection between inflammation and various diseases, such
as cancer, mental disorders, and heart conditions. In addition, addressing this persistent
inflammation poses a growing challenge [13].

Synthetic drugs and immunosuppressants have the capability to modulate inflam-
mation and immune responses; however, they have been associated with adverse effects
such as abdominal discomfort, alopecia, emesis, and gastrointestinal disturbances [14].
The creation of novel anti-inflammatory medications from natural sources is becoming
increasingly important. Studies have validated the antioxidant and anti-inflammatory
characteristics of Glehnia littoralis [2,15]. However, the particular phenolic compounds ac-
countable for the anti-inflammatory and antioxidant properties, along with their structural
and binding characteristics for anti-inflammatory effects, remain unidentified.

The DPPH radical-based HPLC post-column assay is utilized for the evaluation and
identification of natural antioxidants in botanical remedies [16]. In methanol, DPPH exhibits
a significant absorption peak at 517 nm attributed to its unpaired electron. Antioxidants
induce a change in color from purple to yellow by decreasing absorbance and creating a
stable DPPH molecule through the donation of hydrogen to free radicals. The colorimetric
assessment of DPPH is an uncomplicated technique for the post-column detection of
radical-scavenging compounds [10]. The DPPH assay demonstrates ease of use, provides
a consistent baseline, requires no expensive or unpredictable reagents, and enables the
evaluation of both the radical-scavenging capability of a compound and its impact on the
overall antioxidant capacity of a blend [17]. Thus, it seems that HPLC-DPPH is a reliable
and effective method for quickly evaluating crude extracts that include antioxidants.

Various methods are utilized to identify chemical compounds present in Glehnia lit-
toralis. These methods have not been utilized extensively across various samples; however,
they have demonstrated limited sensitivity, inadequate reproducibility, challenges with
self-quantification determination, and false positive outcomes. Some are still undergoing
refinement. The preferred method for identifying compounds in various substances is
ultra-filtration liquid chromatography–tandem mass spectrometry (UFLC-MS/MS) because
of its rapid analysis and superior sensitivity and selectivity [18]. Therefore, it appears that
UFLC-MS/MS is a viable method for identifying chemicals in Glehnia littoralis extract.

Molecular docking is used to predict the geometries of protein–ligand binding sites,
which are frequently utilized in drug discovery and the prediction of functional sites on
protein surfaces [19]. Molecular docking can be conducted by evaluating surface area bind-
ing and calculating the mutual energy interaction between the ligand and protein [20,21].
The measurement of binding affinity is distinct from the assessment of docking scores. It is
crucial to confirm the results of molecular docking visually for validation purposes [22].
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The objective of this research was to determine the phenolic compounds present in
Glehnia littoralis leaves and investigate their influence on antioxidant and anti-inflammatory
properties. Phenolic compounds within GLE were characterized utilizing HPLC-MS/MS,
and their antioxidant properties were demonstrated utilizing DPPH and LC. The inhibition
of inflammation via binding with COX-2 was verified utilizing HPLC-MS/MS. Subse-
quently, the anti-inflammatory activity of GLE was assessed in RAW264.7 cells displaying
LPS-induced inflammation. This method may be time-consuming for researchers; how-
ever, it has the potential to pinpoint efficacious compounds. Natural products consist
of active components, thereby rendering our approach valuable in the initial stages of
drug discovery.

2. Material and Method
2.1. Plant Materials

Glehnia littoralis sourced from Yeongdeok, Gyeongsangbuk-do, on the East Coast of
Korea, was provided for the experiment by the Animal Bio Resources Bank, a Nationally
Designated Research Materials Bank (https://abrb.or.kr/index.php?PHPSESSID=2ff181b6
f014eac4765a1642b188340d, accessed on 24 February 2023, QR code: 10210A). After quickly
washing the leaves of the plant with water, we sliced it up and let it dry for 72 h at 56 ◦C
in a dry oven. After that, it was kept at −20 ◦C in sealed polyethylene bags with silica
gel when needed. Because of the nature of Glehnia littoralis, the stem and root are small in
quantity, making it difficult to use, and only the leaves are used as the material. Therefore,
in this paper, the leaves were used for extraction.

