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Abstract: Diabetes mellitus (DM) is currently regarded as a global public health crisis for which
lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility,
and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood
glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance.
If left untreated or when poorly controlled, DM increases the risk of vascular complications such
as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or
life-threatening. Plant-based foods represent a promising natural approach for the management of
T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies
have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and
condiments) in the prevention and management of DM. Unlike conventional medications, such
natural products are widely accessible, affordable, and generally free from adverse effects. Integrating
plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but
also supports weight management in obese individuals and has broad health benefits. In this review,
we provide an overview of the pathogenesis and current therapeutic management of DM, with a
particular focus on the promising potential of plant-based foods.
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1. Introduction

Diabetes mellitus (DM) is a multifactorial metabolic disorder that has emerged as
one of the ten leading causes of death worldwide [1]. Obesity and insulin resistance
or insulin deficiency are the major players in the development of DM. If not properly
managed, DM may lead to severe late-stage complications that include cerebrovascular,
peripheral vascular, and ischemic heart disease, kidney failure, and retinal damage [2,3].
Four different main types of diabetes are generally recognized; Type 1 diabetes (T1DM),
Type 2 diabetes (T2DM), gestational diabetes (GDM), and monogenic diabetes, the most
common of which is maturity-onset diabetes of the young (MODY). T1DM and T2DM are
the most familiar as they affect a very considerably larger number of patients than other
types [4]. T1DM, also previously called insulin-dependent DM, is associated with defective
insulin secretion as a result of the destruction of the pancreatic β-cells and is predominant
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in children and teenagers [5]. T2DM, which affects about 90% of all cases, was previously
known as non-insulin-dependent DM. This primarily affects individuals over 40 years of
age, although this is being countered increasingly in the young due to increased childhood
obesity. This type is characterized by pancreatic β-cell failure, causing insulin depletion,
as well as insulin resistance in organs. Individuals with T2DM tend to be obese and often
have a history of gestational diabetes, polycystic ovarian syndrome, cardiovascular disease
(CVD), and dyslipidemia [5–8]. GDM is associated with pancreatic β-cell dysfunction and
chronic insulin resistance which can occur during pregnancy. MODY is a rare genetic type
of DM that commonly emerges during adolescence or early adulthood [4].

It has been estimated that around 537 million individuals have DM worldwide and
that this may rise to 783 million by 2040 [9]. Up to 95% of all diabetic individuals are
reported to have obesity-related type 2 diabetes (T2DM). A logistic regression model
estimated that in 110 developing countries, based on United Nations (UN) population
data, there were 366 million people with diabetes, and this number is expected to rise to
552 million by 2030 [10–12]. In developing nations such as India, Nepal, Bhutan, China,
Pakistan, and Indonesia, the occurrence of T2DM has dramatically increased in recent
years. In fact, studies have reported that the number of diabetes patients in low- and
middle-income countries will drastically increase over the next 19 years [12]. A recent
study has also reported that in Bangladesh alone, 10–15% of the adult population has
some form of prediabetes or diabetes [13–15]. In these countries, T2DM mostly occurs in
individuals between 40 and 59 years of age [16], who often have a history of childhood
obesity [17]. The common symptoms of T2DM that often precipitate diagnosis include
lethargy, irritation, blurry vision, confusion, polydipsia, polyuria, polyphagia, anorexia,
vomiting, dehydration, sore muscles, numb feet or hands, foot infections, delayed wound
healing, kidney failure, cardiovascular diseases, coma, and, in extreme cases, death [18–20].

While insulin is the only therapy for T1DM, patients with T2DM rely primarily on one
or more of a range of oral hypoglycemic drugs that include α–glucosidase inhibitors, met-
formin, sulfonylureas, meglitinides, thiazolidinediones, amylin analogs, SGLT-2 inhibitors,
dipeptidyl peptidase-4 (DPP-4) inhibitors, GLP-1 mimetics, and incretin receptor dual ago-
nists. In cases where these medicines are not effective, insulin is then administered [21,22].
Hypoglycemia has been documented as one of the most severe adverse side effects of
antidiabetic treatments. Nausea, bloating, gas formation, gastrointestinal disorders, and
urinary and respiratory tract infections are other commonly reported side effects [23]. The
use of alternative approaches to better manage DM and its late-stage complications is
becoming increasingly popular in many developing countries such as India, Bangladesh,
Nepal, Pakistan, Indonesia, and China. Integrating edible plants with reputed antihyper-
glycemic activity, such as bitter melon, moringa, clove, turmeric, neem, black seeds, or
cinnamon, to name a few, in the daily diet is an attractive option that may present fewer
side effects than conventional drugs [12,24–27]. In this review, we discuss the potential of
plant-based dietary habits in the management of T2DM and its complications, highlighting
the pharmacological effects and phytoconstituents relevant to DM of one hundred plant
species. The main objective of this review is to provide the basis for future research on the
antidiabetic potential of the selected plants.

2. Pathophysiology of Diabetes Mellitus

The pathogenesis of T2DM has been linked to underlying genetic factors, as well as
obesity caused by a sedentary lifestyle and poor dietary choices. T2DM is characterized
by hyperglycemia linked to hyperlipidemia, persistent inflammation, oxidative stress,
mitochondrial dysfunction, and gut dysbiosis, ultimately leading to β-cell apoptosis and
insulin resistance (IR) (Figure 1) [28–32]. As T2DM progresses, the production of advanced
glycation end products (AGEs) leads to build-up in the kidney, retina, and blood vessels,
which triggers micro- and macrovascular complications [33,34].
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Figure 1. Mechanistic overview of T2DM pathogenesis. Obesity, driven by overconsumption, a 
sedentary lifestyle, and poor diet, results in increased fat accumulation and intracellular 
diacylglycerol (DAG) levels, which activate Protein Kinase C (PKC) signaling. This leads to the 
phosphorylation of Insulin Receptor Substrate 1 (IRS-1) on serine residues, impairing normal insulin 
signaling pathways, reducing glucose uptake, and increasing insulin resistance. Insulin resistance, 
in turn, promotes β-cell dysfunction, contributing to the progression of type 2 diabetes mellitus 
(T2DM). Genetic predisposition further influences the disease’s development. Key processes 
downstream include gut dysbiosis, reactive oxygen species (ROS) production, mitochondrial 
dysfunction, inflammation, and hyperlipidemia. Increase (↑) and decrease (↓). 
3. Complications of Diabetes Mellitus 

Persistent hyperglycemia, hyperlipidemia, high levels of ROS, and pro-inflammatory 
mediators in the bloodstream increase the risk of macrovascular complications such as 
coronary heart disease (CHD), stroke, peripheral artery disease, cardiomyopathy, arryth-
mia, cerebrovascular disease, and atherosclerosis [73,74]. Individuals with DM and hyper-
tension are at a higher risk of developing cerebrovascular disease, peripheral vascular dis-
ease, or early coronary artery disease (CAD) [75–79]. Similarly, obesity is considered to be 
a key risk factor for heart failure (HF), CHD, and premature mortality [80–82]. Hormones 
and other circulatory factors including adipokines, growth factors, and chemokines have 
been reported to aggravate CVD in T2DM patients [83,84]. 

Diabetic patients may also suffer from various microvascular complications includ-
ing neuropathy, nephropathy, retinopathy, foot damage, Alzheimer’s disease, and hear-
ing impairment [85]. Diabetic peripheral neuropathy, characterized by pain, ulcers, sleep 
deprivation, and depression, affects about half of diabetic patients worldwide [85–89]. 

Figure 1. Mechanistic overview of T2DM pathogenesis. Obesity, driven by overconsumption, a
sedentary lifestyle, and poor diet, results in increased fat accumulation and intracellular diacylglycerol
(DAG) levels, which activate Protein Kinase C (PKC) signaling. This leads to the phosphorylation of
Insulin Receptor Substrate 1 (IRS-1) on serine residues, impairing normal insulin signaling pathways,
reducing glucose uptake, and increasing insulin resistance. Insulin resistance, in turn, promotes
β-cell dysfunction, contributing to the progression of type 2 diabetes mellitus (T2DM). Genetic
predisposition further influences the disease’s development. Key processes downstream include gut
dysbiosis, reactive oxygen species (ROS) production, mitochondrial dysfunction, inflammation, and
hyperlipidemia. Increase (↑) and decrease (↓).

Obese individuals tend to consume more nutrients than needed, leading to an excess of
body fat and glycogen. Obesity plays a large contribution to the development of T2DM [3].
One study reported that around 85% of T2DM patients are obese [35]. Moreover, the lack
of regular physical activity in T2DM patients has been linked to low circulating levels of
irisin, an exercise-modulated myokine that improves glucose tolerance through physical
activity [36–40]. In some cases, the term “diabesity” is used to describe the close link
between T2DM and obesity [41]. Overnutrition also causes oxidative stress and inactivates
glucose transporter-4 (GLUT4) translocation, reducing glucose uptake in cells [42]. Obese
individuals are more likely to develop IR as a result of a compensatory rise in insulin
production (hyperinsulinemia). IR involves impaired insulin receptor signaling in tissues
such as adipose tissues, which leads to a dysregulation of insulin secretion and storage. This
occurs until the pancreatic β-cells fail to adequately fulfill the demand for insulin. Hence,
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glucose cannot enter cells of insulin-sensitive peripheral tissues and accumulates in the
blood [43–48]. In the context of diabetes mellitus (DM), chronic AMPK inhibition becomes a
vicious cycle. Nutrient excess, particularly from high-fat or high-glucose diets, can impede
the AMPK signaling pathway. This leads to chronic inflammation, oxidative stress, and
hormonal imbalances. This impaired AMPK function further worsens insulin resistance (IR)
and β-cell dysfunction, key contributors to DM. Symptoms such as polyphagia (increased
hunger) then arise, promoting weight gain and fueling the progression of DM [49,50].
Hyperinsulinemia and insulin resistance can also be observed in individuals where the
normal function of insulin receptors or the insulin-degrading enzyme is impaired due to
genetic mutations [51–53].

The accumulation of lipids such as triacylglycerides (TAG), diacylglycerides (DAG),
ceramides, acylcarnitine, and acyl-CoAs in obese individuals also increases the risk of
IR [54–58]. This develops via increasing intracellular DAG levels and PKC signaling, which
in turn leads to the phosphorylation of IRS-1 on serine residues, disrupting normal insulin
signaling pathways. This disruption impairs the ability of insulin to stimulate glucose
uptake and metabolism in tissues such as muscle, liver, and adipose tissue. Over time, IR
leads to β-cell dysfunction and eventually T2DM (Figure 1) [58,59]. IR in T2DM patients has
also been linked to a rise in pro-inflammatory markers such as interleukin-6 (IL-6), tumor
necrosis factor-alpha (TNF-α), and C-reactive protein in the bloodstream [39,60,61]. Obesity
also affects mitochondria through the generation of NADH and FADH2, which disrupts
the electron transport chain (ETC) and increases ROS production and AGEs. ROS induce
oxidative stress and hamper the function of intracellular proteins and enzymes, promoting
fatty acids to form toxic intracellular lipids, reducing mitochondrial energy production, and
increasing IR and β-cell damage. The increased gluconeogenesis in the liver also increases
the risk of hyperglycemia and subsequent organ damage [62–66]. This metabolic imbalance
alters the structure and composition of the extracellular matrix, leading to endothelial
dysfunction and increasing the risk of atherosclerosis [67]. Finally, gut dysbiosis may also
influence IR by modulating glucose metabolism. Recent studies have reported that specific
changes in the gut microbiota composition can either exacerbate or ameliorate insulin
sensitivity and glucose tolerance, highlighting its crucial role in DM [68,69].

Unsurprisingly, a healthy diet, regular physical activity, appropriate weight loss, and
even occasional fasting can ameliorate IR, β-cell function, and insulin secretory capacity,
reducing the risk of T2DM and its associated complications [70–72].

3. Complications of Diabetes Mellitus

Persistent hyperglycemia, hyperlipidemia, high levels of ROS, and pro-inflammatory
mediators in the bloodstream increase the risk of macrovascular complications such as
coronary heart disease (CHD), stroke, peripheral artery disease, cardiomyopathy, arrythmia,
cerebrovascular disease, and atherosclerosis [73,74]. Individuals with DM and hypertension
are at a higher risk of developing cerebrovascular disease, peripheral vascular disease, or
early coronary artery disease (CAD) [75–79]. Similarly, obesity is considered to be a key
risk factor for heart failure (HF), CHD, and premature mortality [80–82]. Hormones and
other circulatory factors including adipokines, growth factors, and chemokines have been
reported to aggravate CVD in T2DM patients [83,84].

