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Abstract: Fiber-reinforced polymers (FRPs) are increasingly being used as substitutes for traditional
metallic materials across various industries due to their exceptional strength-to-weight ratio. How-
ever, their orthotropic properties make them prone to multiple forms of damage, posing significant
challenges in their design and application. During the design process, FRPs are subjected to var-
ious loading conditions to study their microscopic damage behavior, typically assessed through
scanning electron microscopy (SEM). While SEM provides detailed insights into fracture surfaces,
the manual analysis of these images is labor-intensive, time-consuming, and subject to variabil-
ity based on the observer’s expertise. To address these limitations, this research proposes a deep
learning-based approach for the autonomous microscopic damage assessment of FRPs. Several
computationally efficient pre-trained deep learning models, such as DenseNet121, NasNet Mobile,
EfficientNet, and MobileNet, were evaluated for their performance in identifying different damage
modes autonomously, thus reducing the need for manual interpretation. SEM images of FRPs with
five distinct failure modes were used to validate the proposed method. These failure modes include
three fiber-based failures such as fiber breakage, fiber pullout, and mixed-mode failure, and two
matrix-based failures such as matrix brittle failure and matrix ductile failure. The entire dataset
is divided into train, validation, and test sets. Deep learning models were established by training
on train and validation sets for five failure modes, while the test set was used as the unseen data
to validate the models. The models were assessed using various evaluation metrics on an unseen
test dataset. Results indicate that the EfficientNet model achieved the highest accuracy of 97.75% in
classifying the failure modes. The findings demonstrate the effectiveness of employing deep learning
techniques for microscopic damage assessment, offering a more efficient, consistent, and scalable
solution compared to traditional manual analysis.

Keywords: deep learning; microscopic damage; scanning electron microscopy; transfer learning;
damage assessment; fiber-reinforced polymers

1. Introduction

Fiber-reinforced polymer (FRP) composites offer significantly higher specific strength
and stiffness compared to conventional metallic materials, resulting in improved me-
chanical properties and considerable weight savings [1]. These advantages have led to
widespread adoption of FRPs across various industries, including aerospace, automotive,
and marine engineering [2]. The specific applications of FRPs in these industries include
aircraft components, such as fuselage sections, composite hydraulic cylinders and wing
structures, automotive body panels and chassis parts, and marine hulls and decks, where
the lightweight and high-strength properties of FRPs enhance performance and fuel ef-
ficiency [2–4]. However, due to their orthotropic nature, FRPs are susceptible to a range
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of microscopic damage mechanisms. The microscopic damages refer to a wide range of
small-scale defects or damages that occur at the microstructural level within the FRPs [5].
These types of damages are not visible to the naked eye and require sophisticated tech-
niques to be observed and analyzed. Some of the microscopic damages that occur in FRPs
are fiber breakage, matrix cracking, debonding, and delamination [6]. Among these, delam-
ination is particularly critical as it can significantly compromise the structural integrity and
performance of FRPs [7]. Therefore, significant research has been conducted on detailed
analysis of delamination detection in FRPs using physics-based approaches [8–11] and
data-driven approaches [12–14]. However, in practical applications, delamination is the
consequence of the preliminary damage to the fibers or matrix. Therefore, during material
design, it is crucial to not only focus on delamination detection but also to comprehensively
assess the initiation and progression of various microscopic damage mechanisms such as
fiber breakage and matrix cracking. Such approaches can lead to more effective material
design strategies, ultimately enhancing the reliability and performance of FRP structures
in demanding environments. Moreover, the damage mechanisms in FRPs are also in-
fluenced by the type of fibers, resins, and manufacturing processes, such as pultrusion
and vacuum infusion molding, which produce distinct failure modes [15]. Thermosetting
and thermoplastic resins also behave differently due to variations in viscosity and inter-
facial bonding [16]. Additionally, environmental factors like temperature and moisture,
combined with mechanical loads, lead to varying damage mechanisms in fiber-reinforced
composites [17].

