
Citation: Yan, J.; Wang, C.; Zhang, T.;

Xiao, Z.; Xie, X. Super Tough

PA6/PP/ABS/SEBS Blends

Compatibilized by a Combination of

Multi-Phase Compatibilizers.

Materials 2024, 17, 5370. https://

doi.org/10.3390/ma17215370

Academic Editor: Giovanni

Battista Appetecchi

Received: 2 October 2024

Revised: 25 October 2024

Accepted: 29 October 2024

Published: 2 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Super Tough PA6/PP/ABS/SEBS Blends Compatibilized by a
Combination of Multi-Phase Compatibilizers
Jianhui Yan, Cuifang Wang, Tongyu Zhang, Zijian Xiao and Xuming Xie *

Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University,
Beijing 100084, China
* Correspondence: xxm-dce@mail.tsinghua.edu.cn

Abstract: Development of multi-component blends to prepare high-performance polymer materials
is still challenging, and is a key technology for mechanical recycling of waste plastics. However,
a multi-phase compatibilizer is prerequisite to create high-performance multi-component blends.
In this study, POE-g-(MAH-co-St) and SEBS-g-(MAH-co-St) compatibilizers are prepared via melt-
grafting of maleic anhydride (MAH) and styrene (St) dual monomers to polyolefin elastomer (POE)
and poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS), respectively. Subsequently, these
compatibilizers are utilized to compatibilize the PA6/PP/ABS/SEBS quaternary blends through
melt-blending. When POE-g-(MAH-co-St) and SEBS-g-(MAH-co-St) are added, respectively, both can
promote the distribution of the dispersed phases, significantly reducing the dispersed phase size.
When adding 10 wt% POE-g-(MAH-co-St) and 10 wt% SEBS-g-(MAH-co-St) together, compared to the
non-compatibilized blend, the fracture strength, fracture elongation, and impact strength surprisingly
increased by 106%, 593%, and 823%, respectively. It can be attributed to the hierarchical interfacial
interactions which facilitate gradual energy dissipation from weak to strong interfaces, resulting in
the improvement of mechanical properties. The synergistic effect of the enhanced phase interfacial
interactions and toughening effect of elastomer compatibilizer achieved simultaneous growth in
strength and toughness.

Keywords: polymer blends; compatibilization; multi-phase compatibilizer; superior mechanical
properties; recycling of waste plastics

1. Introduction

Polymer blending has become one of the most convenient and effective methods for
preparing high-performance new polymer materials in the past decades [1,2]. Also, it is
a powerful and crucial technique for the recycling and upgrading of plastic waste [3,4].
Typically, the compatibility of binary polymer blends can be easily achieved by adding
prefabricated block or graft copolymers with chemical affinity [5–15] or reactivity [16–27]
to the two polymer components at interfaces. However, with ternary or multi-phase
immiscible polymer blends, these strategies have limited effectiveness due to the multi-
interface among polymer components and complex thermodynamic complications [28–31].
It is of great importance to study immiscible multi-component polymer blends to develop
and prepare new materials with desired high-performance properties using favorable
combinations of polymers. Meanwhile, with the growing concern for environmental
pollution and sustainable development, the recycling of waste plastics has attracted wide
attention [32–35]. Therefore, compatibilization of immiscible multi-component polymer
blends is more and more becoming a crucial and powerful method for mechanical recycling
of mixed waste polymers.

Over the past few decades, a series of compatibilizers have been applied to vari-
ous incompatible blend systems. Recently, Eagan et al. [36] reported iPP-PE multiblock
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copolymers as isotactic polypropylene (iPP) and high-density polyethylene (HDPE) com-
patibilizers, with the reduce of average dispersed phase size from 2 µm to 1 µm and
increasement of elongation at break from 10% to 500%. Nomura et al. [37] synthesized
PET-PE multiblock polymers as compatibilizer additives in blends and as adhesion layer in
multilayer films.