Diabetic patients may also suffer from various microvascular complications including
neuropathy, nephropathy, retinopathy, foot damage, Alzheimer’s disease, and hearing
impairment [85]. Diabetic peripheral neuropathy, characterized by pain, ulcers, sleep
deprivation, and depression, affects about half of diabetic patients worldwide [85–89].
Factors such as genetic predisposition, age, food intake, smoking, alcohol, and other
unhealthy lifestyle habits have also been implicated in the progression of diabetic peripheral
neuropathy [90]. Uncontrolled blood sugar levels damage the nerves, diminishing their
ability to send signals and weakening the lining of capillaries that supply nutrients and
oxygen to neurons [91,92].
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T2DM has been linked to an increased risk of developing Alzheimer’s disease due to
the presence of overlapping neurodegenerative markers in both diseases such as oxidative
stress, inflammation, and mitochondrial dysfunction [93]. On the other hand, diabetic
nephropathy, characterized by microalbuminuria, elevated blood glucose, high hemoglobin
A1C (HbA1c), and hypertension, is prevalent in nearly half of T2DM individuals [94–97].
Diabetic retinopathy is another severe complication of T2DM which occurs when excess
blood glucose blocks the capillaries linked with the retina. This increases the risk of eye
disorders such as diabetic cataracts, macular edema, and dry eye, and may even result in
blindness (Figure 2) [98–101].
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4. Current Approaches for the Management of T2DM

A balanced diet, regular physical exercise, and the avoidance of high-calorie foods are
the first approaches recommended for the management of T2DM and its complications.
This is usually supplemented by the use of antidiabetic medicines to achieve optimal
glycemic control and provide long-term relief from DM [99,100]. Current oral antidia-
betic drugs include sulfonylureas, biguanides, thiazolidinediones, α-glucosidase inhibitors,
SGLT2 inhibitors, meglitinides, DPP-IV inhibitors, and amylin analogs. Sulfonylureas bind
to sulfonylurea receptors (SURs) and act by blocking ATP-sensitive K+-channels in the
pancreatic β-cell plasma membrane, leading to the inhibition of K+ efflux, membrane depo-
larization, the opening of voltage-gated Ca2+ channels, an influx of Ca2+, and the triggering
of insulin secretion by exocytosis [101–103]. However, sulphonylureas present adverse side
effects such as hypoglycemia, increased risk of CVD, and nausea [104–106]. Meglitinides
work in similar fashion but affect a slightly different bonding site on SURs [107]. At high
doses, these agents may cause severe hypoglycemia, upper respiratory tract infections,
diarrhea, and headaches [107,108]. Biguanides inhibit the mitochondrial respiratory chain
in the liver, activating the AMPK pathway, enhancing insulin sensitivity, suppressing
gluconeogenesis, and reducing both hepatic glucose output as well as glucose entry into
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the circulation from the intestines [109–112]. Although biguanides are very popular an-
tidiabetic drugs, they still cause undesirable effects such as diarrhea, lactic acidosis, and
hemolytic anemia [113,114]. Thiazolidinediones (TZDs) act by activating the gamma iso-
form of the peroxisome proliferator-activated receptor (PPAR-γ), increasing glucose and
lipid metabolism, providing energy homeostasis, and promoting GLUT4 translocation [115].
Adverse effects associated with TZDs include weight gain, hepatotoxicity, and even bladder
cancer [116]. Inhibitors of α-glucosidase decrease the intestinal activity of this enzyme,
delaying carbohydrate digestion and absorption and improving hepatic lipogenesis, triglyc-
eride levels, and postprandial glucose [117]. However, some TZDs have been discontinued
due to an increased risk of cardiovascular diseases. Alongside that, their use may cause
hepatitis, increased flatulence, and other gastrointestinal complications [118]. Sodium-
glucose cotransporter 2 (SGLT2) inhibitors act to promote urinary glucose excretion and not
only treat DM but also reduce inflammation, Na+/H+-exchange, and hyperuricemia. They
elevate lysosomal degradation, autophagy, and erythropoietin levels, while also preventing
ischemia [119]. Although SGLT-2 drugs are popular for alleviating diabetes, they still carry
the risk of side effects, including volume depletion, increased urination, acute kidney injury,
and genitourinary infections [120]. Dipeptidyl-peptidase IV (DPP-4) inhibitors increase
the levels of incretin hormones, glucagon-like peptide-1 (GLP-1), and glucose-dependent
insulinotropic peptide (GIP). Their side effects include urinary and upper respiratory tract
infections as well as headaches [121].

In many cases, oral drugs alone are not enough to control hyperglycemia and injectable
therapy is required to successfully manage DM. The most common injectable therapy is
synthetic insulin. Insulin works by binding to the insulin receptor, activating a cascade of
intracellular signaling events [122,123]. Although insulin is very effective in DM, it may lead
to severe hypoglycemia, dizziness, sweating, palpitations, headache, blurred vision, and
abdominal pain [123]. Amylin analogs, often used in combination with other antidiabetic
drugs, inhibit glucagon secretion, delay gastric emptying time, and improve postprandial
glycemia [124,125]. Their adverse effects include severe hypoglycemia, nausea, and weight
loss [124–126]. GLP-1 and GIP analogs are also used as injectable therapies for DM. GLP-1
drugs stimulate insulin secretion and inhibit glucagon release from pancreatic α-cells,
suppress appetite, and promote extra pancreatic activity by delaying gastric emptying.
Scientists are also assuming that there might be a connection between the progression
of pancreatitis and C-cell tumors; however, there is still a lack of studies related to these
conditions [127–130]. GIP and GLP-1 dual agonists, such as Mounjaro, enable insulin
secretion through activation of β-cell GIP receptors and appear to greatly enhance the
satiety and weight loss encountered with GLP-1R activation alone, aiding obesity [129,130].
The most common side effects of these injectables are severe nausea, vomiting, and body
disfiguration due to excessive weight loss [130]. An overview of the current oral and
injectable antidiabetic drugs, their pharmacological actions, and adverse side effects are
presented in Figure 3.
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5. Plant-Based Diets and Their Role in the Prevention and Management of DM

A lifelong treatment with conventional antidiabetic drugs presents limitations in terms
of side effects and costs. In this context, plants with antidiabetic activity have become an
alternative treatment option for many patients as they are generally more accessible, less
costly, and present fewer adverse side effects than manufactured drugs. They are also
gaining popularity in scientific research as an attractive source for the discovery of new
drug templates [131,132]. Numerous epidemiological studies have highlighted the impor-
tance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the
prevention and management of diseases, including DM. Plant-based foods and their benefi-
cial constituents are often absent in the typical Western diet that predominantly features
processed foods, red meat, and fast-acting carbohydrates, which contribute to the develop-
ment and progression of T2DM. Dietary fiber-rich herbs and fruits, in particular, have been
reported to regulate hyperglycemia and mitigate diabetic complications (Table 1) [133].
Understanding how these plant-derived constituents affect the pathophysiology of T2DM
can provide a useful strategy to better prevent this disease and its complications (Figure 4).
It can also reduce reliance on synthetic antidiabetic drugs [134–136].
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Figure 4. Antidiabetic effects of dietary fiber-rich plants and fruits on various organs and tissues. Di-
etary fiber-rich herbs and fruits exhibit antihyperglycemic properties by activating several molecular
pathways. They may contribute to the regeneration of pancreatic β-cells; increase insulin secretion;
enhance insulin sensitivity; increase glucose uptake in tissues; enhance GLUT-4 translocation; in-
crease glycolysis in the liver; activate the AMPK, PPAR-γ, Akt/Pkb, or PI3K pathways in adipose
tissue; improve glucokinase activity; reduce insulin resistance; delay intestinal glucose absorption;
lower fasting blood sugar and postprandial glucose; reduce glucagon secretion and oxidative stress;
inhibit α-amylase, α-glucosidase, DPP-4, and glucose-6-phosphatase enzymatic activity; decrease
gluconeogenesis; suppress TNF-α and IL-6 release; and block ATP-sensitive K+ channels in the
pancreas and muscle to regulate blood glucose levels. Increase (↑) and decrease (↓).

For example, aloe vera, neem, holy basil, and betel leaf possess anti-inflammatory
and hypoglycemic properties that help regulate blood glucose and body weight. Citrus
fruits (e.g., lemon, orange, and pomelo), along with mango, apple, pineapple, and berries
(e.g., strawberry, blueberry, blackberry, and mulberry), are high in fiber and antioxidants.
They promote satiety and reduce oxidative stress. Stone fruits such as peach, guava,
avocado, kiwi, lychee, grapes, jackfruit, dragon fruit, passion fruit, star fruit, pomegranate,
papaya, fig, watermelon, plum, and java plum, as well as dates and apricots, contribute to
improving metabolic health. Amla and olives contain unique phytochemicals that enhance
insulin sensitivity. Tamarind, Bengal currant, cocoa, coconut, cashew nut, almond, walnut,
and seeds such as chia, white sesame, black seeds, cumin, fenugreek, mustard, coriander,
and nutmeg, provide essential fatty acids and micronutrients that are crucial for metabolic
function [137–495]. Fiber-rich grains such as corn, oats, and quinoa, as well as legumes
including chickpea, pea, kidney bean, mung bean, and soya bean, help maintain steady
blood glucose levels and manage obesity. Vegetables such as bitter gourd, snake gourd,
ridge gourd, bottle gourd, sweet potato, moringa, okra, taro, asparagus, eggplant, beetroot,
pumpkin, cabbage, broccoli, radish, carrot, tomato, cucumber, lettuce, spinach, centella
leaves, and mushrooms are excellent for their low-calorie, high-nutrient profiles. Herbs
and spices such as mint, parsley, celery, rosemary, oregano, curry leaves, bay leaves, clove,
saffron, cinnamon, red pepper, turmeric, ginger, and garlic enhance the metabolic rate and
have antidiabetic effects. Onions, tea, coffee, China rose, and vinca rosea also contribute
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to improving glucose metabolism and controlling body weight. The incorporation of
these foods into a balanced diet can support the management of T2DM and obesity by
promoting better glycemic control, enhancing insulin sensitivity, and helping with weight
loss (Table 2) [410–612].

6. Plant-Based Diets, Edible Plants, Dietary Adjuncts, and Their Phytochemicals for the
Management of DM and Prevention of DM Complications

Medicinal plant-based diets, rich in bioactive compounds, have gained attention for
their potential in preventing and managing chronic diseases, including diabetes. Phyto-
chemicals such as flavonoids, anthocyanins, carotenoids, saponins, tannins, and polyphe-
nols, found in a variety of plant-based foods such as fruits, vegetables, legumes, and whole
grains, play an essential role in managing diabetes. These compounds help regulate blood
sugar through a possible multitude of actions, including enhancing insulin sensitivity
or secretion, inhibiting enzymes that break down carbohydrates, and reducing glucose
production in the liver. They also improve gut health, trigger the release of glucoregulatory
or satiating gut hormones, reduce inflammation, and combat oxidative stress, all of which
contribute to better overall metabolic function and diabetes prevention (Figure 5) [137].
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Figure 5. Antidiabetic effects of phytochemicals in diabetes management. Phytochemicals, including
flavonoids, anthocyanins, carotenoids, saponins, tannins, and polyphenols, are abundant in plant-
based foods such as fruits, vegetables, legumes, and whole grains. These compounds play a critical
role in diabetes management by (i) enhancing beta-cell function, (ii) improving insulin sensitivity,
(iii) inhibiting carbohydrate-digesting enzymes such as α-amylase and α-glucosidase, (iv) reducing
glucose production in the liver, (v) improving gut health and promoting beneficial microbiota, and
(vi) reducing inflammation and oxidative stress. Such actions contribute to improved glycemic
control, thereby limiting the impact of diabetes and its complications. Increase (↑) and decrease (↓).
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There are numerous studies conducted on medicinal plant-based diets that report
modulation of antidiabetic parameters. For example, okra is rich in flavonoids and it has
the ability to enhance GLUT-4 translocation and inhibit carbohydrate digestive enzymes
to slow the rate that glucose appears in the blood stream [138]. Pineapple, on the other
hand, is rich in polyphenols that exert anti-inflammatory effects through the reduction
of ROS and oxidative stress [176]. Furthermore, tea is high in tannin, which may also
contribute to its insulin sensitizing and anti-inflammatory actions [228]. Similarly, oats,
which are a common staple food and abundant in saponin, have the ability to improve
the lipid profile and insulin resistance [201]. Saffron is also enriched with beneficial phyto-
chemicals such as flavonoids and carotenoids, which contribute to its potent antidiabetic
actions such as the reduction of cholesterol, inflammatory cytokines, and mitochondrial
dysfunction [302,314,315]. Polyphenols, found in fruits such as apples and grapes, can
manage diabetes by activating the AMPK pathway to improve insulin sensitivity, inhibiting
α-amylase and α-glucosidase to slow carbohydrate digestion, as well as by enhancing the
PI3K/Akt pathway for enhanced glucose uptake [396,602]. Additionally, anthocyanins are
common antidiabetic phytochemicals present in berries and purple diets that can help to
regulate blood sugar by boosting insulin sensitivity via the PI3K/Akt pathway, protect
β-cells through the Nrf2 antioxidant pathway, and inhibit carbohydrate-digesting enzymes
to prevent post-meal glucose spikes [345,501,512]. Accordingly, phytochemicals present in
plant-based diets can provide significant benefits in diabetes management by enhancing
insulin sensitivity, reducing oxidative stress, and regulating blood sugar levels through
modulating numerous antidiabetic actions, making them a promising natural adjunct to
traditional therapies for improving metabolic health. A pharmacological summary of the
actions of widely used medicinal plant-based diets is illustrated in Figure 5.