The microscopic damage in FRPs can be assessed through numerous techniques such
as micro-computed tomography (µCT), guided waves, acoustic emission, and scanning
electron microscopy (SEM) [18]. However, SEM is an essential tool for the microscopic
damage assessment of FRPs during the material design and evaluation process. SEM is
an essential tool for fractographic analysis of FRPs, enabling a detailed examination of
microstructural damage mechanisms, including fiber breakage, fiber pullout, mixed-mode
failure, matrix ductile failure, and matrix brittle failure [19,20]. This information is cru-
cial for understanding the failure behavior of composites and optimizing their design for
enhanced performance and reliability [21]. However, the complexity and variability of
fractographic features make manual interpretation a time-consuming and labor-intensive
process, requiring significant expertise and often leading to subjective assessments. To
overcome these challenges, automated, data-driven approaches for microscopic damage as-
sessment have gained attention as they offer a more efficient and consistent alternative [22].
These automated techniques utilize advanced image processing [23] and deep learning
algorithms [24] to accurately identify and classify damage features, thereby facilitating a
more objective and scalable analysis.

Microstructure analysis of composite materials has seen significant advancements
with the integration of deep learning and advanced imaging techniques. For instance,
X-ray tomography microscopy combined with deep learning has effectively tracked the
microstructure evolution of SiCf/SiC-W-ZrB2 composites during fabrication, demonstrat-
ing accurate reconstruction with errors below 8.31% [25]. Similarly, a deep learning-based
method using DeepLabV3+ successfully identified void defects in polymer–matrix compos-
ites, linking increased void content to a 27% reduction in interlaminar shear strength [26].
Another approach mapped microstructure images to effective moduli using a convolutional
neural network (CNN), providing a novel solution for predicting the mechanical properties
of heterogeneous materials [27]. Kopp et al. proposed deep learning-based segmentation
of multiclass microscale damage in heterogeneous materials, achieving high agreement
with human-segmented data and eliminating nearly 100% of manual segmentation time,
accelerating the characterization process by two orders of magnitude [28]. In the void con-
tent analysis of the optical microscopy images of composite laminates, a robust CNN-based
method outperformed traditional thresholding algorithms and demonstrated improved
accuracy across multiple laminate types [29]. High-accuracy segmentation of individual
phases in metal matrix composites was achieved by Evsevleev et al. [30] using a deep
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learning-based U-net architecture, enabling precise extraction of critical microstructural
parameters. Automated segmentation of 3D tomography images in fiber-reinforced ceramic
composites effectively distinguished phases and matrix cracks, overcoming challenges
posed by identical image intensities [31]. An image processing-based approach facili-
tated rapid, non-destructive characterization of microstructural features in fiber-reinforced
composites, quantifying heterogeneity and detecting anomalies without extensive experi-
mental testing [32]. High-resolution back scattered electron (BSE) imaging combined with
deep learning provided insights into the microstructural effects of graphene oxide–silica
reinforcement in cement composites, demonstrating refined pore structures and altered
spatial correlations [33]. Integration of deep learning with focused ion beam–SEM analytics
enabled automated, unbiased microstructural analysis of Ni/YSZ cermets, enhancing evalu-
ation accuracy despite poor image quality and common microscopy artifacts [34]. Moreover,
a multidisciplinary deep learning approach utilizing U-Net architectures achieved high seg-
mentation accuracy for complex lath-bainite structures in steel, emphasizing the importance
of data quality and network visualization for reliable microstructure quantification [35].

Despite significant advancements in the automated analysis of composite microstruc-
tures using deep learning, existing methods primarily target individual aspects such as
phase segmentation, void detection, or property prediction. A comprehensive approach
capable of autonomously assessing multiple damage modes under varying loading condi-
tions for FRPs remains lacking. This study addresses this gap by integrating deep learning
models to accurately identify and classify various microscopic damage features in FRPs.
In a big data environment, deep learning can significantly enhance material characteri-
zation by correlating complex microstructural features and rapidly predicting physical
properties [36]. However, training these models requires extensive, high-quality datasets,
which are often scarce. To overcome this limitation, the proposed framework employs
transfer learning and data augmentation to improve model performance and reliability,
offering a scalable solution for holistic damage assessment in FRPs. While the complexity
of microstructural features often requires large models for accurate classification, this re-
search focuses on utilizing computationally efficient architectures. Therefore, models such
as DenseNet-121, NasNet Mobile, EfficientNet, and MobileNet are employed to achieve
precise classification of diverse damage modes with reduced computational demands. This
approach provides a robust and scalable solution for material scientists and engineers
involved in the design and evaluation of FRPs.