2.2. Reagents, Chemicals, and Standards

The DPPH reagent (CAS no. 1898-66-4), standard chemicals, and COX-2 enzymes were
purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). A Millipore Co., Ltd. (Burling-
ton, MA, N. Eng., USA) 30 kDa centrifugal ultrafiltration filter (YM-30) was purchased.
Analytical-grade solvents and other compounds were all used (Duksan Pure Chemical
Co., Ltd., Ansan, Gyeonggi-do, Republic of Korea). Gibco (BRL Life Technologies, Grand
Island, NY, USA) supplied fetal bovine serum (FBS), Dulbecco’s modified Eagle’s medium
(DMEM), phosphate-buffered saline (PBS), and antibiotics penicillin/streptomycin (P/S).
Cell Signaling Technology (Danvers, MA, USA) provided the iNOS (cat. no. 13120S),
COX-2 (cat. no. 12282S), JNK (cat. no. 9258S), p-JNK (cat. no. 4671S), ERK (cat. no. 4695S),
p-ERK (cat. no. 4370S), p38 (cat. no. 8690S), p-p38 (cat. no. 9216S), p65 (cat. no. 8242S),
p-p65 (cat. no. 3033S), IкBα (cat. no. 4812S), p-IкBα (cat. no. 2859S), and β-actin (cat.
no. 3700S) antibodies. The secondary antibodies conjugated with horseradish peroxidase
(HRP) against rabbit (cat. no. A120-101P) and mouse (cat. no. A90-116P) were supplied by
Bethyl Laboratories, Inc. (Montgomery, AL, USA).

2.3. GLE Extraction Procedure and Phenol Component Purification

GLE was employed in a modified procedure to extract phenolic from plants [23]. For
4 days, 200 g of Glehnia littoralis leaves were extracted using 4 L of 70% methanol. The
separation of the mixture was achieved by employing filter paper labeled as Whatman
Qualitative No. 6. The mixture was condensed to 500 mL using a rotary evaporator (N-1110,
Eyela, Tokyo, Japan) spinning at 100 rpm at 45 ◦C and reduced pressure. Subsequently, the
concentrate was washed three times with 500 mL of hexane to eliminate any fatty particles.
Three extractions were conducted using the residue remaining in the filtrate and 250 mL
of ethyl acetate. At first, MgSO4 was utilized to desiccate remains to eliminate the highly
polar components. Next, ethyl acetate and a silica gel solvent (40 cm, 2.5 cm) were used to
elute the remains. In order to produce a mixed phenol powder, the solvent was evaporated
under reduced pressure and then stored at −70 ◦C (8.8 g, or 5.5% of the dry raw Glehnia
littoralis leaves).

https://abrb.or.kr/index.php?PHPSESSID=2ff181b6f014eac4765a1642b188340d
https://abrb.or.kr/index.php?PHPSESSID=2ff181b6f014eac4765a1642b188340d
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2.4. HPLC and LC-MS/MS

The extract powder was mixed with 70% ethanol in a ratio of 1:100 to make a solution
with a concentration of 1000 µg/mL for identifying the components. LC-MS/MS was car-
ried out using an Ultra Quadrupole and a 1260 series HPLC system (Agilent Technologies,
Inc., Santa Clara, CA, USA). The Time-of-Flight LC/MS/MS system (X500R) was operated
in positive ion mode with the spray voltage set to −4.5 kV. A gradient system running
at 0.5 mL/min was employed to analyze a Prontosil C18 column (length: 250 mm, inner
diameter: 4.6 mm, particle size: 5 µm) (Bischoff Chromatography, Phenomenex Co., Ltd.,
Torrance, CA, USA). Acetonitrile and distilled water (DW) with 0.1% formic acid (solvent
A, B) were utilized as solvents. The solvent B mobile phase conditions were as follows:
0–10 min at 10–15%, 20–30 min at 20–40%, 40–50 min at 70%, and 50–60 min at 95%. The
analysis was conducted at 35 ◦C and a wavelength of 284 nm.

2.5. DPPH Binding HPLC Analysis to the Quantify Phenolic Compounds’ Primary
Antioxidant Activities

Following the combination of GLE (2000 µg/mL) and DPPH (0.2 mg/mL) reagents
in a 1:1 (v:v) ratio, the resulting mixture underwent a 15 min reaction period at ambient
temperature [10]. The solution underwent filtration through a 0.45 µm filter prior to HPLC
testing. Methanol was employed as a substitute for the DPPH reagent in the control
group. The composition of DPPH-reactive compounds was determined by comparing the
chromatographic peak values of DPPH-reacted samples with controls. This facilitated the
identification of the primary antioxidant constituents within the GLE compounds.

2.6. UF-HPLC-Based Determination of the Reaction Between Phenol Compounds and COX-2

The anti-inflammatory potential of compounds was evaluated by their binding to
COX-2 using a modified technique [24]. First, 20 µL of COX-2 (2U) was reacted with 100 µL
of extract diluted to 2000 µg/mL (with 70% ethanol) in a water bath at 37 ◦C for 30 min. In
the control group, COX-2 was inactivated using boiling water, whereas, in the experimental
group, non-inactivated COX-2 was used in the reaction. The mixture was spun in a
centrifuge with a 30 kDa cut-off ultrafiltration membrane (YM-30) at 10,000 rpm for 10 min
at room temperature. Following centrifugation, unbound chemicals were eliminated by
washing the solution 3 times with 200 µL of NE buffer (pH 7.9, 25 ◦C) (NEB (New England
Biolabs), Ipswich, MA, USA) that did not pass through the filter. Following the washing
process, the solution remaining on the surface exhibited a chemical that selectively binds
with COX-2 and was unable to permeate the filter, as opposed to the filtered solution
that contained a compound lacking affinity for COX-2 binding. Compounds that were
not bound to COX-2 in the upper layer were subsequently dissolved in 80% acetonitrile
for a duration of 10 min and subsequently separated by centrifugation at 10,000 rpm for
10 minutes (repeated 3 times). Subsequently, high-performance liquid chromatography
(HPLC) was employed to analyze the filtrate underneath.