1. Abelmoschus esculentus L. (Okra)

Abelmoschus esculentus L. (Malvaceae), known as okra, is a nutritious vegetable that is
also used as a remedy for chronic kidney disease, T2DM, and cardiovascular and hyperten-
sive diseases [137]. The highly nutritious okra fruit contains oxalic acid, pectin, flavonoids,
D-galactose, L-rhamnose, and D-galacturonic acid, which are reported to inhibit α-amylase
and α-glucosidase enzymes and increase GLUT-4 translocation [138,139].

2. Actinidia chinensis (Kiwi)

Actinidia chinensis or kiwi (Actinidiaceae) is a beneficial fruit for dyspepsia, vomiting,
loss of appetite, and diabetes [140]. Kiwi lowers cholesterol, LDL, fasting plasma glucose,
and postprandial glucose levels. It has also been reported to reduce body weight and inhibit
the release of pro-inflammatory cytokines such as interleukin-1(IL-1) and IL-6 in T2DM
patients [141]. Kiwi also regulates superoxide dismutase (SOD) and glutathione levels.
It inhibits the activity of alanine aminotransferase (ALT) and aspartate aminotransferase
(AST), two enzymes associated with insulin resistance and metabolic syndrome. Kiwi
also improves serum microRNA-424, nuclear factor erythroid 2–related factor 2 (Nrf2),
and Kelch-like ECH-associated protein 1 (Keap1), and the dysregulation of these markers
may exacerbate oxidative stress, inflammation, and disease progression [142]. Kiwi is
rich in triterpenoids, polyphenols, amino acids, and minerals that may exert antidiabetic
activity owing to hypolipidemic, anti-inflammatory, antioxidant, and antihyperglycemic
properties [143].

3. Aegle marmelos (Stone apple)

Aegle marmelos, also called stone apple/golden apple/bael, is a plant from the Ru-
taceae family traditionally used for inflammation, asthma, hyperglycemia, colitis, flatu-
lence, dysentery, fever, pain, and hepatitis and fungal infections [144]. Recent studies have
indicated that it improves insulin production, inhibits glucose absorption and α-amylase ac-
tivity, and lowers blood glucose levels [145]. Some of its phytochemicals, namely p-cymene,
oleic acid, linolenic acid, myristic acid, and retinoic acid, have antidiabetic, cardioprotective,
antioxidant, and anti-inflammatory properties [146].
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4. Agaricus bisporus (Mushroom)

Agaricus bisporus (Agaricaceae) is familiarly known as the button mushroom. It is
a valuable ethnomedicine for diabetes, coughs, influenza, asthma, cancer, and hepatic
disorders [147,148]. Mushrooms have numerous health benefits, with antioxidant, immuno-
boosting, anticholesterolemic, antitumor, and antibacterial properties. They boost natural
killer cells to fight infections and tumors. The presence of lectins, β-glucans, polyphenols,
p-hydroxybenzoic acid, protocatechuic acid, agllic acid, cinnamic acid, p-coumaric acid,
ferulic acid, chlorogenic acid, and catechin in mushrooms improves hyperglycemia by
regulating insulin and glucagon secretion [149–151].

5. Allium cepa (Onion)

Allium cepa (Amaryllidaceae) or onion has been used as a treatment for wounds, scars,
keloids, bee stings, dysmenorrhea, vertigo, fainting, migraine, bruises, earache, jaundice,
pimples, and diabetes [152]. Onion significantly decreases α-glucosidase activity and
oxidative stress, boosts insulin secretion, and protects pancreatic β-cells [153]. Onion has
numerous health benefits beyond its antidiabetic properties, as it also boasts antioxidant,
analgesic, antimicrobial, anti-inflammatory, and immune-boosting activity. The presence of
quercetin, apigenin, rutin, myricetin, kaempferol, catechin, resveratrol, and anthocyanins
may contribute to its glucose- and cholesterol-lowering effects [154–156].

6. Allium sativum L. (Garlic)

Allium sativum L. (Amaryllidaceae) or garlic is a popular folk medicine for flu, hyper-
tension, high cholesterol, cancer, cardiovascular disease, diarrhea, preeclampsia, arthritis,
diabetes, and kidney stones [157]. Garlic lowers plasma glucose levels, enhances insulin
production and insulin secretion, improves glucose tolerance and insulin sensitivity, and
increases GLUT4 expression [158,159]. Garlic is rich in organosulfur phytoconstituents such
as ajoene, cysteine, and allicin, as well as β-resorcylic acid, gallic acid, rutin, quercetin, and
protocatechuic acid, which exhibit antioxidant, renoprotective, and antihyperglycemic ef-
fects. Allicin and quercetin play crucial roles in enhancing insulin sensitivity and improving
glucose uptake [160–162].

7. Aloe barbadensis Mill. (Aloe vera)

Aloe barbadensis Mill. (Asphodelaceae) has a long history as an ethnomedicine for
wounds, constipation, skin diseases, colic, worm infestations, hypertension, and dia-
betes [163,164]. Aloe vera improves insulin resistance, body weight, and prediabetic
conditions via the inhibition of fructosamine, carbonyl protein, and the formation of
AGEs such as Nε-(carboxymethyl) lysine (CML). It also has α-amylase and α-glucosidase
inhibitory activity [165,166]. It also reduces fasting and postprandial blood glucose, triglyc-
erides, and total cholesterol levels. The antidiabetic properties of aloe vera have been
attributed to the presence of flavonoids, arginine, and phenolic acids [164,166–168].

8. Anacardium occidentale L. (Cashew nuts)

Anacardium occidentale L. (Anacardiaceae), also called cashew nut, has medicinal value
in alleviating fevers, aches, pains, diarrhea, diabetes, skin irritation, and arthritis [169].
Cashew nut is reported to decrease hepatic gluconeogenesis, a process in the liver that
produces glucose. This helps lower blood sugar levels [170]. Studies suggest that specific
amino acids (e.g., arginine and isoleucine) and fatty acids (e.g., arachidic acid) found in
cashew nuts, along with other compounds such as cyanidin and peonidin, may play a role
in the activity of cashew nuts by enhancing insulin sensitivity and reducing oxidative stress
and blood glucose [171,173]. Anacardic acids, also present in cashew nuts, may have a
potential role in mitigating diabetic complications as they possess anti-cytotoxic (protecting
cells), antimicrobial, and antibacterial effects. [172].
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9. Ananas comosus (Pineapple)

Ananas comosus (Bromeliaceae), also known as pineapple, is traditionally used as
a remedy for pain, skin diseases, edema, wound, indigestion, diabetes, and blood clot-
ting [173–175]. Pineapple leaves, peels, and pulp can lower blood sugar and glycated
albumin levels, reduce body weight, increase insulin secretion, and increase high-density
lipoprotein (HDL) cholesterol levels by inhibiting HMG-CoA reductase and activating
lipoprotein lipase (LPL) [176–178]. Bromelain, one of the phytoconstituents of pineapple,
has anti-inflammatory, hypoglycemic, anticoagulant, and antioxidant activities [179].

10. Apium graveolens L. (Celery)

Apium graveolens L. (Umbelliferrae) or celery is useful for arthritis, spleen dysfunction,
diabetes, sleep disturbances, and CNS disorders [180]. This food source helps maintain
healthy blood sugar levels by enhancing insulin sensitivity and promoting the translo-
cation of GLUT4 receptors to the cell surface, followed by enhancing glucose uptake
into muscle. This, in turn, can improve mitochondrial function and reduce inflamma-
tion [181–183]. Celery is rich in quercetin, thymoquinone, coumaric acid, and gallic acid,
with anti-inflammatory, anticoagulant, hypolipidemic, hepatoprotective, and neuroprotec-
tive properties [184,185].

11. Artocarpus heterophyllus (Jackfruit)

Artocarpus heterophyllus (Moraceae) or jackfruit is a traditional remedy for wounds,
cancer, and diabetes [186,187]. Its fruit, bark, seeds, leaves, and roots all have antidiabetic
properties [188–190]. Studies have reported that jackfruit significantly ameliorates body
weight, lipid profile, abnormal hematological parameters, creatine, bilirubin, and urea
levels, and reduces albumin levels in diabetic rats. It also has inhibitory activity against
α-amylase and α-glucosidase enzymes and can improve the lipid profile (i.e., LDL and
HDL cholesterol) and fasting and blood glucose levels [191,192]. Phytochemicals such as
carotenoids, tannins, volatile acids, sterols, chrysin, isoquercetin, and silymarin contribute
to the pharmacological properties of jackfruit [192].

12. Asparagus officinalis (Asparagus)

Asparagus officinalis (Asparagaceae), known as asparagus, is a remedy for diabetes,
asthma, rheumatism, and liver and kidney diseases [193]. Recent studies suggest that it
enhances insulin secretion and β-cell function in a rat model of T2DM [194]. Asparagus
elicits its hypoglycemic properties by significantly lowering fasting blood glucose, hepatic
glycogen, and triglyceride levels, as well as reducing body weight [195]. Asparagine,
tyrosine, arginine, saponins, resin, and tannins are the main active phytoconstituents of
asparagus. Among them, saponins are the main constituent that contributes to its hypo-
glycemic effects, as well as its antibacterial, anti-inflammatory, antioxidant, antidiarrheal,
and anticarcinogenic properties [196,197].

13. Avena sativa (Oats)

Avena sativa (Poaceae) or oats are a popular breakfast meal. Oats are also a remedy for
dermatitis, cancer, diabetes, and cardiovascular disease [198]. One study found that the con-
tinuous consumption of oatmeal cookies led to significant improvements in blood glucose
levels and plasma insulin in diabetic rats [199]. β-glucan, oleic acid, linoleic acid, caffeic
acid, coumaric acid, gallic acid, and avenanthramides are the active phytoconstituents of
oats. They lower glycosylated HbA1c, fasting and postprandial blood glucose, and total
cholesterol and LDL cholesterol levels, as well as improving insulin resistance in diabetic
patients [199,200]. β-glucan is the major component of oats that reduces blood glucose and
helps with losing weight [201,202].

14. Averrhoa carambola L. (Star fruit)

Averrhoa carambola L. (Oxalidaceae) is commercially known as star fruit. It is abun-
dantly consumed in tropical and subtropical countries where it is also traditionally used



Nutrients 2024, 16, 3709 13 of 79

for chronic headache, fever, cough, gastroenteritis, diarrhea, diabetes, skin inflammation,
hypertension, and hyperglycemia [203–205]. Catechin, epicatechin, procyanidins, gallic
acid, protocatechuic acid, ferulic acid, rutin, isoquercitrin, quercitrin, C-glycosides, leucoan-
thocyanidins, and triterpenoids in star fruit modulate insulin secretion, glucose uptake,
and glycogen synthesis [206,207].