2. Proposed Methodology

This study proposes the use of computationally efficient deep learning models for the
microscopic damage assessment of FRPs. Figure 1 shows the proposed methodology that
comprises (a) composite sample preparation, (b) collection of SEM images for different
failure modes of FRPs, (c) use of data augmentation techniques to increase the size of
the dataset, (d) fine-tuning of the pre-trained deep learning modes on the SEM, and (e)
evaluation of the proposed models based on multiple evaluation metrics. In the first step,
the FRP sheets are prepared and cut into specimen form for tensile testing. The SEM image
data are then acquired in the second step from the fractured surfaces of the tensile test
specimen, which includes different fiber and matrix-based failure modes of FRPs. The data
are then sorted based on each class of failure, and image data augmentation techniques
are used to increase the size of the dataset. The data augmentation techniques used for
this purpose include vertical flip, horizontal flip, random rotation, zoom-in, random crop,
and resize. In the third step, the four computationally efficient deep learning models
(DenseNet-121, NasNet Mobile, EfficientNet, and MobileNet) are tuned on the SEM image
data. In the final step, the trained models are used to make predictions on unseen data to
identify the microscopic failure model of FRPs. The evaluation is performed using accuracy,
precision, recall, f1-score, and confusion matrix, which are commonly used for evaluating
classification models [37].
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2.1. Deep Transfer Learning

Deep learning typically requires a substantial amount of data. Data insufficiency can
lead to underfitting during training. Deep transfer learning (DTL) addresses this challenge
by pre-training a high-performing model on a large dataset and utilizing its learned features
for a specific task with a smaller dataset [38]. The schematic representation of the DTL
is shown in Figure 2. The DTL concept has already been implemented for microscopic
damage detection of metallic materials. Anidjar et al. [39] utilized ResNet152 and YOLOv5s
to classify and identify the cause of failure in titanium Ti-6Al-4V. Similarly, Jones et al. [40]
used VGG16-based DTL models to predict fatigue crack growth in SEM images of Ti-6Al-4V.
However, the traditional DTL models require high computational resources, with model
sizes of more than 200 MB and model parameters of tens of millions [41]. To address the
limitations of traditional DTL models, this study proposes the utilization of computationally
efficient architectures such as DenseNet-121, NasNet Mobile, EfficientNet, and MobileNet,
which have fewer than 10 million parameters and model sizes under 50 MB. These models
offer a significant reduction in computational requirements, making them more feasible for
real-time microscopic damage assessment and material design optimization. By enabling
rapid and accurate analysis of FRP microstructures, these computationally efficient DTL
models facilitate the development of advanced FRPs with enhanced mechanical properties
and reliability.
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2.1.1. DenseNet-121

DenseNet [42] was adopted as the DTL model for microscopic damage assessment
of FRPs due to its exceptional performance in ImageNet classification problems [43]. In
DenseNet architecture, each layer has direct connections to all subsequent layers, enabling
the flow of information and gradients throughout the network. This approach involves the
concatenation of feature maps from preceding layers with the feature maps of the current
layer, which enhances feature reuse and mitigates the vanishing gradient problem. The
architecture is composed of dense blocks, which contain a sequence of layers that include
batch normalization, ReLU activation, and convolution operations. Between these dense
blocks, transition layers are introduced, consisting of batch normalization, 1 × 1 convolu-
tion, and pooling layers, to down-sample the feature maps and control model complexity.
A schematic of the DenseNet architecture containing an input layer, a convolutional layer,
three dense blocks, two transition layers, and the fine-tuning layer is shown in Figure 3.
DenseNet-121 is the most computationally efficient variant of the DenseNet family with
7.89 million parameters; therefore, it has been used in this study for microscopic damage
assessment of FRP composites.
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2.1.2. NasNet Mobile