In addition, the simultaneously use of compatibilizers has also been reported. Lee
et al. [38] used polypropylene graft maleic anhydride (PP-g-MAH) and polyethylene graft
glycidyl methacrylate (PE-g-GMA) as a hybrid compatibilizer for PP/PLA blend which
had better compatibilization effects compared to a single compatibilizer, with higher me-
chanical properties and smaller decrease in mechanical properties after acidic hydrolysis
test. Wang et al. [39] designed a dual compatibilizer consisting of ethylene methyl acrylate-
glycidyl methacrylate terpolymer (EMA-co-GMA) and maleic anhydride grafted polypropy-
lene (PP-g-MAH) to compatibilize methyl vinyl silicone rubber/polypropylene (MVQ/PP)
blends. The significant increase in interface thickness and reduction in MVQ dispersed
phase size demonstrate the effective compatibilization effect. Aziz et al. [40] studied the ef-
fect of the combination of PP-g-MAH and SAM compatibilizers in the PP/PS blends, which
produced a smaller dispersed phase size and higher impact strength compared to single
compatibilizer system. Moreover, polyethylene graft maleic anhydride (PE-g-MAH) with a
long backbone length and polybutadiene graft maleic anhydride (PB-g-MAH) with a short
backbone length were introduced into immiscible low-density polyethylene/polyamide 6
(LDPE/PA6) blends by Ren et al. [41], enhancing the development of smooth and tightly
linked interfaces, leading to the formation of a stable co-continuous morphology with
a high degree of continuity in the blend comprising 30 wt% PA. However, most of the
research about combination of compatibilizers is focused on binary blends, while it is still a
challenge in ternary and multi-component blend systems.

In our previous works [42–49], the multi-phase compatibilizer PP-g-(MAH-co-St) and
SEBS-g-(MAH-co-St) prepared by melt-grafting maleic anhydride (MAH) and styrene (St)
dual monomers to PP were used to compatibilize the immiscible ternary PP/PA6/PS
blends and quaternary PA6/PS/PP/SEBS blend. It shows very good compatibility in the
blends with finer dispersion of dispersed phase and better interfacial adhesion, resulting
the significant increase in mechanical properties. Based on our long-term work, the concept
of “super composites” is proposed for multi-component blends. The hierarchical interfacial
interactions among the components not only facilitate finer and organized dispersion but
also facilitate gradual energy dissipation from weaker to stronger interfaces under strain,
resulting in the mechanical properties improving exponentially, ultimately leading to the
formation of “super composites”.

In this work, two kinds of elastomer compatibilizers were prepared by melt-grafting
MAH and St dual monomers to SEBS and polyolefin elastomer (POE, PP-PE copolymer)
which were used as multi-phase compatibilizers for PA6/PP/ABS/SEBS quaternary blends
to investigate the effect of the different affinities of each compatibilizer as a component
in the blends on the morphology and mechanical properties of the blends. Taking POE-
g-(MAH-co-St) as the example, the compatibilization strategy is described in Scheme 1.
The anhydride group from grafted MAH has high reactivity with amino group in PA6
which can form the amide group. The styrene (St) block in graft chain of compatibilizer has
better affinity with SEBS and ABS which also contains a large number of styrene blocks.
Meanwhile, SEBS contains a polyolefin block consisting of ethylene and butylene segments
which shows certain chemical affinity with polyolefin POE and PP. It is obvious that POE-
g-(MAH-co-St) has better affinity with PP, and SEBS-g-(MAH-co-St) has higher chemical
affinity with SEBS and ABS. This study aims to clarify the effects of the combination of
different compatibilizers on the morphology, development, strengthening, and toughening
of PA6/PP/ABS/SEBS blends.
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Scheme 1. Schematic description of the compatibilization for PA6/PP+POE-g-(MAH-co-St)/ABS/
SEBS quaternary blends.