15. Azadirachta indica (Neem)

Azadirachta indica, known as neem, is a plant from the Meliacae family that is used to
cure fever, skin ailments, infection, inflammation, diabetes, and dental ailments [208,209].
Its leaves, stem, bark, and seed oil have been reported to control glycemia, improve
endothelial dysfunction, reduce systemic inflammation, enhance glucose transporter 4
(GLUT-4) translocation, and inhibit α-glucosidase. The antidiabetic effects of this plant are
likely to be due to the presence of phytoconstituents such as nimbidin, nimbin, nimbidol,
quercetin, and nimbosterone [210–212].

16. Beta vulgaris (Beetroot)

Beta vulgaris (Chenopodiaceae) or beetroot is a traditional cure for diabetes, loss of
libido, stomachaches, arthritis, and constipation [213]. Beetroot shows antidiabetic activity
by inhibiting gluconeogenesis, glycogenolysis, and α-amylase and α-glucosidase. It is rich
in lycopene, betalains such as betanin, the flavonoids betagarin, betavulgarin, quercetin,
and kaempferol, carotenoids, and coumarins. Among them, betanin is the main constituent
that can mitigate diabetic complications [214,215].

17. Brassica juncea (Mustard)

Brassica juncea (Brassicaceae), known as mustard, is an effective remedy for arthritis,
footache, lumbago, diabetes, and rheumatism [216,217]. Mustard has been reported to
control blood sugar levels in people with diabetes by enhancing insulin secretion, improving
the utilization of glucose, and reducing glucose absorption from the gut. These effects can be
attributed to several beneficial phytochemicals including chlorogenic acid, kaempferol and
other flavonoids, sinigrin, p-coumaric acid, vanillic acid, polyphenols, allyl isothiocyanate,
cinnamic acid, and aniline [218,219].

18. Brassica oleracea var. capitata (Cabbage)

Brassica oleracea var. capitata or cabbage is a member of the Brassicaceae family.
Cabbage is traditionally used to prevent injuries, gastritis, peptic ulcers, irritable bowel
syndrome, diabetes, and idiopathic cephalalgia [220]. It shows antihyperglycemic activity
via enhancing peripheral insulin sensitivity and insulin production by pancreatic β-cells.
This has been attributed to the presence of myricetin, quercetin, kaempferol, apigenin,
luteolin, glycitein, biochanin A, and formononetin [221,222].

19. Brassica oleracea var. italica (Broccoli)

Brassica oleracea var. italica (broccoli) is a vegetable from the Brassicaceae family that is
well-known for its antioxidant, antimicrobial, anti-inflammatory, antihyperglycemic, and
antitumor properties [223]. Broccoli increases insulin sensitivity, reduces glucose produc-
tion, and inhibits ROS formation and the activity of α-amylase and α-glucosidase, contribut-
ing to lowering hyperglycemia [223,224]. Glucosinolates, isothiocyanates, sulforaphane,
sinapic acid, gallic acid, chlorogenic acid, apigenin, kaempferol, luteolin, quercetin, and
myricetin are the major phytochemicals found in broccoli that help to manage diabetes
by improving insulin sensitivity, reducing inflammation, and combating oxidative stress.
They also regulate glucose metabolism and protect pancreatic β-cells [224].

20. Camellia sinensis L. (Tea)

Camellia sinensis L., or tea, from the Theaceae family is a plant widely consumed as
a beverage. It is also a reputed remedy for flatulence, indigestion, vomiting, diarrhea,
hyperglycemia, and stomach discomfort [225,226]. Tea alleviates diabetic complications via
the suppression of insulin resistance, reduction of oxidative stress, inhibition of α-amylase
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and α-glucosidase activity, and regulation of cytokine production. It also enhances insulin
secretion and glucose tolerance, as well as inhibiting glycation and the activity of dipeptidyl
peptidase-4 (DPP-IV) [225–227]. Tea is a rich source of bioactive compounds, including
theophylline, theanine, proanthocyanidins, caffeine, myricetin, kaempferol, quercetin,
chlorogenic acid, coumarylquinic acid, theogallin, catechin, and epicatechin, which ex-
hibit antidiabetic activity by enhancing insulin sensitivity, regulating glucose metabolism,
reducing oxidative stress, and improving pancreatic β-cell function [228].

21. Capsicum annuum L. (Red pepper)

Capsicum annuum L. (Solanaceae), identified as red pepper, is an ethnomedicine for
dyspepsia, ulcer, anorexia, gastrointestinal disorders, and diabetes [229]. Recent studies re-
ported that it exhibits glucose-lowering action via inhibition of gluconeogenesis, activation
of AMPK, and stimulation of both GLUT-4 translocation and glucose uptake in skeletal
muscles of obese diabetic rats [230,231]. These effects may be attributable to a rich content
of carotenoids and flavonoids such as apigenin, quercetin, and isoquercetin. Red pepper
has a range of other health benefits, including scavenging free radicals (antioxidant effect),
promoting healthy weight management, reducing inflammation, and even potentially
offering anticancer properties [232,233].

22. Carica papaya (Papaya)

Carica papaya (Caricaseae), commonly called papaya, has been used for centuries to
treat high blood pressure, dengue, obesity, jaundice, respiratory diseases, malaria, dia-
betes, and wounds [234,235]. Papaya contains phytomolecules such as papain, quercetin,
kaempferol, p-coumaric acid, β-carotene, linalool, oleic acid, tannins, saponins, and α-
tocopherol, which can inhibit α-amylase and α-glucosidase activity as well as lower oxida-
tive stress and plasma blood glucose levels [236,237].

23. Carissa carandas (Bengal currant)

Carissa carandas (Apocynaceae), known as koromcha or Bengal currant, is a remedy
for asthma, constipation, diarrhea, diabetes, malaria, myopathic spams, fever, epilepsy, and
seizures [238]. Recent studies suggest that Bengal currant significantly reduces diabetes-
induced inflammation and lowers blood glucose levels via inhibition of α-amylase and α-
glucosidase [239–242]. Lignans, flavonoids, steroids, phenolic acids, and alkaloids present
in Bengal currant have anti-inflammatory, antibacterial, antifungal, antioxidant, and hep-
atoprotective effects. Lignans regulate blood glucose levels and oxidative stress [241].

24. Catharanthus roseus L. (Vinca rosea)

Catharanthus roseus L. (Apocyanaceae), also known as Vinca rosea, is a plant popularly
used to treat cancer, diabetes, stomach disorders, and kidney, liver, and cardiovascu-
lar disorders [243,244]. It is reported to exert its antidiabetic effect through increasing
β-cell-mediated insulin secretion via effects on Ca2+ channels. It was also shown to en-
hance glucose metabolism, protect pancreatic β-cells from oxidative stress, and improve
insulin sensitivity. Gallic acid, rutin, coumaric p acid, caffeic acid, quercetin, kaempferol,
chlorogenic acid, ellagic acid, and coumarins are thought to be responsible for the anti-
hyperglycemic properties of this plant. The presence of alkaloids in C. roseus has also been
reported to improve insulin secretion from β-cells [245–247].

25. Centella asiatica L. (Centella leaves)

Centella asiatica L. (Apiaceae), referred to as centella leaves, is an excellent ethnomedicine
for leprosy, lupus, ulcers, eczema, psoriasis, diarrhea, fever, diabetes, and anxiety [248].
Centella blocks ATP-sensitive K+ channels to enhance insulin secretion and control hyper-
glycemia [249]. According to recent studies, it reduces oxidative stress and inflammation
in diabetic patients. Some active phytoconstituents in centella leaves include triterpenes
(asiaticoside, madecassic acid, and madecassoside), centellase, flavonoids (quercetin and
kaempferol), phytosterols (campesterol, sitosterol, and stigmasterol), ferulic acid, and
chlorogenic acid [250,251].
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26. Chenopodium quinoa (Quinoa)

Chenopodium quinoa (Amaranthaceae), or quinoa, is a gluten-free high-protein cereal
reported to ameliorates dyslipidemia, diabetes, and heart disease [252]. It is regarded
as a ‘functional food’ as it contains a high amount of essential amino acids, fatty acids,
vitamins, minerals, and dietary fibers [253,254]. Phytosterols, phytoecdysteroids, phenolics,
tocophenols, betalains, tannins, and glycine betaine are the beneficial phytochemicals in
quinoa that elicit both antidiabetic and anti-obesity effects by inhibiting α-glucosidase,
regulating body weight, improving insulin sensitivity, and reducing postprandial glycemia
and lipid accumulation in skeletal muscle [255–258].

27. Cicer arietinum L. (Chickpea)

Cicer arietinum L. (Fabaceae) commonly known as chickpea, is a reputed cure for diges-
tive disorders, cancer, cardiovascular disease, and diabetes because of its high dietary fiber
content. Recent findings recognized it as a healthy food staple that exerts hypoglycemic
activity via inhibiting α-amylase, α-glucosidase, and dipeptidyl-4 (DPP4) enzymes. Chick-
pea has high antioxidant properties and inhibits the enzymes associated with carbohydrate
metabolism [259–261]. It is rich in unsaturated fatty acids that help lower blood cholesterol
levels and reduce inflammation and weight gain [262]. Its phytoconstituents, including
uridine, adenosine, tryptophan, 3-hydroxy-olean-ene, and biochanin, contribute to its
antihypertensive, antioxidant, hypocholesterolemic, and anticancer effects [263,264].

28. Cinnamomum verum (Cinnamon)

Cinnamomum verum (Lauraceae), also known as cinnamon, is an ethnomedicine used
for diabetes, nausea, vomiting, flatulence, fever, halitosis, arthritis, coughing, hoarseness,
impotence, frigidity, cephalalgia, odontalgia, and cardiac and urinary disorders [265].
Cinnamon exerts its antihyperglycemic effects by increasing GLUT-4 translocation in
insulin-sensitive tissues, upregulating mitochondrial UCP-1, inhibiting α-glucosidase, and
stimulating insulin secretion [266,267]. Its phytoconstituents, including cinnamaldehyde,
cinnamates, cinnamic acid, eugenol, cinnamyl acetate, β-sitosterol, flavonoids, glucosides,
coumarins, vanillic acid, and syringic acid, have antihyperglycemic and anti-inflammatory
properties [265,268].

29. Citrullus lanatus (Watermelon)

Citrullus lanatus (Cucurbitaceae), or watermelon, is a fruit traditionally used to treat gas-
trointestinal disorders, urinary infections, fever, constipation, and emetic problems [269,270].
It improves glucose transporter (GLUT 2 and GLUT 4) levels and suppresses oxidative
stress, as well as α-glucosidase and α-amylase activity. Some of the phytoconstituents of
watermelon that may contribute to its pharmacological action include stigmasterol, rutin,
p-coumaric acid, quercetin, kaempferol, β-carotene, and α-tocopherol [271,272].

30. Citrus limon (Lemon)

Citrus limon (Rutaceae), also known as lemon, is a common ethnomedicine used for
coughs, scurvy, colds, hypertension, fever, rheumatism, sore throats, diabetes, irregu-
lar menstruation, and liver diseases [273–275]. Lemon exerts antihyperglycemic activity
by increasing insulin sensitivity, GLUT4 translocation, and glucose uptake, inhibiting
α-glucosidase, protein tyrosine phosphatase, and aldose reductase, and reducing the for-
mation of AGE products [276–278]. Previous studies have shown that it reduces plasma
glucose levels, as well as LDL, VLDL, total cholesterol, triglyceride, free fatty acid, and
phospholipid levels. Its bioactive constituents include limocitrin, D-limonene, hesperidin,
and naringenin [278,279].

31. Citrus maxima (Pomelo)

Citrus maxima (Rutaceae), also called pomelo, is a fruit with a great ethnomedicinal
value in treating asthma, fever, ulcers, diarrhea, coughs, Alzheimer’s disease, diabetes, and
insomnia [280]. Pomelo has α-amylase and α-glucosidase inhibitory activity. It also inhibits
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the angiotensin I converting enzyme, which notably lowers blood glucose levels and
improves diabetic complications [281]. Pomelo possesses antioxidant, anti-inflammatory,
anti-obesity, and hypolipidemic properties in addition to its hypoglycemic effects due to
the presence of amino acids, terpenoids, sterols, carotenoids, and polyphenols [281–283].