2.7. Measurement of Anti-Inflammatory Effects
2.7.1. Cell Culture and Viability Assay

The RAW264.7 macrophage cells were provided by the American Type Culture Col-
lection (ATCC) in Manassas, VA, USA. The cells were cultured in complete DMEM with
10% FBS and added with 100 U/mL penicillin and 100 µg/mL streptomycin (P/S). The
cells were cultured at a temperature of 37 ◦C in a controlled environment with 5% CO2.
RAW264.7 cells were seeded at a concentration of 1 × 104 cells per well in 96-well plates
and incubated for 12 h Following this, the cells were exposed to varying concentrations
of GLE (0, 10, 25, 50, 75, 100, 250, 500, 750, and 1000 ng/mL) with or without 1 µg/mL
of lipopolysaccharide (LPS) (Sigma-Aldrich, Merck KGaA, Burlington, VT, USA). After
introducing 90 µL of media and 10 µL of MTT solution (5 mg/mL) into each well, the cells
were incubated at 37 ◦C for four hours. The insoluble formazan crystals were dissolved
with the use of DMSO. Finally, each sample underwent three consecutive runs, and the
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absorbance measurement of each well at 450 nm was obtained using a microplate reader
(BioTek, Winooski, VT, USA) [7]. At concentrations of 25 and 50 ng/mL, no toxicity was
observed; therefore, these concentrations were utilized in subsequent studies.

2.7.2. Western Blot Analysis

After being seeded into 60 mm plates at a density of 1 × 106 cells per well, RAW264.7
cells were treated with or without LPS 1 µg/mL (Sigma-Aldrich, Merck KGaA, Burlington,
MA, USA) for 24 h at 37 ◦C, using 25 and 50 ng/mL of GLE. The treated cells were then
lysed using radioimmunoprecipitation assay (RIPA) buffer (iNtRON Biotechnology, Seong-
nam, Gyeonggi, Republic of Korea), which includes a phosphatase inhibitor (Thermo Fisher
Scientific, Waltham, MA, USA) and a protease inhibitor cocktail. The protein content of each
cell lysate sample was measured using the bicinchoninic acid (BCA) test (Thermo Fisher
Scientific, Waltham, MA, USA) in compliance with the manufacturer’s instructions. Equal
amounts of protein (10 µg) were isolated using sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE) at a concentration of 10–15%. Following the creation of
polyacrylamide gels, they were transferred to polyvinylidene fluoride (PVDF) membranes
(ATTO Co., Ltd., Tokyo, Japan) using a semi-dry conveying system (JP/WSE-4040 Horize-
BLOT 4M-R WSE-4045, Atto Corp., Tokyo, Japan). Afterward, the EzBlockChemi (ATTO
Blotting System, Tokyo, Japan) was used to block the membranes for 2 h at ambient tem-
perature. The membranes were then incubated with a 1:1000 diluted primary antibody
overnight at 4 ◦C. The membranes were treated with 1:5000 diluted antirabbit and anti-
mouse (cat. no. A120-101P, Bethyl Laboratory, Inc.) for 3 h at room temperature after being
washed five times for 15 min with Tween 20 (TBS-T, pH 7.4). After that, the membranes
were rewashed ten times for a total of two hours using TBS-T. ChemiDoc imaging equip-
ment (Version 6.0) from Bio-Rad Laboratories, Inc. (Hercules, CA, USA), was used to take
the pictures. The images were processed using the Bio-Rad application Image Lab 4.1.
The detection method used Bio-Rad, Hercules, CA, USA’s enhanced chemiluminescence
(ECL) buffer. The loading control was β-actin protein, and the Western blot pictures were
quantified using the Image J program (U.S. National Institutes of Health, Bethesda, MD,
USA) [7].

2.8. Molecular Docking Analysis

To execute the molecular docking analysis, the protein structure was obtained from
PDB (https://www.rcsb.org/, accessed on 25 October 2023). Using the search ID 4Q3J
(NF-кB), the 3D compound structures of chlorogenic acid (CID: 1794427), quercetin (CID:
5280343), and CPUY192018 (CID: 73330369) were reclaimed from PubChem (https://
pubchem.ncbi.nlm.nih.gov/, accessed on 19 October 2023). AutoDock Vina and UCSF
Chimera were used with default settings for docking analysis. The binding affinities were
computed using total intermolecular energy and approximated free energy binding.