NasNet-Mobile (NasNet) is a scalable convolution-based architecture with cells utiliz-
ing the reinforcement learning approach proposed by Zoph et al. [44]. Unlike traditional
architectures, NasNet is developed using neural architecture search (NAS), which system-
atically explores the space of possible network structures to identify the most effective
configuration. This architecture consists of two fundamental building blocks known as nor-
mal cells (NCs) and reduction cells (RCs). These cells are modular sub-networks composed
of multiple convolutional layers, designed to be reusable and adaptable. NCs maintain the
spatial dimensions of the input, while RCs decrease the spatial resolution, allowing for a
flexible and efficient architecture that can be easily tailored to different tasks and computa-
tional constraints. NasNet utilizes this modular design by stacking these cells to create a
scalable and resource-efficient network suitable for mobile and low-power applications.
The schematic representation of the NasNet model is shown in Figure 4, where N is the
number of cells optimized on the dataset, and the architectural details of the NCs and RCs
can be found in Ref. [45]. The NasNet consists of 5.32 million trainable parameters [46].
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2.1.3. EfficientNet

EfficientNet stands out as the state-of-the-art DTL model, particularly due to its
performance on the ImageNet dataset. EfficientNet employs the swish activation function,
improving the ability of the model to capture complex patterns and offering better gradient
flow and non-linear transformations compared to ReLU [47,48]. EfficientNet aims to build
models that are both powerful and computationally efficient by employing compound
scaling. This technique uniformly adjusts the network’s depth, width, and resolution,
enhancing performance without significantly increasing computational costs. The baseline
network is scaled in all dimensions according to a set of predefined scaling factors, ensuring
optimal performance under limited resources [47]. The core building block of EfficientNet
architecture is the mobile-inverted bottleneck convolution (MBC). The MBC layers function
by first expanding the number of channels and then compressing them, effectively creating
a bottleneck structure. This reduces the computational cost by limiting the number of
channels in the bottleneck compared to the expanded layers. The architecture also utilizes
depth-wise separable convolutions, which significantly decrease the number of floating-
point operations by a factor of k2, where k represents the kernel size. This combination
enables EfficientNet to achieve high performance with fewer computational resources. The
EfficientNetB0, being the most compact variant of the EfficientNet family, has been used in
this study, which contains 5.40 million parameters [49]. The schematic representation of
the EfficientNet model is shown in Figure 5.
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2.1.4. MobileNet

MobileNet is a family of DTL models optimized for efficient use on mobile and em-
bedded devices, characterized by their low computational and memory requirements. The
architecture employs depth-wise separable convolutions (DSCs) to reduce calculations and
the number of parameters to perform classification or image recognition tasks [50]. DSC
decomposes a standard convolution into two operations: a depth-wise convolution, which



Materials 2024, 17, 5265 7 of 16

filters each input channel independently, and a pointwise convolution, which combines
these filtered outputs using 1 × 1 convolutions. This separation significantly reduces
the number of parameters and computational cost, making the network more efficient.
MobileNet further optimizes computational efficiency with bottleneck layers that compress
the input feature maps before processing them through the convolutional layers. The Mo-
bileNet family, including MobileNet, MobileNetV2, and MobileNetV3, provides additional
architectural improvements such as inverted residuals and linear bottlenecks to enhance
performance across various applications while maintaining low computational require-
ments [51,52]. The basic MobileNet model shown in Figure 6 with 4.2 million parameters
has been chosen for this study due to its balance between accuracy and computational
efficiency, making it suitable for deployment in resource-constrained environments while
still providing reliable performance for image classification.
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3. SEM Dataset and Data Pre-Processing
3.1. SEM Dataset Description