2. Materials and Methods
2.1. Materials

PA6 (1013B) was from Ube Chemicals Co., Ltd. (Yamakuchi, Japan). PP (T30S) was
supplied by Kunlun petrochemical Co., Ltd. (Daqing, China), with the melt flow index
of 3.2 g·(10 min)−1 at 213 ◦C, 2.16 kg. ABS (8434A) was obtained from Liaoning Huajin
Chemical Industrial Group Corporation (Panjin, China). POE (Versify-2300, ethylene-
propylene copolymer) was supplied from Dow Chemical Company (Midland, MI, USA),
with ethylene content of 12 wt% and the melt flow index of 2.0 g·(10 min)−1 at 213 ◦C.
Poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) Tuftec™ H1051 was supplied by
Asahi Kasei Chemicals Corporation (Tokyo, Japan). Maleic anhydride (MAH) and styrene
(St, AR) was purchased from Macklin Reagent (Shanghai, China). The initiator Dicumyl
peroxide (DCP) was supplied by Bejing Xizhong Chemical Co., Ltd (Beijing, China). All
reagents were used without further purification.

2.2. Preparation of Multi-Phase Compatibilizers

The multi-phase compatibilizers SEBS-g-(MAH-co-St) and POE-g-(MAH-co-St) were
prepared by the multi-monomer melt-grafting method using a twin-screw extruder
(D = 26 mm, L/D = 40) at 195 ◦C with a screw speed of 80 rpm. MAH, St, and DCP
were premixed first with SEBS or POE pallets then added to twin-screw extruder. The
concentration of MAH, St, and DCP were 3 wt%, 3 wt%, and 0.3 wt%, respectively, to SEBS
or POE. The grafting ratios of MAH in SEBS-g-(MAH-co-St) and PP-g-(MAH-co-St) were
2.73 wt% and 1.55 wt% which was determined by a back titration procedure [50]. g-SEBS
and g-POE are used to refer to SEBS-g-(MAH-co-St) and POE-g-(MAH-co-St), respectively.

2.3. Preparation of Quaternary Blends

PA6/(PP+g-POE)/ABS/SEBS (70/15/15/15), PA6/PP/ABS/(SEBS+g-SEBS) (70/15/
15/15) and PA6/(PP+g-POE)/ABS/(SEBS+g-SEBS) (70/15/15/15) blends were prepared
via melt-blending using a twin-screw extruder. For the PA6/PP/ABS/SEBS blend without
compatibilizer, the weight amounts of PA6, PP, ABS, and SEBS are set to 70/15/15/15. In
this case, weight amounts of PA6, PP, and ABS are counted as total amount with SEBS
elastomer excluded. With increasing g-POE replacing PP, the total amount of PP and g-POE
remain unchanged at 15 wt%. With g-SEBS replacing SEBS, the total amount of SEBS and
g-SEBS remain unchanged at 15 wt%. The barrel temperature was 205–240 ◦C from the
hopper to die with a screw rotation speed of 120 rpm. The content of each compatibilizer
was set at 0 wt%, 5 wt%, 10 wt%, and 15 wt%, respectively. Then, the pelletized blends
were injection molded into ASTM D638 tensile specimens and ASTM D256 notch impact
specimens using injection modeling machine (M1200, Wuhan Qien Science & Technology
Development Co., Ltd., Wuhan, China) for further mechanical tests.
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2.4. Characterization
2.4.1. ATR−FTIR Analysis

1 g of g-POE was dissolved in 100 mL of xylene at 135 ◦C for 2 h under reflux, and
then excess isopropanol was added to precipitate the grafted material to remove small
molecule monomers and un-grafted polymers. The precipitate was washed three times
with isopropanol and dried at 60 ◦C under vacuum for 12 h. The attenuated total reflectance
– Fourier transform infrared spectroscopy (ATR−FTIR) of purified g-POE, purified g-SEBS
and virgin POE, virgin SEBS were collected on a IRTracer-100 (Shimadzu Corporation,
Kyoto, Japan) with 32 scans at a resolution of 4 cm−1.