2.9. Statistical Analysis

The data are indicated as mean ± SEM. GraphPad Prism (version 8.0.1; GraphPad
Software, Inc., La Jolla, CA, USA) was utilized for data analysis. This study employed
one-way factorial analysis of variance (ANOVA) to ascertain the existence of momentous
differences among the groups. After that, Dunnett’s multiple comparison tests were
performed, and a statistically significant result was defined as p < 0.05. In comparison with
the untreated, positive control group, # p < 0.05, ## p < 0.01, and ### p < 0.001, and * p < 0.05,
** p < 0.01, and *** p < 0.001 compared with the LPS-treated negative control group.

3. Results
3.1. Separation and Characterization of Phenols in GLE

The chemical compounds revealed in GLE were subjected to both quantitative and
qualitative analysis using HPLC-MS/MS. HPLC analysis using GLE was repeated three
times. The HPLC retention periods and UV-Vis spectra yielded nine peaks (Figure 1).

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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At a wavelength of 248 nm, the peaks of eight phenolic compounds and riboflavin [25]
were identified using HPLC chromatography. The eight phenol compounds were chloro-
genic acid [26], rutin [27], Hyperin [28], Kaempferol-3-O-rutinoside [29], Astragalin [30],
quercetin [31], cinnamic acid [32], and luteolin [33]. Fragmentation patterns served as the
basis for the results. Supplementary Table S1 presents the mass spectrometry data from
published sources that were used to quantify the eight phenolic substances and riboflavin.
Supplementary Figure S1 displays the results of the compound’s fragmentation prediction
based on these findings.
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Figure 1. The phenolic compounds found in the HPLC chromatograms of GLE. The chromatogram
following the reaction with DPPH solution is shown by the orange line in (A), and the chromatogram
following the reaction with COX-2 is shown by the blue line in (B). In (B), active COX-2 is generated
through the reaction of GLE with activated COX-2, while inactive COX-2 is produced through the
reaction of GLE with inactive COX-2. The first chromatogram at the beginning of GLE is represented
by the blue line. The detected compounds at the 284 nm wavelength are chlorogenic acid (1),
riboflavin (2), rutin (3), Hyperin (4), Kaempferol-3-O-rutinoside (5), Astragalin (6), quercetin (7),
cinnamic acid (8), and luteolin (9).

3.2. Analyzing Antioxidant Phenolic Compounds for Opportunity in GLE

DPPH and HPLC were used in conjunction to identify potential antioxidant activity
candidates among the phenolic components in the Glehnia littoralis extract. Prior to and
during the DPPH procedure, the phenol components were compared and screened using
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the HPLC peak area values. As shown in Figure 1, once DPPH bound to GLE and the reac-
tion occurred, the HPLC-MS/MS results showed that GLE included a variety of different
bioactive chemicals. Table 1 illustrates the antioxidant impact of the phenol component
that reacted vyingly with DPPH by showing a decrease in peak area after the reaction. The
difference in area values (%) reflects the phenol component’s remarkable ability to scavenge
radicals. Table 1 shows that quercetin and riboflavin had the highest relative peak area
ratio differences, at 17.06% and 15.54%, respectively, followed by chlorogenic acid at 9.63%.
Kaempferol-3-O-rutinoside and rutin showed the smallest difference in the change rate of
binding peak area with DPPH at 2.63% and 1.14%.

Table 1. Antioxidant capacity of the screened GLE compounds.

Peak
No. Compound Initial Area Area after DPPH Reaction Reactive Area

/(%)

1 Chlorogenic acid 2934.80 ± 8.95 F 2652.07 ± 24.10 F 282.73 ± 15.23 BC

(9.63 ± 0.55 D)

2 Riboflavin 1522.30 ± 4.37 B 1285.74 ± 14.76 B 236.56 ± 18.15 B

(15.54 ± 1.16 E)

3 Rutin 24,366.93 ± 25.31 I 24,088.97 ± 37.21 I 277.97 ± 15.24 BC

(1.14 ± 0.06 A)

4 Hyperin 6031.30 ± 33.05 G 5712.57 ± 27.86 G 318.73 ± 7.66 C

(5.28 ± 0.11 BC)

5 Kaempferol-3-O-rutinoside 7983.77 ± 14.59 H 7773.50 ± 19.12 H 210.27 ± 4.82 B

(2.63 ± 0.06 AB)

6 Astragalin 1811.87 ± 18.54 C 1750.63 ± 39.93 D 61.23 ± 21.39 A

(3.39 ± 1.21 AB)

7 Quercetin 1916.20 ± 33.11 D 1589.43 ± 44.01 C 326.77 ± 13.37 C

(17.06 ± 0.94 E)

8 Cinnamic acid 2597.03 ± 41.86 E 2386.20 ± 79.36 E 210.83 ± 111.40 B

(8.08 ± 4.14 CD)

9 Luteolin 1144.63 ± 26.29 A 1061.77 ± 36.10 A 82.87 ± 15.12 A

(7.25 ± 1.41 CD)

All values are mean ± SD (n = 3). A–I Means with different superscripts in the same column are significantly
different at p < 0.05 based on Duncan’s multiple range tests.