32. Citrus reticulata (Orange)

Citrus reticulata, also known as orange, is a plant from the Rutaceae family that has been
shown to be beneficial in the treatment of Alzheimer’s disease, coughs, phlegm, diabetes,
hepatic steatosis, and cancer [284–286]. Orange increases the expression of GLUT-4 and the
β-subunit insulin receptor, which further helps with insulin sensitivity [287–289]. Orange
peel contains flavonoids such as hesperidin and naringenin that have antihyperglycemic,
antihyperlipidemic, anti-obesity, and antioxidant properties [287,288].

33. Cocos nucifera (Coconut)

Cocos nucifera, or coconut, is an important species from the Arecaceae family, com-
monly used as a folk remedy for diarrhea, diabetes, renal diseases, stomachaches, fever,
asthma, and sexually transmitted diseases [290–293]. Coconut has been reported to regener-
ate pancreatic β-cells, enhance metabolism in adipose tissue, and mitigate insulin resistance,
hyperglycemia, dyslipidemia, inflammation, and oxidative stress [293–295]. It has also
been shown to scavenge free radicals, inhibit α-amylase and α-glucosidase activity, and
ameliorate diabetic complications, including diabetic neuropathy in streptozotocin-induced
diabetic rats [297]. Coconut is rich in amino acids, fibers, tannins, resins, flavonoids,
and alkaloids, which may contribute to its insulin-releasing and antihyperglycemic ef-
fects [293–296].

34. Coffea Arabica L. (Coffee)

Coffea Arabica L. (Rubiaceae) or coffee is another popular health drink. It is also a
traditional remedy for flu, anemia, diarrhea, intestinal pain, migraines, headaches, fever,
purulent wounds, pharyngitis, diabetes, and stomatitis [298]. Coffee exerts antidiabetic ef-
fects by improving insulin sensitivity, enhancing glucose metabolism, protecting pancreatic
β-cells, and reducing the risk of T2DM development. It contains caffeine, chlorogenic acids
(CGAs), caffeic, p-coumaric, vanillic, ferulic, protocatechuic acids, coffeasterin, kaempferol,
quercetin, sinapic, quinolic, tannic, pyrogallic acids, trigonelline, caffeoylquinic, and dicaf-
feoylquinic, which substantially mitigate hyperglycemia and α-glucosidase activity and
enhance insulin secretion [298–300].

35. Colocasia esculenta (Taro)

Colocasia esculenta (Araceae), or taro, is a remedy for rheumatic pain, diabetes, hy-
pertension, and pulmonary congestion [301]. It can improve diabetic complications by
decreasing blood glucose levels and reducing body weight in T2DM patients [302]. Taro
contains vitexin, isovitexin, orientin, isoorientin, rosmarinic acid, and luteolin, which help
to reduce blood glucose, inflammation, and oxidative stress in diabetic patients [303–305].

36. Coriandrum sativum (Coriander)

Coriandrum sativum (Apiaceae), known as coriander, is a common garnishing herb
and a useful traditional remedy for diarrhea, flatulence, colic, indigestion, gastrointestinal
diseases, and diabetes [306]. Coriander is helpful in the management of diabetes as it
regenerates pancreatic β cells and improves their function. It also inhibits α-glucosidase,
thereby slowing the digestion of complex carbohydrates [306–310]. Moreover, coriander
plays a useful role in the management of diabetic complications, particularly alleviating
diabetic nephropathy and neuropathy through the inhibition of AGE formation, inhibition
of TNF-α release, and reduction of oxidative stress [307,308]. Coriander is rich in flavonoids,
tocotrienols, tocopherols, sterols, and carotenoids, with antidiabetic, antioxidant, anti-
obesity, and anticancer effects [309,310].
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37. Crocus sativus L. (Saffron)

Crocus sativus L. (Iridaceae), or saffron, is a popular food additive as well as an ef-
fective remedy for central nervous system disorders and for diabetes [311,312]. Saffron is
documented to improve insulin sensitivity, enhance glucose uptake, inhibit gluconeogene-
sis, and mitigate against oxidative stress, thereby offering a range of antidiabetic benefits.
Bioactive constituents of saffron are β carotenes, crocetin, crocin, picrocrocin, zeaxanthene,
and safranal. These exert their glycemic effects via α-glucosidase and α-amylase inhibitory
activity [311–313]. Crocin, the main bioactive constituent of saffron, reduces blood glucose,
LDL, cholesterol, and triglycerides levels. It also inhibits the release of pro-inflammatory
cytokines and elevates glutathione levels [302,314,315].

38. Cuminum cyminum L. (Cumin seeds)

Cuminum cyminum L. (Apiaceae), referred to as cumin, is used as a remedy for diarrhea,
dyspepsia, epilepsy, toothache, whooping cough, flatulence, indigestion, diabetes, and
jaundice [316]. Cumin has been reported to enhance insulin secretion from pancreatic
β-cells, improve insulin sensitivity in peripheral tissues by activating insulin signaling,
regulate glucose uptake by enhancing GLUT4 translocation, and modulate key enzymes
involved in glucose metabolism [316–318]. Cumin seeds are rich in compounds such
as cuminaldehyde, safranal, and terpenes (including carvone, carvacrol, limonene, and
linalool). These are believed to improve blood sugar levels by increasing pancreatic insulin
and protecting insulin-producing β-cells from damage [317,318].

39. Cucumis sativus L. (Cucumber)

Cucumis sativus L. (Cucurbitaceae), known as cucumber, is a vegetable low in calories
and with a high water content that is typically served as a salad. It is useful in treating
sunburn, skin irritation, constipation, thermoplegia, gallbladder stones, hyperdipsia, and
diabetes [319,320]. It also exhibits antihyperlipidemic, antioxidant, analgesic, and free
radical scavenging effects [575,579]. It is a good source of cucurbitacins, cucumerin A
and B, cucumegastigmanes I and II, and flavonoids such as vitexin, orientin, apigenin,
and isoscoparin, which can synergistically improve plasma glucose, glycolysis, insulin
sensitivity, and body weight in diabetes patients [319,321,322]. Other studies reveal that
cucumber may suppress glucagon secretion and gluconeogenesis [323].

40. Cucurbita pepo L. (Pumpkin)

Cucurbita pepo L. (Cucurbitaceae), known as pumpkin, is a popular vegetable and folk
medicine for dermatitis, depression, irritable bladder, intestinal inflammation, prostate
enlargement, and hyperglycemia [324,325]. Pumpkin seeds have been reported to lower
plasma and urine glucose, as well as triglycerides levels, and increase glutathione levels
through upregulation of Nrf2 and P13K levels in T2DM mice [330–332]. Among the con-
stituents of pumpkin seeds, flavonoids, alkaloids, polysaccharides, and polyphenols have
been reported to enhance insulin secretion. The high content of carotenoids, zeaxanthin,
and lutein has been implicated with improving insulin sensitivity, reducing inflammation,
and protecting against oxidative stress [324–327].

41. Curcuma longa L. (Turmeric)

Curcuma longa L. (Zingiberaceae), commonly referred to as turmeric, is known as an
extremely powerful healing agent and aid for coughs, diabetes, arthritis, gallbladder stones,
dermatitis, cancer, and intestinal and gastric diseases [328]. Turmeric has multiple reputed
health benefits as an antioxidant, anti-inflammatory, hepatoprotective, nephroprotective,
neuroprotective, and immunomodulatory agent. A recent study reported that the inges-
tion of turmeric improved insulin secretion and insulin sensitivity and decreased insulin
resistance [329–332]. The presence of caffeic acid, curdione, p-coumaric acid, demethoxycur-
cumin, isorhamnetin, valoneic acid, eugenol, isoshyobunone, and corymbolone in turmeric
may contribute to these antidiabetic properties. Furthermore, turmeric is rich in curcumin,
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which induces glucose uptake and GLUT2 activity as well as notably promoting insulin
production [330–332].

42. Daucus carota (Carrot)

Daucus carota (Apiaceae), widely known as carrot, is traditionally used for diarrhea,
constipation, intestinal inflammation, weakness, illness, diabetes, and rickets [333]. Carrot
has been reported to inhibit glucose absorption by significantly inhibiting α-glucosidase and
α-amylase activity, improving insulin resistance in diabetic patients [334]. Carotenoids such
as α and β-carotene are the main phytochemicals in carrot. It also contains polyacetylenes,
ascorbic acid, lutein, lycopene, and anthocyanins, which can enhance insulin sensitivity
and pancreatic β-cell function [335,336].

43. Ficus carica (Fig)

The fig plant, Ficus carica, belongs to the Moraceae family. It is a useful remedy for der-
matitis, anemia, diabetes, paralysis, urinary tract infections, ulcers, and liver diseases [337].
Its leaves, pulp, stem, and root decrease body weight, LDL and VLDL cholesterol, triglyc-
erides, and postprandial glucose levels, as well as inhibiting pancreatic β-cell apoptosis via
the pancreatic AMPK, C-Jun N-terminal kinase, p-JNK, and caspase-3 pathways [338,339].
The fruit is rich in eugenol, anthocyanins, phenolic acids, flavones, and flavanols which may
be responsible for the antimicrobial, neuroprotective, antioxidant, and anti-inflammatory
properties of this plant [340–342].

44. Fragaria ananassa (Strawberry)

Fragaria ananassa (Rosaceae), known as strawberry, is an effective remedy for wound
healing, clots, obesity, and diabetes [343]. Strawberry ameliorates peripheral insulin re-
sistance, reduces α-amylase and α-glucosidase activity, and increases glucose-stimulated
insulin release [343–345]. Quercetin, kaempferol, rutin, gallic acid, chlorogenic acid, caffeic
acid, ellagitannins, and gallotannins found in strawberries may be responsible for the
antioxidant, cardioprotective, antimetabolic syndrome, and neuroprotective properties of
this plant [343–347].

45. Glycine max (Soya bean)

Glycine max (Fabaceae), also called soya bean, is employed to produce vegetable oils,
tofu, soy milk, and soy sauce. It is also a remedy for osteoporosis, cardiovascular disease,
and diabetes [348]. It contains a high content of proteins which improves diabetes and
its complications by modulating various cell signaling pathways and regulating glucose
homeostasis [263,349]. Soya beans are also able to mitigate obesity-induced metabolic
disorders [350] as they lower triglyceride levels and have fatty acid synthase inhibitory
activity, which contribute to ameliorating diabetes-related complications [351]. Among
the soya bean proteins, β-conglycinin is the major constituent that has been reported to
reduce insulin resistance and improve glucose uptake in skeletal muscles through AMPK
activation [349].

46. Helianthus annuus (Sunflower)

Helianthus annuus (Asteraceae) is commonly known as sunflower. Sunflower seeds are
often ingested to ameliorate diabetes, nephrotoxicity, cardiovascular disease, and hema-
tologic disorders [352]. Sunflower is popular for its antitumor, antimicrobial, antioxidant,
and anti-inflammatory effects. Sunflower seeds have been reported to lower body weight
and body mass index (BMI) and have free radical scavenging activity. They can also reduce
AGE formation and lower fasting blood glucose levels [353–355]. Sunflower is rich in
flavonoids, alkaloids, saponins, tocopherols, carotenoids, tannins, chlorogenic acid, and
caffeic acid. Tocopherols have been reported to improve insulin sensitivity and protect
β-cells from oxidative stress [355].
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47. Hibiscus rosa-sinensis Linn (China rose)

Hibiscus rosa-sinensis Linn., also called China rose, China hibiscus, rose mallow, or shoe
flower, belongs to the Malvaceae family. It is a popular traditional remedy for tumors,
hair loss, infertility, diabetes, and wound healing [356–358]. It is reported to stimulate
pancreatic-β cells, enhancing insulin secretion and glycogen accumulation in the liver. The
antidiabetic properties of China rose may be attributed to its rich content of quercetin,
cyanidin, ascorbic acid, gentisic acid, lauric acid, thiamine, niacin, margaric acid, calcium
oxalate, and hentriacontane. Cyanidin, also present in China rose, has been demonstrated
to improve endothelial function and oxidative damage [358–360].