2.4.2. SEM Observation

With a field emission scanning electron microscopy (JSM-7401, JOEL Ltd., Tokyo,
Japan) set to a 3 kV accelerating voltage, the morphology of blends’ fractured surface was
investigated. The samples were cryogenically fractured after being submerged in liquid
nitrogen and the fractured surfaces were etched with n-heptane for 12 h at 35 ◦C to remove
the SEBS phase in blends. The fractured surface was coated with platinum layer before
SEM observation.

2.4.3. Mechanical Tests

The uniaxial tensile test specimens with dimensions of 5 mm (width) × 35 mm (length)
× 2 mm (thickness) were tested using Instron universal testing machine under a tensile
speed of 50 mm/min according to ASTM D638 standard. For the Izod notched impact
strength test, the rectangular specimens with dimensions of 10 mm (width) × 80 mm
(length) × 4 mm (thickness) and a V-shaped notch with 45◦ angle and 2.0 mm depth were
tested using Jinjian XJUD−5.5 impact tester with a pendulum of 5.5 J according to ASTM
D256 standard. For each sample and mechanical test, at least five specimens were tested.

3. Results and Discussion
3.1. FTIR Spectroscopy Analysis of the Compatibilizers

The FTIR spectra of the prepared compatibilizers and virgin polymers are shown
in Figure 1. Comparing with virgin POE or SEBS, new absorption bands at around 1860
and 1783 cm−1 in POE-g-(MAH-co-St) and SEBS-g-(MAH-co-St) were observed which
can be assigned to symmetrical and unsymmetrical stretching modes of the C=O in
anhydride [50,51]. Therefore, it indicates that POE and SEBS molecules have both grafted
reactive MAH groups. The grafting ratios of MAH in g-POE and g-SEBS are 1.55 wt% and
2.06 wt%, determined by a back titration [50].

3.2. Morphology

In this study, POE-g-(MAH-co-St) and SEBS-g-(MAH-co-St) were used as compatibi-
lizers to be blended with a PA6/PP/ABS/SEBS quaternary blend. The content of each
compatibilizer was changed to investigate the effect on the morphology evolution and
mechanical properties.

Figure 2 show the SEM micrographs of the cryofractured surfaces of PA6/(PP+g-
POE)/ABS/SEBS (70/15/15/15) quaternary blends with different contents of multi-phase
compatibilizer POE-g-(MAH-co-St) at 0 wt%, 5 wt%,10 wt%, and 15 wt%, respectively. The
SEBS phase is etched by n-heptane. For the blends without compatibilizer, as shown in
Figure 2a, the morphology with large domain sizes about 15 µm was observed due to the
poor adhesion between the interfaces. Due to the chemical affinity between PP and SEBS
phases, a large porous dispersed phase is presented after etching the SEBS. Meanwhile, a
thin shell, which is the ABS phase, can still be observed between the dispersed PP phase
and the PA6 matrix. These morphology changes can be also predicted by the spreading
coefficient equation as below [52]:

λA = γBC − (γAB + γAC) (1)
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where γBC, γAB, and γAC are the interfacial tension between each polymer pair, and the
spreading coefficient λA predicts the inclination of polymer A to autonomously disperse
at the interface between B and C. If λA > 0, then polymer A can spread at the interface,
otherwise the spreading does not occur. Our previous work [46] has fully tested and
demonstrated the effectiveness of the spreading coefficient.
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Figure 2. SEM micrographs of morphology of the PA6/(PP+g-POE)/ABS/SEBS (70/15/15/15)
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cryofractured and then etched in n-heptane to remove SEBS. The PP, ABS and SEBS are indicated
with blue, red and yellow arrows or circles, respectively.
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As shown in Figure 2b, upon the addition of 5 wt% g-POE into the blends, the size
of the structural domains was significantly reduced to about 2 µm with many smaller
domains with a size of less than 1 µm dispersed in the PA6 matrix. With the content of
g-POE increased to 10 wt%, the size of dispersed phase is further decreased and more
smaller domains with a size under 1 µm are buried in the PA6 matrix, indicating the good
compatibility between the components.