3.3. Analyzing Anti-Inflammatory Phenolic Compounds for Prospective Use in GLE

The degree to which the eight specific phenolic compounds from Glehnia littoralis ex-
tract bind to COX-2, an inflammatory factor that explains the anti-inflammatory properties
of each compound, is displayed in Figure 1 as peaks before and after the COX-2 reaction
with UF-HPLC-based determination. The binding of phenol compounds from Glehnia
littoralis extract to COX-2 resulted in an increase in the area value of the COX-2-activated
peak relative to the COX-2-inactivated peak. Table 2 displays high relative area difference
reaction rates for quercetin, chlorogenic acid, riboflavin, and cinnamic acid at 18.41%,
13.90%, 11.88%, and 11.21%. Kaempferol-3-O-rutinoside and rutin showed the smallest
difference in the change rate of COX-2 binding peak area at 5.44% and 3.64%.

Table 2. The anti-inflammation potential of the screened GLE compounds.

Peak
No. Compound With Active

COX-2 Area With Inactive COX-2 Area Area Reacted with COX-2
/(%)

1 Chlorogenic acid 2323.42 ± 20.16 F 2000.50 ± 17.43 F 322.92 ± 3.11 E

(13.90 ± 0.06 H)

2 Riboflavin 860.20 ± 14.92 B 763.71 ± 10.61 B 96.49 ± 6.52 B

(11.21 ± 0.61 F)

3 Rutin 15,927.68 ± 81.61 I 15,347.92 ± 52.82 I 579.75 ± 43.02 F

(3.64 ± 0.26 A)
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Table 2. Cont.

Peak
No. Compound With Active

COX-2 Area With Inactive COX-2 Area Area Reacted with COX-2
/(%)

4 Hyperin 4302.05 ± 27.86 G 4010.30 ± 23.53 G 291.74 ± 5.82 D

(6.78 ± 0.10 C)

5 Kaempferol-3-O-rutinoside 6328.96 ± 35.06 H 5984.61 ± 32.84 H 344.35 ± 16.61 E

(5.44 ± 0.25 B)

6 Astragalin 945.17 ± 18.44 C 862.35 ± 17.98 C 82.81 ± 0.60 B

(8.76 ± 0.13 D)

7 Quercetin 1250.04 ± 26.12 D 1019.96 ± 21.12 D 230.08 ± 5.65 C

(18.41 ± 0.19 I)

8 Cinnamic acid 1866.91 ± 9.90 E 1645.05 ± 14.03 E 221.86 ± 4.13 C

(11.88 ± 0.29 G)

9 Luteolin 439.18 ± 5.80 A 393.86 ± 6.98 A 45.32 ± 1.18 A

(10.32 ± 0.40 E)

All values are mean ± SD (n = 3). A–I Means with different superscripts in the same column are significantly
different at p < 0.05 based on Duncan’s multiple range tests.

3.4. Effects of GLE on RAW264.7 Cell Viability

To evaluate the cytotoxicity of the extract, RAW264.7 was subjected to the 3-(3,4-
dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay (Figure 2A,B).
RAW264.7 cells were treated with GLE for 24 h at 0, 10, 25, 50, 75, 100, 125, 250, 500,
750, and 1000 ng/mL with or without 1 µg/mL LPS. Figure 3 shows that the extract is
non-toxic at values of 25 and 50 ng/mL. Ultimately, concentrations of 25 and 50 ng/mL did
not elicit any noticeable impact on RAW264.7 cells (Figure 2), thus justifying their selection
for subsequent investigations.
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without GLE and LPS treatment, as control cells in RAW 264.7 cells. (A) GLE’s cytotoxic effect on 
RAW264.7 is not produced by LPS. * p < 0.05, *** p < 0.001 vs. the control group. (B) Cytotoxic effect 
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Figure 2. GLE’s cytotoxic effects on RAW264.7 cells. RAW 264.7 cells underwent an hour of pre-
treatment at 37 ◦C with or without LPS (1 µg/mL). GLE (0, 10, 25, 50, 75, 100, 250, 500, 750, and
1000 ng/mL) was then applied to the cells over a 24 h period at 37 ◦C. C is treated with only the
medium, without GLE and LPS treatment, as control cells in RAW 264.7 cells. (A) GLE’s cytotoxic
effect on RAW264.7 is not produced by LPS. * p < 0.05, *** p < 0.001 vs. the control group. (B) Cy-
totoxic effect of GLE on LPS-induced cell viability in RAW264.7 cells. ** p < 0.01, *** p < 0.001 vs.
the LPS-treated group. RAW264.7 cells were treated with GLE (0, 25, and 50 ng/mL) at determined
concentrations for 24 h.

3.5. Expression of COX-2 and iNOS in LPS-Induced RAW264.7 Cells

The inflammatory response involves COX-2 and iNOS proteins. The concentrations of
GLE at 25 and 50 ng/mL showed a dose-dependent decrease in INOS and COX-2 (Figure 3).
This suggests that GLE is effective in alleviating inflammatory responses.