The SEM data utilized in this study focus on surface-level defects rather than internal
damage. The SEM dataset comprises microscopic images collected from fractured tensile
test specimens of FRPs, offering insights into surface microstructural damage mechanisms.
However, it is important to note that internal damage may result from the coupling of
various damage mechanisms, which cannot be fully captured by SEM alone. Therefore,
this study is focused only on the SEM image-based damage assessment to provide detailed
insights into surface-level defects. The dataset is collected from the published literature,
which includes images of FRPs with both synthetic and natural fibers, as well as composites
with synthetic and bio-based resins [20,53–55]. The FRPs in the selected literature were
fabricated using manufacturing techniques such as vacuum-assisted resin transfer molding
(VARTM) and hot press compression molding. This diverse data composition captures a
broad range of microstructural damage mechanisms, providing a comprehensive repre-
sentation of damages that can occur in FRPs. The collected dataset is classified into five
distinct damage modes, comprising three fiber-based and two matrix-based models. These
damage modes are shown and highlighted in Figure 7, while a brief description of each
mode is as follows:

1. Fiber Breakage (FB): This mode occurs when fibers fracture due to high tensile stress,
indicating a critical failure in the load-bearing capacity of the composite. The fracture
surfaces in this mode exhibit characteristic brittle fracture patterns perpendicular to
the fiber axis.

2. Fiber Pullout (FP): In this mode, fibers are disengaged from the matrix without
fracturing, suggesting inadequate fiber–matrix interfacial bonding. This failure mech-
anism is indicative of suboptimal stress transfer between matrix and fibers, which
compromises the overall mechanical integrity.
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3. Mixed-Mode Failure (MMF): This complex failure involves a combination of fiber
breakage and pullout. It reflects a scenario where simultaneous interfacial debonding
and fiber fracture occur.

4. Matrix Brittle Failure (MBF): This damage mode exhibits minimal plastic deformation
and generates sharp, brittle fracture surfaces that propagate rapidly through the
matrix. Stress concentrations or abrupt loading conditions typically initiate this type
of failure, leading to catastrophic fracture due to the material’s low fracture toughness.
MBF is often associated with the use of a thermoset matrix in FRPs.

5. Matrix Ductile Failure (MDF): This damage mode exhibits significant plastic de-
formation before fracture, indicating that the matrix material undergoes extensive
yielding before failure. It is commonly associated with a gradual failure process and
is typically observed in polymer matrices that possess high ductility. MDF is often
associated with the use of a thermoplastic matrix in FRPs.
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The inclusion of both synthetic and natural fibers, along with synthetic and bio-
based resins, provides a diverse and representative dataset. This diversity is beneficial for
developing more generalized and robust DTL models capable of accurately identifying a
wide range of damage modes across different FRPs. Such generalized models are crucial
for enhancing the reliability and scalability of automated microscopic damage assessment
in FRP composites, thereby facilitating a more efficient material design process.

3.2. Data Augmentation

Due to the limited availability of SEM images in the literature, data augmentation is
a critical strategy to expand the dataset and enhance the performance and robustness of
DTL models. Data augmentation not only addresses the issue of limited data but also helps
improve the generalization capability of the model by simulating variations in damage
patterns and conditions that may not be exhibited by the original dataset. The following
five data augmentation techniques have been applied to expand and diversify the training
dataset: vertical flip, horizontal flip, random rotation, zoom in, and random crop and resize.
The vertical flip technique flips the images along the vertical axis, creating mirror images of
the original data. It is particularly useful in simulating different orientations of damage
features, thereby helping the model to generalize across vertically varied fracture surfaces.
The horizontal flip introduces horizontal variations in the dataset. This is crucial for training
the model to recognize damage patterns that may appear differently depending on the
direction of loading or observation, which is essential for accurate classification of damage
modes under various loading conditions. The random rotation augmentation rotates the
images by arbitrary angles, enhancing the model’s ability to recognize damaged features
from different perspectives. This technique is vital for scenarios where fracture surfaces
may be viewed at varying angles, ensuring that the model can accurately identify and
classify damage regardless of the sample’s orientation during SEM imaging. The zoom-in
technique magnifies specific regions of the image, emphasizing fine details of the damage
patterns. This augmentation is particularly beneficial for microscopic damage assessment