In addition, it can be observed that when there is no compatibilizer, the gap between
the PP phase and the matrix is larger in Figure 2a, indicating that the etched SEBS phase is
mainly distributed at the interface between the PP phase and the PA matrix. Due to the
natural chemical affinity between PP and POE, as well as the excellent reactive compatibility
between POE and PA6 matrix, as the g-POE content increases, the PP phase gradually
migrates to the interface with PA6 matrix, while the SEBS phase migrates inward. At
the same time, it is notable that the interface between the PP and PA6 becomes smoother,
indicating that the compatibilizer g-POE successfully integrated together the incompatible
PA6 and PP at their interface. In Figure 2b,c, a large number of rough cross-sectional
spherical ABS phases can still be observed, which is caused by its partial etching with
n-heptane. The ABS phase is more closely associated with SEBS or dispersed individually
in the matrix, implying that the compatibilization effect of g-POE on ABS is limited and
mainly used for compatibilization of the PP phase.

Similarly, after etching with n-heptane, the SEM observation results of the PA6/PP/ABS/
SEBS quaternary blend with g-SEBS as compatibilizer are shown in Figure 3. The size of the
dispersed phases with the same morphology has been significantly reduced. Unlike g-POE,
the etched SEBS is still mainly distributed at the interface between PP and PA6, with few
dispersed inside the PP phase, indicating the presence of a hard shell-soft core structure
with SEBS encapsulating PP. This is also due to the efficient reactive compatibility between
g-SEBS and PA6, which promotes the migration of SEBS from the interior of the PP phase
to the interface.
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Based on mentioned above, both g-POE and g-SEBS have the ability to compatibilize
the PA6/PP/ABS/SEBS quaternary blends, resulting in distinct and refined morphologies
in the blends.

3.3. Mechanical Properties

The tensile curves and impact strength of the PA6/(PP+g-POE)/ABS/SEBS and
PA6/PP/ABS/(SEBS+g-SEBS) blends are presented in Figures 4 and 5. With increasing the
content of the multi-phase compatibilizer g-POE or g-SEBS, both of them exhibit higher
tensile strength and elongation at break. Compared to the PA6/PP/ABS/SEBS blends with-
out compatibilizer, when g-POE reaches 15 wt% for PA6/(PP+g-POE)/ABS/SEBS blend,
the elongation at break, tensile strength, and impact strength are increased by 563%, 73%,
and 754%, respectively. When g-SEBS reaches 15 wt% for PA6/PP/ABS/(SEBS+g-SEBS)
blend, they are increased by 467%, 62%, and 248%, respectively. This is mainly due to the
excellent compatibilization effect of the multi-phase compatibilizer on the dispersed phase
significantly reducing the dispersion size and increasing the interfacial quantity.

It should be noted that in Figure 5a the Young modulus of PA6/(PP+g-POE)/ABS/SEBS
blend significantly decreases while PA6/PP/ABS/(SEBS+g-SEBS) blend only slightly de-
creases. The yield strength shows similar change with modulus in Figure 4a,b. The Young
modulus reflects the material properties under low tensile elongation, when the material
mainly undergoes affine transformation, so the modulus of blends mainly depends on the
weighted average of each component. Compared to PP, POE has a lower degree of crystal-
lization and exhibits elastomeric properties. Therefore, the addition of g-POE increases the
overall content of elastomeric phase in the blend. With the increase in the low modulus
POE elastomer replacing high modulus PP, Young modulus of blend decreases, resulting
the same decrease in yield strength. In the PA6/PP/ABS/(SEBS+g-SEBS) blend, the replace-
ment of SEBS with the multi-phase compatibilizer g-SEBS does not change the proportion
of elastomer content, thus exhibiting more consistent modulus and yield strength.
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Furthermore, g-POE and g-SEBS compatibilize the PA6 matrix and the dispersed
phases of PP and ABS at the interfaces, forming a soft shell-hard core structure as ob-
served in the morphology analysis above. The enhancement of interface strength makes
it less likely for the blend to experience interface fracture under large deformation. In
addition, when existing cracks encounter the dispersed phases with soft shell of g-POE or
g-SEBS during expansion, the POE and SEBS elastomers can undergo significant reversible
deformation immediately to prevent crack propagation, dissipating a large amount of
energy, significantly toughening the blends [47]. Therefore, the elongation at break, fracture
strength, and impact strength of the blend all increase with the increase in the content
of compatibilizer. Concurrently, in the case of elastomer g-POE replacing the crystalline
polymer PP, the total elastomer content increases and making the toughening effect of the
elastomer more significant. When the g-POE content reaches 15 wt%, the impact strength
increases significantly, achieving brittle-ductile transition.