Nutrients 2024, 16, 3656 9 of 17
Nutrients 2024, 16, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 3. GLE-induced suppression of inflammatory factors in RAW264.7 cells caused by LPS. (A) 
The related density of COX-2 and (B) iNOS. The standard error of the mean (SEM) and mean for 
each of the three trials are displayed in relation to the control group. ### p < 0.001 vs. the untreated 
group; *** p < 0.001 vs. the LPS-treated group. 

3.5. Expression of COX-2 and iNOS in LPS-Induced RAW264.7 Cells 
The inflammatory response involves COX-2 and iNOS proteins. The concentrations of 

GLE at 25 and 50 ng/mL showed a dose-dependent decrease in INOS and COX-2 (Figure 3). 
This suggests that GLE is effective in alleviating inflammatory responses. 

3.6. Inhibition of NF-κB and MAPK Pathways in LPS-Induced RAW264.7 Cells 
The NF-κB pathway affects multiple proteins in the immune system and has a significant 

function [34]. NF-κB contains p-p65 and p-IκBα, which fulfills that function. Furthermore, GLE 
tended to cause p-p65 to decline in a dose-dependent manner (Figure 4A). p-IκBα tended to 
decrease rapidly in response to 25 ng/mL of GLE (Figure 4B). 

MAPK is crucial to immunological signaling. It includes p-JNK, p-ERK, and p-p38, which 
are essential to this signaling [35]. Their levels decreased following treatment with GLE at con-
centrations of 25 and 50 ng/mL (Figure 4C–E). 

 

 
Figure 4. GLE-induced suppression of the NF-κB and MAPK pathways in LPS-induced inflammatory 
RAW264.7 cells. GLE (0, 25, and 50 ng/mL) was added to the RAW264.7 cells at the specified doses, and 
the treatment lasted for 24 h. (A) p-p65 relative density, (B) p-IκBα relative density, (C) P-ERK relative 

Figure 3. GLE-induced suppression of inflammatory factors in RAW264.7 cells caused by LPS. (A) The
related density of COX-2 and (B) iNOS. The standard error of the mean (SEM) and mean for each of
the three trials are displayed in relation to the control group. ### p < 0.001 vs. the untreated group;
*** p < 0.001 vs. the LPS-treated group.

3.6. Inhibition of NF-κB and MAPK Pathways in LPS-Induced RAW264.7 Cells

The NF-κB pathway affects multiple proteins in the immune system and has a sig-
nificant function [34]. NF-κB contains p-p65 and p-IκBα, which fulfills that function. Fur-
thermore, GLE tended to cause p-p65 to decline in a dose-dependent manner (Figure 4A).
p-IκBα tended to decrease rapidly in response to 25 ng/mL of GLE (Figure 4B).
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Figure 4. GLE-induced suppression of the NF-κB and MAPK pathways in LPS-induced inflammatory
RAW264.7 cells. GLE (0, 25, and 50 ng/mL) was added to the RAW264.7 cells at the specified
doses, and the treatment lasted for 24 h. (A) p-p65 relative density, (B) p-IκBα relative density, (C) P-
ERK relative density, (D) p-JNK relative density and (E) p-p38 relative density. The results of three
independent experiments are presented as mean and standard error of the mean (SEM), relative to the
control group. ### p < 0.001 vs. the untreated group, * p < 0.05, *** p < 0.001 vs. the LPS-treated group.

MAPK is crucial to immunological signaling. It includes p-JNK, p-ERK, and p-p38,
which are essential to this signaling [35]. Their levels decreased following treatment with
GLE at concentrations of 25 and 50 ng/mL (Figure 4C–E).
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3.7. Molecular Docking of Quercetin, Chlorogenic Acid, Riboflavin, and CPUY192018 with NF-κB

Using UCSF Chimera software (version 1.16), ligand–protein docking was exam-
ined [36]. Figure 5A demonstrates that quercetin and NF-кB are present in the active site.
Moreover, it was shown that many active sites promote ligand binding. It was found that
NF-кB binds to quercetin through active sites ARG237, LEU236, CYS149, TYR227, and
GLU184 (Table 3). The molecular binding energy score was found to be −7.5 kcal/mol.
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Table 3. Molecular docking studies of quercetin, chlorogenic acid, riboflavin, and CPUY192018 with
the NF-кB complex and their binding energies.

Binding Ligand Interacting Amino Acid Residue Docking Score

Quercetin ARG237, LEU236, CYS149, TYR227, GLU184 −7.5 kcal/mol

Chlorogenic acid ASN240, ARG237, CYS149, GLY180,
LEU236, GLU184 −6.8 kcal/mol

CPUY192018
HIS183, CYS149, GLU184, LEU236, PRO147,

ILE248, PHE146, ARG237, TYR227,
ARG232, GLU233

−7.7 kcal/mol

Figure 5B depicts the occupation of both chlorogenic acid and NF-кB at the active
site. Several active sites have been demonstrated to aid in ligand binding. The active
sites involved in NF-кB’s binding to luteolin were identified as ASN240, ARG237, CYS149,
GLY180, LEU236, and GLU184, as shown in Table 3. In the docking results, chlorogenic acid
showed a molecular binding energy score of −6.8 kcal/Mol, indicating a lower interaction
strength at the binding site compared with riboflavin.