Materials 2024, 17, 5265 9 of 16

as it allows the model to focus on intricate microstructural features of both fiber and matrix
damage modes. The random crop and resize augmentation randomly crops a region from
the original SEM image and resizes it to the original dimensions, introducing variations
in scale and perspective. It effectively simulates different magnifications and viewpoints,
enabling the model to robustly identify damage features that may appear at varying scales
due to changes in SEM magnification settings. A total of 1110 SEM images were obtained
after data augmentation, which were then resized to a pixel size of 224 × 224, which is the
input size for all the computationally efficient DTL models proposed in this study. The
dataset was then split into 80% for training and 20% for testing. Within the 80% training
data, a 5-fold cross-validation strategy was employed, where the data were further divided
into five sets. Among the five training sets, four were used as training sets and one as a
validation set during each fold. This approach ensured that the model was exposed to all
data during training while also minimizing the risk of overfitting to any particular subset
of the data. The training results for the 5-fold cross-validation are presented in Section 4,
while the test data are used as unseen data to validate the proposed model in Section 5.

4. Model Training Results

The computationally efficient DTL models presented in Section 2.1 were trained using
the prepared dataset. Moreover, to maintain consistency among the proposed pre-trained
models, the layer weights for all models were frozen, and the three additional layers were
added to adapt the models for microscopic damage assessment. The additional layers
include a global average pooling (GAP) layer, a dense layer, and a classification layer. The
GAP layer averages the spatial dimensions of the feature maps extracted from DTL models,
effectively reducing the data dimensionality while retaining the essential information. This
operation helps in minimizing overfitting and enables a smoother transition from feature
extraction to classification. Following the GAP layer, a fully connected dense layer with 1028
neurons is added, which processes the compact feature representation into a dense vector,
enabling the model to learn complex patterns and relationships specific to the different
microscopic damage modes in FRP composites. Various configurations with different
neuron counts were tested, but the dense layer with 1028 neurons consistently yielded
the best performance. Therefore, it has been selected for the final model configuration of
DTL models in this study. Finally, the final classification layer is added with five neurons
using a SoftMax activation to output the probability distribution across the five predefined
damage modes. The classification layer converts the output of the dense layer into specific
damage modes, allowing for accurate and precise classification of microscopic damage
modes within the SEM dataset.

All four DTL models (DenseNet121, NasNet, EfficientNet, and MobileNet) were
trained using a consistent set of hyperparameters to ensure a standardized evaluation of
their performance for microscopic damage assessment of FRPs. Each model was trained
for 40 epochs with a batch size of 32, which provides a sufficient number of iterations
for effective learning while mitigating the risk of overfitting. The Adam optimizer, with
a learning rate of 0.001, was employed due to its adaptive learning capabilities, which
allow for efficient convergence during training. The loss function utilized was sparse
categorical cross-entropy, suitable for multi-class classification problems where the objec-
tive was to accurately classify the different microscopic damage modes. To ensure robust
model evaluation and reduce bias, a 5-fold stratified cross-validation approach was im-
plemented, maintaining class balance across training and validation sets. This rigorous
training procedure was designed to check the generalization ability of the DTL models.

Figures 8 and 9 present a comprehensive comparison of the training and validation
results in terms of accuracy and computational time, respectively, of the four DTL models.
Figure 8 shows that EfficientNet achieved the highest training and validation accuracies
of 98.71% and 96.23%, respectively. This close alignment between training and validation
accuracies indicates the robustness of the EfficientNet model. The DenseNet121 model also
demonstrated a good training accuracy of 94.61%; however, the low validation accuracy
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of 83.80% indicates overfitting. The overfitting is further prominent in the MobileNet and
NasNet models. The increased overfitting in these models is potentially due to their reduced
model complexity. Figure 9 provides a comparative analysis of the computational resources
of each DTL model in terms of training and validation time. DenseNet121, despite achieving
good accuracy, exhibited the longest training duration, indicating substantial computational
resource requirements, which may limit its practical applicability in real-time microscopic
damage assessment scenarios. NasNet demonstrated significantly lower training time but
at the expense of accuracy, showing its limitations in capturing complex damage features
present in SEM images. EfficientNet demonstrated the most balanced metrics, providing
high classification accuracy with a moderate computational time. MobileNet showed the
lowest training and validation times but exhibited a noticeable trade-off in predicting
damage modes, making it unsuitable for applications demanding high accuracy of complex
microstructural damage modes in FRP composites. These findings emphasize the use of
the EfficientNet model for achieving an optimal balance between computational efficiency
and accuracy in predicting complex microstructural damage modes in FRP composites.
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5. Model Validation and Discussion