3.4. Combination of g-POE and g-SEBS

Furthermore, both g-POE and g-SEBS compatibilizers are added together in the qua-
ternary blend to investigate their synergistic effect. Interestingly, after the same etching
process, they exhibited distinct and complex phase morphologies compared to the when
each compatibilizer is added respectively, as shown in Figure 6. When 10 wt% or above
of each compatibilizer was added at the same time, the sea-island structure gradually dis-
appeared, and the phase interface blended with each other instead. Near these interfaces,
there are a large number of SEBS dispersed phases with small sizes of only 100–200 nm,
which contribute to the larger interfacial area. This also implies that SEBS/g-SEBS and
PP/g-POE exhibit gradient distribution near the interface. Due to the high reactivity of PA6
with g-SEBS and g-POE, as well as the good chemical affinity between SEBS and POE, they
can be dispersed in each other to form a composite interface layer, distributed between
PA6 and other dispersed phases. The composite interface layer has a higher distribution
of g-SEBS near the SEBS phase or ABS phase and a higher distribution of g-POE near the
PP phase. The formation of the gradient-changing composite interface layer effectively
reduces its interfacial tension [53], allowing partial fusion of adjacent dispersed phases,
showing a locally continuous morphology. At the same time, the gradient-changing com-
posite interface layer can form a thicker effective interface thickness, providing stronger
interface strength.

The stress strain curves and impact strength of PA6/(PP+g-POE)/ABS/(SEBS+g-
SEBS) quaternary blends are shown Figure 7 and Table 1. When both g-POE and g-SEBS
compatibilizers are added together in PA6/PP/ABS/SEBS blends, it is found that the yield
strain slightly decreased from 48.45 MPa to 43.51 MPa when each compatibilizer is added at
5 wt%, which is mainly because the increasing content of POE elastomer leads to the blend
becoming softer. When both compatibilizers increased to 10 wt%, the yield strength instead
increased to 47.18 MPa. The stress at break, elongation at break, and impact strength
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reached 62.61 MPa, 323.03%, and 67.20 kJ/m2. Compared to the PA6/PP/ABS/SEBS
blend without compatibilizer, they were increased by 106%, 593%, and 823%, respectively,
achieving a state of “super composites”. This is attributed to the formation of the composite
interface layer when both compatibilizer were at 10 wt%, which is observed in Figure 6b,
and provided stronger interfacial strength and more interface area. When the content of
g-POE and g-SEBS continues to increase to 15 wt%, at this point the blends showed similar
morphology with slightly decreased phase size, indicating that the enhancing effect of
the compatibilizer has reached saturation. Therefore, the softening effect brought by the
increase in the elastomer content once again takes the lead, which causes the yield strength
and tensile strength to decrease again, but the impact strength continues increasing to
92.98 kJ/m2.

Materials 2024, 17, x FOR PEER REVIEW 9 of 14 
 

 

elastomer more significant. When the g-POE content reaches 15 wt%, the impact strength 
increases significantly, achieving brittle-ductile transition. 