Figure 5C demonstrates that CPUY192018, a well-known strong inhibitor, binds to the
NF-кB active site as well. HIS183, CYS149, GLU184, LEU236, PRO147, ILE248, PHE146,
ARG237, TYR227, ARG232, and GLU233 are among the proteins with which it interacts
(Table 3). The molecule docking energy score was −7.7 kcal/mol.

4. Discussion

Glehnia littoralis is a perennial herb that can be commonly observed in coastal sand
dunes across East Asia [37]. The dried roots can be used both as a dietary ingredient and
a therapeutic element in nutritious food preparations. This herb has been studied and
shown to have hepatoprotective, immunomodulatory, antioxidant, antibacterial, antifungal,
anti-inflammatory, and anticancer properties [1,38].

As the limitations of conventional synthetic drugs have been revealed, the devel-
opment of drugs borrowed from natural products, including traditional medications, is
gaining momentum. It is known that free radicals and inflammation-related mediators
are closely related to the development of diseases, and efforts to find antioxidant and anti-
inflammatory substances are continuing [39]. To contribute to these efforts, this research
investigated the antioxidant and anti-inflammatory effects of Glehnia littoralis, a herbal
medicine used for bronchitis [40].

This study utilized GLE’s electron donation to DPPH as a method to evaluate its
antioxidant properties. The assessment of antioxidant capacity is frequently conducted
using DPPH, a consistent free radical that can be discolored and decreased through electron
donation [41]. DPPH reacts with OH groups to form DPPH-H. Upon reduction, DPPH gen-
erates a colorless hydrazine compound known as DPPH-H, exhibiting a yellow coloration.
The antioxidant activity measurement is determined based on the absorbance value at a
wavelength of 519 nm, which is not within the yellow spectrum [42]. In this study, the
DPPH area change values of quercetin, riboflavin, and chlorogenic acid compounds were
found to be 17.06%, 15.54%, and 9.63% (Table 1). This indicates that quercetin, riboflavin,
and chlorogenic acid are bound to DPPH in relatively high proportions, demonstrating
a high antioxidant potential in GLE. Studies have shown that chlorogenic acid not only
has antioxidant properties but also affects immune responses [43]. Furthermore, quercetin
has antioxidant properties and affects obesity-related cirrhosis and retinopathy [44]. Other
studies have also shown that riboflavin plays a role in antioxidant activity and in protecting
vital organs against fluorosis [45,46]. In this study, GLE showed significant binding areas
for quercetin, riboflavin, chlorogenic acid, and DPPH, suggesting its potential antioxidant
capacity compared to previous studies.

Interestingly, despite being recognized as a potent antioxidant compound [47], rutin
has the lowest representation in Table 1 (1.14%). Rutin demonstrates significant antioxidant
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properties upon individual component analysis. Nevertheless, this study was confirmed by
inducing a competitive reaction in GLE, an extract consisting of various components. Rutin
only showed lower competitiveness compared with the other components present in GLE.

In this study, the anti-inflammatory activity was quantified using the COX-2 bind-
ing ability of GLE. It is known that inhibition of COX directly stops the production of
prostaglandins (PGs), which play an important role in inflammation [48]. In addition, inhi-
bition of COX-2, a key enzyme in the inflammatory process, shows anti-inflammatory and
analgesic effects [49]. Therefore, it is important to examine the anti-inflammatory potential
through the combination of COX-2 and GLE components. The relative area difference
response rates were in the order of quercetin, chlorogenic acid, riboflavin, and cinnamic
acid (18.41%, 13.90%, 11.88%, and 11.21%) (Table 2). According to the study, quercetin
and quercetin metabolites obtained by consuming quercetin provide powerful antioxidant
and anti-inflammatory effects [50]. Chlorogenic acid also attenuated other inflammation-
related markers, such as inflammatory cytokines (including IL-1β and TNF-α) and IL-6,
without cytotoxicity [51]. Additionally, a previous study demonstrated that cinnamic acid
effectively inhibits the production of NO, TNF-α, and PGE2 [52]. Therefore, the results
of this study demonstrate that quercetin, chlorogenic acid, riboflavin, and cinnamic acid
have significant binding areas with COX-2, suggesting potential anti-inflammatory effects
compared to previous studies.