48. Hylocereus undatus (Dragon fruit)

Hylocereus undatus (Cactaceae), also called dragon fruit or strawberry pear, is eth-
nomedicinally useful as a hypoglycemic, diuretic, antigastritis, wound healing and laxative
agent [361,362]. It shows antidiabetic activity by regulating oxidative stress, reducing
intestinal glucose absorption and plasma glucose levels, and improving insulin secretion.
These effects can be attributed to several phytoconstituents, including phthalic acid, α-
amyrin, oleic acid, linoleic acid, palmitic acid, gallic acid, syringic acid, p-coumaric acid,
lycopene, β-carotene, and betacyanin [363].

49. Ipomoea batatas (Sweet potato)

Ipomoea batatas is a plant of the Convolvulaceae family, also known as sweet potato.
This plant is a popular ethnomedicine for diabetes, diarrhea, splenosis, stomach distress,
anemia, hypertension, and throat tumors [364,365]. Anthraquinones, coumarins, flavonoids
(quercetin, lutein), saponins, tannins, phenolic acids, chlorogenic acid, terpenoids, β-
carotene, zeaxanthin, and anthocyanins present in sweet potato may also substantially
mitigate insulin resistance and regulate blood glucose levels by stimulating the production
of insulin by pancreatic β-cells [366–368].

50. Juglans regia L. (Walnut)

The walnut plant or Juglans regia L. (Juglandaceae) is a reputed remedy for bacte-
rial infection, stomachaches, thyroid disorders, diabetes, cancer, heart conditions, and
sinusitis [369]. Its nut is high in fiber which makes it one of the best superfoods for diabetes
control. One study reported that it improves glucose uptake, inhibits α-glucosidase, α-
amylase, and protein tyrosine phosphatase 1B (PTP1B) activity, and reduces plasma glucose
levels in streptozotocin-induced rats [370]. Gallic acid, caffeoylquinic acid, coumaroylquinic,
juglone, and quercetin were identified as the potential bioactive compounds responsible
for the antidiabetic, anti-inflammatory, and antioxidant effects of walnuts [371,372].

51. Lactuca sativa (Lettuce)

Lactuca sativa or lettuce is a leafy vegetable from the Asteraceae family, often served as
a salad. The leaves and seeds of lettuce are used for treating hyperglycemia, osteodynia, and
inflammatory conditions [373]. Lettuce inhibits the activity of α-amylase, α-glucosidase,
and dipeptidyl peptidase-4 (DPP-4) enzymes. It can regulate postprandial glucose, fasting
blood glucose, triglycerides, serum insulin, and cholesterol levels. These effects may be
due to the presence of flavonoids such as quercetin, anthocyanins, and hydroxycinnamoyl
derivatives [374–377].

52. Lagenaria siceraria (Bottle gourd)

Lagenaria siceraria (Cucurbitaceae) is popularly known as bottle gourd and regarded as
a remedy for diabetes, jaundice, constipation, flatulence, insomnia, ulcer, piles, colitis, insan-
ity, hypertension, congestive cardiac failure, skin diseases, and headaches [378,379]. Bottle
gourd improves insulin production and glucose tolerance and suppresses intestinal glucose
absorption. These effects may be attributed to isovitexin, isoorientin, saponarin, fucosterol,
campesterol, cucurbitacin B, cucurbitacin D, cucurbitacin E, isoquercitrin, kaempferol, gallic
acid, and protocatechuic acid [381,382].
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53. Laurus nobili (Bay leaves)

Laurus nobilis or bay leaf is an important spice from the Lauraceae family. It is a popular
aid for stomachaches, phlegm, colds, sore throats, headaches, indigestion, flatulence,
eructation, epigastric bloating, and diabetes [383]. It is reported to decrease serum glucose
levels, inhibit α-glucosidase, and stimulate the production of insulin by pancreatic β-cells. It
is rich in phytoconstituents that include linalool, sabinene, kaempferol, quercetin, apigenin,
luteolin, lauric acid, palmitic acid, linoleic acid, and the carotenoid lutein [384,385].

54. Litchi chinensis (Lychee)

Litchi chinensis (Sapindaceae), or lychee, is a seasonal fruit and useful ethnomedicine
for coughs, ulcers, flatulence, testicular swelling, diabetes, hernias, and obesity [386]. Ly-
chee seeds improve insulin resistance, glucose tolerance, and fasting blood glucose and
serum triglyceride levels. Lychee has antihyperglycemic, antineurotoxic, anti-inflammatory,
lipid-lowering, insulin-secreting, and α-glucosidase inhibitory properties. These effects
may be attributed to the presence of flavonoids, triterpenes, sterols, and phenolic com-
pounds [387,388].

55. Luffa acutangula (Ridge gourd)

Luffa acutangula (Cucurbitaceae), known as ridge gourd, is a valuable traditional
medicine for diabetes, jaundice, hemorrhoids, urinary bladder stones, granular conjunc-
tivitis, constipation, and leprosy. Ridge gourd has been reported to substantially lower
serum glucose levels by enhancing insulin secretion and peripheral glucose uptake, as well
as suppressing glycogenolysis and gluconeogenesis in alloxan-induced diabetic rats [389].
These effects may be attributed to the levels of apigenin, luteolin, myristic acid, α-pinene,
carotene, oleanolic acid, β-myrcene, and linalool in its leaves, seeds, and fruit, which reduce
blood glucose and oxidative stress [390].

56. Malus domestica (Apple)

The apple, Malus domestica (Rosaceae), is one of the most widely cultivated and com-
mercially significant fruits. It is also a valuable folk medicine for wounds, diabetes, asthma,
obesity, and cardiovascular disease [391–393]. Apple has been reported to significantly
lower plasma glucose levels by increasing glucose-dependent insulinotropic polypeptide
(GIP) and glucagon-like peptide-1 (GLP-1). Its antidiabetic effect has been linked with
the flavonoid quercetin [394–396]. Apple also has antihypertensive, antioxidant, and
anti-inflammatory properties, which may be attributed to several compounds, including
quercetin, catechin, epicatechin, procyanidin, coumaric acid, chlorogenic acid, and gallic
acid [394–400].

57. Mangifera indica (Mango)

Mangifera indica (Anacardiaceae), known as mango, is a delicious fruit and a plant
used in folk medicine for asthma, dysentery, anthrax, indigestion, diarrhea, diabetes,
and colic [401–403]. Mango pulps, stems, and peels improve postprandial glucose and
insulin sensitivity in T2DM patients by inhibiting α-amylase and α-glucosidase [404–406].
Mango has been reported to exert antidiabetic activity by improving insulin secretion from
clonal β-cells and isolated mouse islets, and by regulating fasting blood glucose, plasma
insulin, liver glycogen levels, starch digestion, glucose absorption, body weight, and free
radical scavenging activity in diabetic rats [405]. Another study in streptozotocin-induced
diabetic rats reported its promising ability to decrease postprandial hyperglycemia [406].
The mentioned therapeutic effects of mango may be mediated by mangiferin, flavonoids,
tannins, and alkaloids [405].

58. Mentha spicata (Mint leaves)

Mentha spicata, or mint, is a plant from the Lamiaceae family. It is known as a remedy
for common colds, asthma, fever, obesity, digestive problems, dementia, hypertension,
diabetes, and insomnia [407]. Mint boasts a range of health benefits. Mint leaves increase
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HDL cholesterol levels and reduce triglycerides, LDL, and VLDL cholesterol levels. It
has antibacterial, antifungal, antioxidant, hepatoprotective, cytotoxic, anti-inflammatory,
larvicidal, antigenotoxic, and antiandrogenic effects. Its ability to suppress α-amylase and
α-glucosidase may be due to the presence of carvone, limonene, 1,8-cineole, pulegone,
β-bourbonene, β-pinene, dihydrocarveol, and piperitone [408,409].

59. Moringa oleifera Lam. (Moringa)

Moringa oleifera Lam. (Moringaceae), also known as moringa or the drumstick tree,
grows in many tropical and subtropical regions. It is regarded as a folk remedy for diabetes,
liver disease, cancer, inflammation, hypercholesteremia, and hypertension [410,411]. Tan-
nins, β-carotene, vitamin C, quercetin, and chlorogenic acid in moringa leaves aid diabetes
through the inhibition of α-amylase and α-glucosidase enzymes. They also reduce serum
glucose and fasting blood glucose levels [412–414].

60. Momordica charantia (Bitter gourd)

Momordica charantia or bitter gourd (Cucurbitaceae) has medicinal value for managing
T2DM, dyslipidemia, cancer, obesity, malaria, dysentery, hypertension, and womb and
worm infections [415–418]. Bitter gourd suppresses the intestinal absorption of glucose, in-
hibits gluconeogenesis, and reduces the accumulation of fats in adipocytes. It also activates
the HMP and the PPARα pathways, regenerates pancreatic β-cells, and enhances glucose
uptake in skeletal muscles. These effects may be attributed to the presence of phytocon-
stituents such as saponins, triterpenes, flavonoids, ascorbic acid, and steroids [419–423].

61. Morus alba (Mulberry)

Morus alba (Moraceae), also known as mulberry, is widely used as a remedy for dia-
betes, insomnia, tinnitus, dizziness, and for premature aging. It improves fasting blood glu-
cose, total triglycerides, cholesterol, and HDL cholesterol levels via the IRS-2, GLUT4, and
Akt pathways [424]. Quercetin and isoquercetrin present in mulberry leaves are reported
to have insulin-releasing, antihyperlipidemic, antithrombotic, antiobesity, antioxidant, and
anti-inflammatory effects, which may be beneficial in diabetic complications [425,426]. The
bark of mulberry also lowers cholesterol and blood glucose levels, probably due to the
presence of alkaloids, flavonoids, coumarins, anthocyanins, benzofurans, and phenolic
acids [424,427].

62. Murraya koenigii (Curry leaves)

Murraya koenigii L. or the curry leaf plant belongs to the Rutaceae family. This plant
is popular as an herbal remedy for piles, inflammation, itching, diabetes, and snake
bites [428,429]. It has antimicrobial, antioxidant, antihyperglycemic, apoptotic, anticar-
cinogenic, anti-inflammatory, and antitumor effects. It has been also reported to protect
against β-cell damage, enhance antioxidant defense systems, and reduce oxidative stress,
as well as improving blood sugar levels in diabetic rats [430]. Bioactive substances such
as mahanine, mahanimbine, murrayanol, koenigicine, quercetin, apigenin, kaempferol,
catechin, and oliolide in curry leaves have been reported to synergistically regenerate
β-cells, aid diabetic complications, and possess antihyperlipidemic effects [430,431].

63. Myristica fragrans Houtt. (Nutmeg)

Myristica fragrans Houtt. (Myristicaceae), known as nutmeg, is a flavoring spice
and reputed folk remedy for skin infections, diarrhea, diabetes, Alzheimer’s disease,
rheumatism, asthma, colds, coughs, and malaria [432]. Nutmeg demonstrates antidiabetic
effects by enhancing insulin sensitivity, regulating blood glucose levels, and exhibiting
antioxidant properties that protect against oxidative stress in diabetes. It strongly inhibits
the release of pro-inflammatory cytokines such as IL-6 and TNF-α, and helps ameliorate
β-cell function, inflammation, and obesity [433–435]. Nutmeg is a source of flavonoids,
terpenes, phenylpropanoids, coumarins, lignans, alkanes, and indole alkaloids that can
elicit antiprotozoal, antimicrobial, immunomodulatory, anxiolytic, and neuroprotective
effects [432].
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64. Nigella sativa L. (Black seeds)

Nigella sativa L. (Ranunculaceae) or black seeds are a reputed herbal remedy for asthma,
dyslipidemia, diabetes, and diarrhea [436]. Black seeds exert antidiabetic effects by reduc-
ing carbohydrate digestion and absorption in the gut, improving insulin secretion, and
enhancing glucose tolerance in T2DM animal models. Other antidiabetic effects of black
seeds include lowering lipid and blood glucose levels, suppressing hepatic gluconeogene-
sis, and inhibiting α-amylase and α-glucosidase, as well as boosting insulin production
and sensitivity. These effects can be attributable to phytochemicals that include thymo-
quinone, thymol, limonene, carvacrol, p-cymene, longifolene, α-pinene, linoleic acid, oleic
acid, palmitic acid, saponins, and alkaloids. Thymoquinone in black seeds is known to
enhance insulin secretion and insulin sensitivity through activating the PI3K/Akt signaling
pathway [437–440].