This section provides validation and discussion on the proposed DTL models based
on the unseen test dataset using multiple evaluation metrics such as precision (P), recall (R),
f1-score (F1), and confusion matrix (CM). A detailed description of these evaluation metrics
can be found in Ref. [2]. The evaluation of models on unseen data is useful in avoiding
overfitting the training data and determining the generalization ability of the model on
new data. The proposed DTL models showed testing accuracies of 86.94%, 63.96%, 97.75%,
and 81.53% for DenseNet121, NasNet, EfficientNet, and MobileNet, respectively. These
results again demonstrate that the EfficientNet model is well-suited for microscopic damage
assessment of FRPs, as it can effectively capture the damage-sensitive patterns from SEM
images. Further evaluation of the microscopic damage assessment of FRP composites is
made using the CMs shown in Figure 10. The CMs present the classification performance of
each DTL model, where the diagonal cells represent correct classifications (true positives for
damage modes) and off-diagonal cells indicate misclassifications (false positives and false
negatives). In Figure 10a, DenseNet121 shows good accuracy in classifying most damage
modes, with minor confusion between FB and FP, suggesting some overlap in feature rep-
resentation. The DenseNet model also confuses the brittle failure of the matrix with ductile
failure by 25%. Figure 10b for NasNet shows lower diagonal values, particularly for FB and
MBF. This indicates reduced classification efficiency and higher confusion across damage
modes, likely due to the limited feature extraction capabilities of NasNet for complex mi-
crostructural patterns in FRPs. Figure 10c demonstrates that the EfficientNet model exhibits
excellent performance, achieving near-perfect accuracy for all fiber-based damage modes
and 100% classification for matrix-based failures (MBF and MDF). This demonstrates the
robust feature extraction ability of EfficientNet by effectively differentiating between sensi-
tive variations in damage modes. Figure 10d shows that the MobileNet model can predict
the fiber-based damage modes with around 82% accuracy but struggles to differentiate
the matrix-based failure modes. Overall, the EfficientNet model demonstrated superior
and more consistent performance in accurately identifying both fiber- and matrix-based
microscopic damage modes, highlighting its potential for automated damage assessment in
FRP composites. Therefore, due to the effective performance of the proposed DTL models,
the developed models can be integrated into the material design process, allowing material
scientists to autonomously predict the five damage modes in FRPs. This capability would
enable more informed material selection and fabrication methods, ultimately enhancing
the design, durability, and performance of composite structures. However, the application
of the proposed approach is restricted to the material designing phase due to the use of
surface-level defects only. Therefore, it cannot be used directly for in-service FRP structures.
Nevertheless, if the training of these DTL models is extended to practical scenarios, it is
expected that they could also be applied for in-service damage monitoring and assessment,
providing a more comprehensive evaluation of FRP structures throughout their lifecycle.