Numerous investigations have shown that pro-inflammatory cytokines are released
when LPS-induced inflammation activates the MAPK and NF-кB pathways [53]. Important
pro-inflammatory cytokines, including COX-2 and iNOS, play a role in regulating inflam-
mation during this phase [54]. Previous studies have shown that bioactive substances can
act as effective anti-inflammatory agents in RAW264.7 cells exposed to LPS, inhibiting
the pro-inflammatory cytokines COX-2 and iNOS [55]. Our objective was to investigate
the impact of GLE on iNOS and COX-2. Our findings demonstrate that iNOS and COX-2
expression levels were reduced in a dose-dependent manner with GLE, specifically at con-
centrations of 25 and 50 ng/mL (Figure 3A,B). Inhibition of COX-2 and iNOS can mitigate
excessive inflammation [56,57]. Additionally, the decrease in COX-2 and iNOS caused by
GLE at doses as low as 25 and 50 ng/mL suggests that a drug may have a significant effect
even at lower doses. Consequently, this decrease indicates that GLE can be expected to
have anti-inflammatory properties by reducing proteins related to inflammation.

Complex signaling pathways like NF-κB/MAPK have been demonstrated to initiate
inflammatory responses [58]. NF-κB controls the activation of inflammasomes and influ-
ences the production of pro-inflammatory genes [59]. The administration of GLE resulted
in the downregulation of NF-κB transcription factor phosphorylation in a dose-dependent
manner. These outcomes were also noted in the MAPK signaling cascade below. MAPKs
are crucial for the activation of inflammatory cytokines and the release of inflammatory
chemokines [60]. p38 is one of the three major MAPKs (JNK, ERK (1/2)), and it plays a role
in controlling the production of inflammatory regulators [61]. Hence, a potential approach
to treating disorders linked to inflammation involves decreasing protein expression con-
nected to NF-κB/MAPK signaling. In the NF-κB/MAPK signaling pathway, administration
of GLE was observed to decrease the phosphorylation of p38, ERK (1/2), and JNK, which
were elevated in the presence of LPS stimulation (Figure 4). The potential efficacy of low
doses (25 and 50 ng/mL) in reducing factors of the NF-κB and MAPK pathways, similar to
COX-2 and iNOS, may be significant for inflammation treatment.

Upon comparison of Tables 1 and 2, it is evident that the docking scores of quercetin
and chlorogenic acid closely resemble that of CPUY192018. CPUY192018 is known to be a
potent inhibitor that relieves kidney inflammation and is used as a positive control [62].
Riboflavin was excluded from the docking section because it is not a phenolic compound.
Based on the results of DPPH and COX-2 binding HPLC, quercetin, and chlorogenic acid
are candidate phenolic compounds that are expected to have large peak-area change ratios
and exhibit antioxidant and anti-inflammatory properties (Tables 1 and 2). This indicates
that the two substances may have antioxidant and anti-inflammatory properties akin to
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those of the positive control group. Recall that determining the precise binding affinity is
not the means by which the molecular docking procedure outcomes are evaluated. The
primary goal in this case is to compare the outcome values between the structures; the
absolute docking result value is not significant. Furthermore, the binding structure may
not always bind even when a high value is obtained. Therefore, visual confirmation of
structural binding is essential for validating the molecular docking result [63]. These data
were analyzed to discover which phenol compounds in GLE are more strongly linked
to proteins involved in inflammation prevention, resulting in docking scores. As shown
in Table 3, when compared with CPUY192018, which is known to be a strong inhibitor,
quercetin did not show a significant difference in the results, and chlorogenic acid showed
a difference, but not a significant difference, indicating that GLE, which is composed
of several plant extracts, has strong anti-inflammatory and antioxidant properties. This
suggests that GLE may become an increasingly useful anti-inflammatory drug.

Based on the results, we obtained the docking scores for the binding of phenol com-
pounds of GLE, which have a significant effect on anti-inflammatory proteins. These DPPH,
COX-2 binding, and docking results suggest that GLE containing various extracts has strong
antioxidant and anti-inflammatory effects. In addition to the anti-inflammatory research
results of Glehnia littoralis shown in several other studies [3,6,64], our in vitro findings and
anticipated docking data point to GLE as a conceivable anti-inflammatory medication.

5. Conclusions

In this study, GLE is defined as an extract obtained from the leaves of Glehnia littoralis.
Phenolic compounds were identified in the GLE extract, demonstrating antioxidant and
anti-inflammatory properties. Although each compound displayed antioxidant and anti-
inflammatory properties, it is possible to anticipate the synergistic effects of multiple
phenolic compounds.

This study analyzed the phenolic compounds found in GLE and identified those
with noticeable antioxidant and anti-inflammatory properties through DPPH, COX-2, and
HPLC-based binding analysis. Furthermore, examination of the compounds with NF-κB
through molecular docking analysis revealed that the components of GLE showed high
binding scores in terms of structural affinity (Figure 6).
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Therefore, the presence of phenolic compounds, antioxidant properties, anti-inflammatory
effects, and molecular structural associations in these extracts suggest that GLE holds
promise as a therapeutic agent for inflammation-related pathways because of its structural
affinity and antioxidant effects.
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