3.4. Combination of g-POE and g-SEBS 
Furthermore, both g-POE and g-SEBS compatibilizers are added together in the qua-

ternary blend to investigate their synergistic effect. Interestingly, after the same etching 
process, they exhibited distinct and complex phase morphologies compared to the when 
each compatibilizer is added respectively, as shown in Figure 6. When 10 wt% or above 
of each compatibilizer was added at the same time, the sea-island structure gradually dis-
appeared, and the phase interface blended with each other instead. Near these interfaces, 
there are a large number of SEBS dispersed phases with small sizes of only 100–200 nm, 
which contribute to the larger interfacial area. This also implies that SEBS/g-SEBS and 
PP/g-POE exhibit gradient distribution near the interface. Due to the high reactivity of 
PA6 with g-SEBS and g-POE, as well as the good chemical affinity between SEBS and POE, 
they can be dispersed in each other to form a composite interface layer, distributed be-
tween PA6 and other dispersed phases. The composite interface layer has a higher distri-
bution of g-SEBS near the SEBS phase or ABS phase and a higher distribution of g-POE 
near the PP phase. The formation of the gradient-changing composite interface layer ef-
fectively reduces its interfacial tension [53], allowing partial fusion of adjacent dispersed 
phases, showing a locally continuous morphology. At the same time, the gradient-chang-
ing composite interface layer can form a thicker effective interface thickness, providing 
stronger interface strength. 

 
Figure 6. SEM micrographs of morphology of the PA6/(PP+g-POE)/ABS/(SEBS+g-SEBS) (70/15/15/15) 
quaternary blends containing g-POE and g-SEBS: (a) 5 wt% + 5 wt%; (b) 10 wt% + 10 wt%; (c) 15 wt% 
+ 15 wt%. All samples were cryofractured and then etched in n-heptane to remove SEBS. 

The stress strain curves and impact strength of PA6/(PP+g-POE)/ABS/(SEBS+g-SEBS) 
quaternary blends are shown Figure 7 and Table 1. When both g-POE and g-SEBS com-
patibilizers are added together in PA6/PP/ABS/SEBS blends, it is found that the yield 
strain slightly decreased from 48.45 MPa to 43.51 MPa when each compatibilizer is added 
at 5 wt%, which is mainly because the increasing content of POE elastomer leads to the 

Figure 6. SEM micrographs of morphology of the PA6/(PP+g-POE)/ABS/(SEBS+g-SEBS) (70/15/15/
15) quaternary blends containing g-POE and g-SEBS: (a) 5 wt% + 5 wt%; (b) 10 wt% + 10 wt%;
(c) 15 wt% + 15 wt%. All samples were cryofractured and then etched in n-heptane to remove SEBS.
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In PA6/PP/ABS/(SEBS+g-SEBS) quaternary blends, the impact strength basically
increases linearly with the increase in g-SEBS content. The total elastomer content composed
of SEBS and g-SEBS content remains at 15 wt%, a small increase in impact strength mainly
stemming from the enhanced compatibility. However, in the PA6/(PP+g-POE)/ABS/SEBS
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blend, when the g-POE content increases from 10 wt% to 15 wt%, the impact strength
undergoes a multiple-fold increase, showing a significant brittle-ductile transition. This
is because with the increase in the amount of elastomer g-POE replacing the crystalline
polymer PP, the total elastomer content composed of POE and SEBS/g-SEBS increases and
triggers a brittle-ductile transition when total elastomer content exceeds 25 wt%.

Table 1. Mechanical properties of PA6/(PP+g-POE)/ABS/(SEBS+g-SEBS) quaternary blends.