To further strengthen the comprehensive evaluation of DTL performance, additional
assessment metrics such as P, R, and F1 were evaluated for each microscopic damage mode.
Table 1 showcases these metrics for DenseNet121, NasNet, EfficientNet, and MobileNet
models. The EfficientNet model consistently outperformed other models across all damage
modes, achieving the highest p values for FB, FP, and MBF with scores of 96.83%, 96.91%,
and 100.00%, respectively. Similarly, both brittle and ductile matrix failure were also identi-
fied with 100.00% P, R, and F1 values. This indicates a high proportion of correctly identified
positive cases relative to all predicted positives, highlighting the superior ability of the
EfficientNet model to accurately classify the microscopic damage modes. DenseNet121 per-
formed consistently well across most damage modes, especially MBF. However, the overall
values for P, R, and F1 were relatively lower compared to the EfficientNet model. NasNet
demonstrated the lowest performance, with P, R, and F1 values falling mostly below 70%.
This suggests that the reduced model complexity of NasNet hindered its ability to capture
complex microstructural features from SEM images. MobileNet achieved moderate perfor-
mance with P, R, and F1 values inconsistently fluctuating between 68.09 and 88.76%. This
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suggests that the MobileNet model is unable to generalize on the unseen test data. Overall,
these results signify that the pre-trained EfficientNet model delivers superior performance
in microscopic damage assessment of FRP composites compared to DenseNet121, NasNet,
and MobileNet, making it the most effective model for accurately detecting and classifying
complex damage features in SEM images with limited computational resources.
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Table 1. The performance comparison of the DTL models for damage assessment of FRP composites
using P, R, and F1 metrics.

Damage Model DTL Model P (%) R (%) F1 (%)

FB

DenseNet121 85.48 84.13 84.80

NasNet 62.75 50.79 56.14

EfficientNet 96.83 96.83 96.83

MobileNet 82.54 82.54 82.54
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Table 1. Cont.

Damage Model DTL Model P (%) R (%) F1 (%)

FP

DenseNet121 87.76 89.58 88.66

NasNet 66.98 73.96 70.30

EfficientNet 96.91 97.92 97.41

MobileNet 88.76 82.29 85.41

MMF

DenseNet121 86.84 84.62 85.71

NasNet 53.06 66.67 59.09

EfficientNet 100.00 97.44 98.70

MobileNet 68.09 82.05 74.42

MBF

DenseNet121 100.00 75.00 85.71

NasNet 100.00 25.00 40.00

EfficientNet 100.00 100.00 100.00

MobileNet 83.33 62.50 71.43

MDF

DenseNet121 83.33 93.75 88.24

NasNet 78.57 68.75 73.33

EfficientNet 100.00 100.00 100.00

MobileNet 76.47 81.25 78.79

6. Conclusions

This study proposed a DTL-based framework to classify microscopic damage modes
in FRP composites using SEM images. This investigation compared the performance of
four pre-trained DTL models, namely DenseNet121, NasNet, EfficientNet, and MobileNet,
with EfficientNet achieving the highest accuracy of 97.75% on the unseen test dataset.
DenseNet121 and MobileNet followed with accuracies of 86.94% and 81.53%, respectively,
while NasNet performed the lowest at 63.96%. By accurately identifying damage modes
such as FB, FP, MMF, MBF, and MDF, the models demonstrated their capability to automate
the damage classification process effectively. Furthermore, the EfficientNet model showed
100% accuracy in differentiating the brittle and ductile failure modes present in the matrix
material of FRPs, showing its suitability for material design applications. Therefore, the
EfficientNet model offers a practical tool for material scientists, allowing them to assess
damage autonomously during the material design phase, which can aid in the optimization
of material selection and fabrication processes. The integration of EfficientNet in the
material design would reduce the labor-intensive nature of manual assessments of SEM
images and enhance the consistency of damage classification. Thus, the autonomous
evaluation of the SEM images could contribute to improving the durability and performance
of FRP composites in critical industries, such as aerospace and automotive industries.
However, a key limitation of this work is that it focuses exclusively on surface-level
damage, as SEM primarily captures surface defects. To extend the applicability of the
proposed approach, integrating other non-destructive evaluation techniques, such as µCT
or acoustic emission, could enable the detection of internal damage in FRPs, providing a
more comprehensive damage assessment framework. Moreover, this study focused on five
failure modes in FRPs; future work will incorporate other critical damage scenarios such as
delamination, fiber–matrix debonding, and fiber bridging. Expanding the model to include
these will create a more comprehensive framework for autonomous damage assessment,
enhancing the applicability of the approach across a wider range of damage scenarios in
FRP composites.
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