65. Ocimum sanctum L. (Holy basil)

Ocimum sanctum L., known as holy basil or Tulsi, belongs to the Lamiaceae family.
Tulsi is traditionally used for anxiety, coughs, asthma, diarrhea, fevers, dysentery, arthri-
tis, eye diseases, indigestion, back pain, skin disorders, ringworm, insect, snake, and
scorpion bites, malaria, vomiting, gastritis, diabetes, and cardiac and genitourinary infec-
tions [441,442]. Tulsi leaves help improve insulin synthesis and pancreatic β-cell activity,
as well as inhibiting intestinal glucose absorption. Its phytoconstituents such as eugenol,
ursolic acid, carvacrol, linalool, caryophyllene, triterpenoids, and tannins may contribute
to these effects [443,444].

66. Olea europaea L. (Olive)

Olea europaea L. (Oleaceae), or olive, is traditionally used to treat diabetes, diar-
rhea, inflammation, urinary tract infection, hypertension intestinal diseases, hemorrhoids,
and rheumatisms [445–447]. It offers a promising range of health benefits such as anti-
inflammatory, antidiabetic, and immunomodulatory properties [448–450]. Olive oil notably
prevents hepatic gluconeogenesis and inhibits glucose-6-phosphatase activity. It enhances
catalase activity and regulates body weight and plasma glucose levels, possibly due to
the presence of oleanolic acid, cinnamic acid, and secoiridoid glycosides such as oleu-
ropein [448–450].

67. Origanum vulgare (Oregano)

Origanum vulgare (Lamiaceae), known as oregano, is a folk medicine for acne, cystic
fibrosis, diabetes, and bacterial infections [442,451]. It alleviates diabetic complications, in-
cluding nephropathy, atherosclerosis, and retinopathy, by inhibiting α-glucosidase, thereby
reducing the breakdown of complex carbohydrates into glucose, and lowering both gly-
cosylation and oxidative stress. Moreover, it improves glucose uptake in skeletal muscles
by increasing GLUT2 levels, leading to better control of blood sugar levels [453]. Oregano
is a source of amburoside A, apigenin, luteolin 7-O-glucuronide, rosmarinic acid, and
lithospheric acid, which have antimicrobial, antifungal, antioxidant, anti-inflammatory,
and antiviral properties [454,455].

68. Passiflora edulis (Passion fruit)

Passiflora edulis (Passifloraceae), commonly known as passion fruit, is used as an
ethnomedicine for coughs, diabetes, dysmenorrhea, dysentery, arthralgia, and constipa-
tion [456,457]. Previous studies have shown that it reduces weight gain and lipid accu-
mulation, as well as improving insulin sensitivity and glucose tolerance via the Sirt1 and
p-AMPK pathways [456,458]. It contains more than 110 bioactive constituents, including
piceatannol, tocopherols, β-carotene and other carotenoids, gallic acid, flavonoids such
as rutin and quercetin, and coumaric acid, which have antidiabetic, antioxidant, antihy-
pertensive, antimicrobial, hepatoprotective, and lung-protective qualities [457,459–463]. A
reduction in blood glucose levels has been linked to the presence of piceatannol, which is
present in high amounts in passion fruit [457].
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69. Persea americana (Avocado)

Persea americana (Lauraceae) or avocado is a popular fruit and a remedy traditionally
used to manage cardiovascular diseases and diabetes [464]. Avocado has been reported to
lower blood glucose levels and regulate glucose uptake in the liver and skeletal muscles,
as well as restoring intracellular energy homeostasis through activation of the PKB/Akt
pathway [470]. Histopathological analysis of diabetic rats also revealed regeneration of
clonal pancreatic β-cells following avocado treatment. Avocado seed, bark, and leaf extracts
contain flavonoids, alkaloids, saponins, tannins, and glycosides, which are known for their
antihyperglycemic properties [466–468].

70. Petroselinum crispum (Parsley)

Petroselinum crispum (parsley) is a plant from the Apiaceae family. As well as being a
culinary herb, it is an ethnomedicine traditionally used for diabetes, urinary tract infections,
dysmenorrhea, hypertension, dermatitis, and gastrointestinal disorders [469]. Parsley
exerts long-lasting control of sugar levels by regulating plasma glucose, body weight,
and electrolyte (sodium and potassium) balance. It also promotes glucose uptake in
muscles by inhibiting gluconeogenesis (sugar production) and stimulating glycolysis (sugar
breakdown) [470,471]. The main bioactive constituents of parsley are coumarins, phthalides,
phenylpropanoids, and tocopherols, with antimicrobial, antihepatotoxic, antihypertensive,
antihyperlipidemic, hypouricemic, and antioxidative properties [472].

71. Phaseolus vulgaris L. (Kidney bean)

Phaseolus vulgaris L. (Fabaceae), or the kidney bean, is another nutritious legume
crop, which is ethnomedicinally used for wounds, pharyngitis, fevers, obesity, diabetes,
cancer, and vaginal infections [473,474]. Beyond their potential to lower blood sugar
levels, kidney beans exhibit a range of other health benefits, including anti-obesity and
anti-inflammatory properties [473–479]. They are a potential source of protocatechuic
acid, p-coumaric acid, procyanidin, myricetin, naringenin, gallic acid, quercetin, catechin,
kaempferol, and ferulic acid, which may contribute to alleviating diabetic complications
via inhibiting α-glucosidase, enhancing insulin sensitivity in peripheral tissues, delaying
the absorption of glucose, and reducing gluconeogenesis [475,476].

72. Phoenix dactylifera (Date)

Phoenix dactylifera or date palm is a flowering plant belonging to the Arecaceae fam-
ily. Date palm is a traditional medicine for fever, inflammation, nervous disorders, and
dementia [477]. In vitro studies demonstrated that date fruit has α-glucosidase and α-
amylase inhibitory activity, reduces the intestinal absorption of glucose, and improves
pancreatic β-cell function, insulin secretion, and β-cell numbers [478,479]. The antihypergly-
caemic, antioxidant, anti-inflammatory, hepatoprotective, and nephroprotective properties
of date palm may be attributable to its vast array of phytochemicals, including oleic acid,
linoleic acid, catechin, epicatechin, anthocyanin, ellagic acid, gallic acid, p-coumaric acid,
coumarins, quercetin, rutin, myricetin, apigenin, naringenin, and chlorogenic acid [477,480].

73. Phyllanthus emblica L. (Amla)

Phyllanthus emblica L. (Phyllanthaceae), commonly called Indian gooseberry or amla,
is a remedy for coughs, peptic ulcers, skin diseases, jaundice, diarrhea, dysentery, diabetes,
cardiac disorders, and premature aging [481,482]. Recent studies suggest that the fruit,
bark, leaves, and roots of amla significantly reduce plasma glucose levels through the
inhibition of α-amylase and α-glucosidase activity and activation of the AMPK signaling
pathway. The main phytoconstituents in amla, such as gallic acid, ellagic acid, pectin,
quercetin, linoleic, oleic acid, and myristic acid, are effective in reducing inflammation and
blood glucose levels and increasing insulin sensitivity [483,484].

74. Piper betle L. (Betel leaf)

Piper betle L. (Piperaceae), also known as betel leaf, is widely used as a folk medicine
for wounds, bronchitis, diabetes, coughs, indigestion in children, headaches, arthritis, and
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joint pain [485]. It increases insulin production, improves glucose tolerance, and decreases
blood glucose levels substantially [486]. Betel leaf contains many phytoconstituents such as
eugenol, selinene, hydroxychavicol, cadinene, caryophyllene, estragole, linalool and other
terpenes, phenols, steroids, saponins, and tannins, which may play an important role in the
management of diabetic complications [487,488].

75. Pisum sativum L. (Pea)

Pisum sativum L., known as the pea, is a plant that belongs to the Fabaceae family. Peas
are a reputed remedy for diabetes, gastrointestinal disorders, hyperlipidemia, and blood
diseases [489]. Phytoconstituents such as quercetin, ellagic acid, coumaric acid, β-sitosterol,
β-amyrin, catechin, myricetin, vanillic acid, and kaempferol may be responsible for the
antidiabetic properties of peas. It remarkably improves plasma glucose levels, glucose
tolerance, glucose uptake, glucose homeostasis, and diabetic complications [490,491]. It is
also known to alleviate weight loss, polyphagia, triglycerides, and LDL cholesterol levels
via interacting with AMPK, α-glucosidase, IRS-1, and IRS-2 [492].

76. Prunus armeniaca L. (Apricot)

Prunus armeniaca L. (Rosaceae), known as apricot, is a promising antidiabetic, cardiopro-
tective, hepatoprotective, nephroprotective, antioxidant, antimicrobial, anti-inflammatory,
anticancer, and antiviral remedy [493,494]. Apricot has been reported to stimulate insulin
secretion, reduce oxidative stress, and show α-glucosidase inhibitory activity in alloxan-
induced diabetic mice. It is rich in coumaric acid, benzyl glycosides, cyanogenic glycosides,
vanillin, catechin, epicatechin, neochlorogenic acid, chlorogenic acid, rutin, quercetin, and
lutein [494,495].

77. Prunus domestica (Plum)

Prunus domestica (Rosaceae), or plum, is a fruit and a beneficial ethnomedicine for
anemia, Alzheimer’s disease, irregular menstruation, diabetes, and constipation [496–498].
Recent studies reported that plum reduces oxidative stress and inhibits α-glucosidase,
α-amylase, pancreatic lipase, and HMG-CoA reductase, lowering LDL, cholesterol, and
triglyceride levels [499,500]. Catechin, epicatechin, chlorogenic acid, kaempferol, quercetin,
and β-carotene present in plum may contribute to its antihyperglycemic, anti-inflammatory,
antioxidant, and lipid-lowering properties [501–503].

78. Prunus dulcis (Almond)

Prunus dulcis, or almond, is a plant from the Rosaceae family that is used as a remedy
for neurological and respiratory disorders, diabetes, and urinary tract infections [504]. Al-
mond has a high fiber content, which helps in ameliorating diabetes by suppressing appetite
and lowers blood sugar levels via increasing insulin production and decreasing the stom-
ach’s emptying time. Its pharmacological effects include antioxidant, anti-inflammatory,
hepatoprotective, anxiolytic, and nerve-improving properties. Almonds are rich in oleic
acid, linoleic acid, p-coumaric acid, anthocyanins, kaempferol, quercetin, and chlorogenic
acid [504,505].

79. Prunus persica (Peach)

Prunus persica or peach is a species from the Rosaceae family that is very useful in
improving blood circulation, blood clotting, constipation, and diabetes [506]. Peach inhibits
α-glucosidase and α-amylase activity and enhances insulin production by increasing
the regeneration of pancreatic islet β-cells [507,508]. Various bioactive compounds in
peaches, such as procyanidins, epicatechin, catechin, chlorogenic acid, quercetin, and
kaempferol, play a vital role in the secretion of insulin from clonal pancreatic β-cells and
have demonstrated DPP-IV inhibitory activity [507,509].

80. Punica granatum (Pomegranate)

Punica granatum or pomegranate (Lythraceae) is traditionally used for dysentery, diar-
rhea, piles, bronchitis, biliousness, and diabetes [510,511]. Recent studies have shown that
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it can stimulate insulin secretion, enhance glucose transporter type 4 (GLUT-4) transloca-
tion, and regulate blood glucose levels. The phytoconstituents isolated from pomegranate,
such as ellagic acid, gallotannins, anthocyanins, quercetin, kaempferol, luteolin glycosides,
linolenic, arachidic, and palmitoleic acids, may contribute to the insulin-releasing and
glucose-lowering properties of this plant [512,513].

81. Psidium guajava (Guava)

Psidium guajava (Myrtaceae), commonly known as guava, is widely used for dysentery,
diabetes, and diarrhea [514–516]. Studies conducted on its leaves have revealed that it
activates the AMPK and PI3K/AKT signaling pathways, improves hepatic glycogen accu-
mulation, and regulates the activity of superoxide dismutase (SOD), glucose transporter 2
(GLUT-2), and fasting blood sugar levels [517–520]. The antidiabetic activity of guava
may be attributed to compounds such as quercetin, avicularin, guaijaverin, tannins, and
triterpenes [521,522].