Content of g-POE and g-SEBS Yield Strain
(MPa)

Stress at Break
(MPa)

Elongation at Break
(%)

Impact Strength
(kJ/m2)

0 + 0 48.45 ± 1.26 30.38 ± 0.87 46.8 ± 2.2 7.28 ± 0.75

5 + 5 43.51 ± 0.97 43.10 ± 1.23 256.6 ± 5.3 15.34 ± 3.56

10 + 10 47.18 ± 0.67 62.61 ± 2.56 324.8 ± 8.6 67.20 ± 4.61

15 + 15 39.09 ± 1.05 52.82 ± 1.42 290.6 ± 6.3 92.98 ± 6.39

It should be noted that when both compatibilizers are added simultaneously, the
content of g-POE increases from 5 wt% to 10 wt%, and the brittle-tough transition occurs
when the total elastomer content exceeds 20 wt%, indicating that the synergistic effect
of increased compatibility and toughening by the elastomer compatibilizers promotes
brittle-ductile transition at lower elastomer content.

Further, we fixed the total content of compatibilizer content at 15 wt% and the relative
content of g-POE and g-SEBS were adjusted to investigate their impact on the blend’s impact
strength, as depicted in Figure 8. As the g-POE content increases to replace PP in the blends,
the total elastomer compatibilizer content rises, leading to a significant enhancement in
impact strength. It is noteworthy that when both compatibilizers are added simultaneously
with a g-POE/g-SEBS weight ratio of 10/5, the blend exhibits a higher impact strength
compared to when a single compatibilizer is added alone. The SEM image of PA6/(PP+g-
POE)/ABS/(SEBS+g-SEBS) (70/(5+10)/15/(10+5)) is further analyzed, shown in Figure 9a.
Compared with the single g-POE compatibilizer PA6/PP/ABS/g-SEBS (70/15/15/15) in
Figure 2d, PA6/(PP+g-POE)/ABS/(SEBS+g-SEBS) (70/(5+10)/15/(10+5)) shows a more
complicated morphology, of which a schematic diagram is shown in Figure 9b. Due to the
reactivity between g-SEBS and PA6, SEBS could be individually dispersed in the matrix
in sizes of hundreds of nanometers, resulting in a significant increase in interface area.
Furthermore, the good affinity of SEBS with ABS and polyolefin facilitated the envelopment
of the ABS phase by the SEBS phase, which was then dispersed in the matrix by g-POE,
forming a three-layer encapsulation structure indicated by the red circles in Figure 9a. The
combined use of the two compatibilizers demonstrates the synergistic effect of the enhanced
compatibility and elastomeric toughening effect, thereby improving the performance of the
polymer blend.
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Figure 9. (a) SEM micrographs, and (b) schematic diagram of morphology of PA6/(PP+g-POE)/
ABS/(SEBS+g-SEBS) (70/(5+10)/15/(10+5)). The sample was cryofractured and then etched in
n-heptane to remove SEBS.

4. Conclusions

In summary, due to the high reactivity between multi-phase compatibilizer POE-
g-(MAH-co-St)/SEBS-g-(MAH-co-St) and PA6, as well as the chemical affinity between
POE-g-(MAH-co-St)/SEBS-g-(MAH-co-St) and PP, PS, and ABS, both exhibit strong com-
patibilization effects in the PA6/PP/ABS/SEBS quaternary blend. This is reflected in the
significant reduction in dispersed phase size and the improvement in tensile and impact
properties. As the proportion of the elastomer g-POE replacing the crystalline polymer PP
increases, the total content of elastomer in the blend increases. The soft elastomer phase
causes a significant decrease in the modulus and yield strength of the blends. However, it
also exhibits an excellent toughening effect, especially when 15 wt% g-POE is added, where
the blends show brittle-tough transition. When both compatibilizers are simultaneously
added, it demonstrates superior compatibility with the dispersed phases through the for-
mation of hierarchical interfaces. These hierarchical interfaces increase interfacial area and
provide gradually changing interfacial strength, which can further dissipate more energies
under deformation without sacrificing the yield strength. The fracture strength, fracture
elongation, and impact toughness have increased by 106%, 593%, and 823% respectively,
achieving remarkable and simultaneous growth in strength and toughness, leading to the
realization of super composites. Consequently, this research presents a highly effective
strategy for enhancing and toughening complex multi-component polymer blends, aiming
to creating high-performance polymer blends and promoting the recycling of waste plastics.
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