82. Raphanus sativus L. (Radish)

Raphanus sativus L. (Brassicaceae), also called radish, has been employed as an effective
remedy for diabetes, jaundice, gastric disorders, dyspepsia, and liver enlargement since
ancient times [523]. Radish seeds significantly decrease hyperglycemia by reducing insulin
resistance, limiting intestinal glucose absorption, and increasing glucose uptake in skeletal
muscles [524]. Myricetin, catechin, epicatechin, quercetin, p-coumaric acid, β-carotene, cam-
phene, anthocyanin, glucosinolates, and isothiocyanate are some of the phytoconstituents
in radish which that have been demonstrated to possess antioxidant, anti-inflammatory,
and radical-scavenging activity [525,526].

83. Rosmarinus officinalis L. (Rosemary)

Rosmarinus officinalis L., familiar as rosemary, is an important herb from the Lamiaceae
family and is commonly recognized as a flavor enhancer, food preservative, wound healer,
and antihyperglycemic and analgesic agent. It is also efficacious against mycosis, alopecia,
ultraviolet damage, skin cancer, inflammatory diseases, and diabetes [527,528]. Rosemary
has been suggested to act via several pathways to improve blood sugar control. It reduces
Irs1 protein levels, which can contribute to insulin resistance. It also recruits GLUT-4
receptors to the surface of muscle cells, facilitating glucose uptake from the bloodstream.
Additionally, it activates pathways (pAKT and pAMPK) that promote glucose uptake and
inhibit gluconeogenesis. These overall effects improve glucose utilization, leading to lower
blood sugar levels [529–531]. Moreover, rosemary contains several types of flavonoids,
carnosol, and carnosoic, rosmarinic, ursolic, oleanolic, and micromeric acids. The presence
of bioactive compounds may be responsible for its antimicrobial, antitumor, antithrombotic,
antidepressant, and antioxidant effects [527,532].

84. Rubus fruticosus (Blackberry)

Rubus fruticosus or blackberry is a member of the Rosaceae family and well-known
for its use in mouthwash to relieve gum inflammation and mouth ulcers. It is also used
for sore throats, respiratory disorders, anemia, diarrhea, dysentery, cystitis, diabetes, and
hemorrhoids [533]. Blackberry has α-amylase, α-glucosidase, and β-glucosidase inhibitory
activity, and reduces oxidative stress. This has been associated with its high content of
anthocyanins, cyanidins, kaempferol, quercetin, myricetin, p-coumaric acid, rutin, and
gallic acid [534–536].

85. Salvia hispanica L. (Chia seeds)

Salvia hispanica L. (Lamiaceae), also known as chia seeds, has a high nutritional
and medicinal value. Chia seeds are used to treat indigestion, hyperlipidemia, and dia-
betes [537,538]. Chia seeds decrease fasting plasma glucose and LDL cholesterol levels,
inhibit the production of pro-inflammatory cytokines (e.g., IL-6, Interleukin-2, and TNF-α),
reduce body weight, and have α-amylase and α-glucosidase inhibitory activity [539,540].
They are a source of myricetin, quercetin, kaempferol, chlorogenic acid, and caffeic acid,
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which have hepatoprotective, antidiabetic, antihypertensive, and antioxidant effects. They
also contain omega-3 fatty acids, which can enhance insulin sensitivity and reduce inflam-
mation [538].

86. Sesamum indicum (White sesame seeds)

Sesame seeds, also called Sesamum indicum (Pedaliaceae), are traditionally used for
wounds, amenorrhea, ulcers, asthma, hemorrhoids, inflammation, and diabetes [541,542].
Sesamin, the main bioactive compound in sesame seeds, can significantly ameliorate
diabetes by enhancing insulin sensitivity, reducing inflammation, boosting antioxidant
defenses, and regulating lipid metabolism [543]. Other phytochemicals in sesame seeds
include other lignans, such as sesamolin, and phytosterols. These are reported to de-
crease fasting and postprandial blood glucose, reduce cholesterol and oxidative stress, and
improve renal disorders, fat metabolism, cell viability, and insulin secretion [544–546].

87. Solanum lycopersicum L. (Tomato)

Solanum lycopersicum L. (Solanaceae) or tomato is vastly produced for consumption
worldwide and is also a beneficial remedy for dermatitis, cancer, hypertension, and hyper-
glycemia [547–549]. The underlying mechanisms of its hypoglycemic effects are through
regulation of the PI3K/Akt, FOXO1, and PPAR-γ signaling pathways. Tomato enhances
insulin signaling, improves glucose uptake, and modulates lipid metabolism [549]. Due
to its high lycopene content, tomato may help mitigate diabetes-induced inflammation.
Additionally, the presence of carotenoids may also contribute to improving insulin sensitiv-
ity [550,551]. Tomato also contains ferulic acid, β-carotene, tomatine, kaempferol, quercetin,
naringenin, p-coumaric acid, and caffeic acid, which exert antioxidant, anti-inflammatory,
antihyperglycemic, and neuroprotective effects [552,553].

88. Solanum melongena (Eggplant)

Solanum melongena (Solanaceae) or eggplant is a nutritious vegetable and an efficient
remedy for arthritis, diabetes, dyslipidemia, bronchitis, and asthma [554]. It has been
reported to inhibit α-amylase and α-glucosidase enzymes, inhibit gluconeogenesis, in-
crease the translocation of GLUT4, increase glucose uptake in skeletal muscle, and reduce
fatty acids, triglycerides, and cholesterol levels [555]. The bioactive constituents present in
eggplant include thiamin, niacin, chlorogenic acid, saponins, solasodine, and delphinidin.
These constituents have been associated with anti-inflammatory, antioxidant, antihyperten-
sive, antihyperlipidemic, anti-obesity, and hepatoprotective effects [556–558].

89. Spinacia oleracea (Spinach)

Spinacia oleracea (spinach) belongs to the Chenopodiaceae family. It is a folk remedy
for bloody stools, diarrhea, stomachaches, obesity, and diabetes [559]. It notably improves
diabetic retinopathy and hyperglycemia by modulating multiple pathways such as inhibi-
tion of excess AGE and carbonyl group production, glycation, and thiol group depletion
in bovine serum albumin [560]. Spinach aids insulin resistance by inhibiting increased
levels of serum C-reactive protein, tumor necrosis factor (TNF)-α, and Interleukin-6 [561].
Moreover, it is rich in β-carotenoids, lutein, zeaxanthin, vitamins, and minerals that also
exert hypoglycemic, hypolipidemic, anti-obesity, and antioxidant effects [562–564].

90. Syzygium aromaticum (Clove)

Syzygium aromaticum flower buds (Myrtaceae), typically known as clove, are a sea-
soning spice and an efficacious aid for increased gastritis, diabetes, and indigestion [565].
Clove is reported to improve insulin sensitivity, inhibit aldose reductase, prevent diabetic
complications such as neuropathy and nephropathy, regulate SIRT1 to enhance glucose
metabolism, and promote muscle glucose uptake, all of which assist the management
of diabetes. Phytoconstituents in clove include alkaloids, terpenes, tannins, phenolics,
steroids, flavonoids, glycosides, and saponins, which may mitigate diabetic complications
by decreasing insulin resistance [565–568]. Among them, eugenol acetate, eugenol, and gal-
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lic acid act via PPAR-γ activation, aldose reductase inhibition, sirtuin 1 (SIRT1) regulation,
and muscle glycolysis [566–568].

91. Syzygium cumini (Java plum)

Syzygium cumini (Java plum) belongs to the Myrtaceae family and is used to treat
asthma, bronchitis, sore throats, biliousness, dysentery, diabetes, and ulcers [569]. Its
pharmacological actions, such as stimulating clonal pancreatic β-cells to release insulin,
have been compared to those of sulfonylureas and biguanides [570]. A recent study
reported that Java plum seeds are effective in reducing plasma and urine glucose levels
in diabetic rabbits [571]. The Java plum is a good source of phytoconstituents such as
anthocyanins, malvidin-3-glucoside, petunidin-3-glucoside, ellagic acid, and the flavonoids
isoquercetin, kaempferol, and myricetin, which may be responsible for its antioxidant,
antibacterial, gastroprotective, and antidiarrheal properties [569].

92. Tamarindus indica L. (Tamarind)

Tamarindus indica L., also known as tamarind, belongs to the Fabaceae family. This
plant is mostly cultivated in the Indian sub-continent and other tropical regions. It is known
to effectively treat inflammation, stomach pain, sore throats, rheumatism, wounds, diar-
rhea, dysentery, fever, malaria, respiratory conditions, constipation, and eye diseases [572].
Beyond its culinary uses, tamarind offers a range of health benefits due to its antioxidant
and anti-inflammatory properties that aid digestion and the expulsion of mucus [577–580].
The presence of apigenin, anthocyanin, procyanidin, catechin, epicatechin, taxifolin, eri-
odyctiol, and naringenin help to control DM by inhibiting the activity of α-amylase and
α-glucosidase [573–575]. Among them, catechin, anthocyanin, and epicatechin notably
lower blood glucose levels via glucose-6-phosphatase inhibitory activity, improving blood
glucose tolerance and promoting the regeneration of β-cells [577].

93. Theobroma cacao (Cocoa)

Theobroma cacao (Malvaceae) is typically known as cocoa beans and is commercially
processed to make chocolate, particularly dark chocolate. It is a reputed remedy for measles,
malaria, toothache, and diabetes. Its antidiabetic effect is via improving insulin secretion,
GLUT4 translocation, and glucose uptake [577,578]. Moreover, it exerts inhibitory activity
on α-amylase and α-glucosidase, reduces ROS generation, and increases GSH and Nrf2,
thereby enhancing insulin secretion and β-cell survival [579,580]. Flavonoids, procyanidins,
catechin, and epicatechin have been implicated in mitigating diabetic complications and
have demonstrated antioxidant, anti-inflammatory, and hepatoprotective effects [581,582].

94. Trichosanthes cucumerina L. (Snake gourd)

Trichosanthes cucumerina L. (Cucurbitaceae) or snake gourd is an ethnomedicine for
diabetes, bronchitis, headache, cathartic, anthelmintic, indigestion, ulcers, and stomach
and skin disorders [583,584]. The roots, fruit, seeds, and leaf juice of snake gourd stim-
ulate β-cell insulin secretion, enhance glucose uptake in peripheral tissues, and reduce
intestinal glucose absorption. This antihyperglycemic effect may be attributed to its rich
content of carotenoids, gallic acid, neochlorogenic acid, caffeic acid, p-coumaric acid, rutin,
kaempferol, quercetin, ursolic acid, and oleanolic acid [583–585].

95. Trigonella foenum-graecum (Fenugreek seeds)

Trigonella foenum-graecum (Fabaceae), or fenugreek seeds, is reputed to be an effective
tonic for ulcers, sinusitis, hayfever, diarrhea, diabetes, and kidney diseases [586]. Studies
have documented their antidiabetic activity, with promising reductions in fasting and
postprandial blood glucose, an enhancement in glucose uptake, glucose tolerance, and
peripheral insulin action [592,593]. Phytoconstituents in fenugreek seeds, such as steroids,
alkaloids, flavonoids, polyphenols, and saponins, have anti-obesity, antihyperlipidemic,
antioxidant, anticancer, anti-inflammatory, and antifungal properties. Specific phytochemi-
cals, including trigonelline, diosgenin, and galactomannan, have been shown to enhance
insulin sensitivity, improve glucose metabolism, and reduce blood sugar levels [586–589].
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96. Vaccinium corymbosum (Blueberry)

Vaccinium corymbosum (Ericaceae), also called blueberry, is a widely used fruit with
medicinal properties that are useful for colds, inflammation, cardiovascular diseases, di-
abetes, and ocular disorders [590,591]. It exerts its antidiabetic activity by inhibiting
α-amylase and α-glucosidase activity and ameliorating diabetic retinopathy [596,597]. It is
rich in pectin, anthocyanins, anthocyanidins, protocatechuic acid, and petunidin, which
may contribute to its antidiabetic, antiobesity, antioxidant, cardioprotective, neuroprotec-
tive, and immunomodulatory effects [592].

97. Vigna radiata (Mung bean)

Vigna radiata (Leguminosae), or mung bean, is an important legume crop with a high
nutrient value. It is a helpful remedy for heatstroke, gastrointestinal disorders, dermati-
tis, hyperglycemia, hypertension, hyperlipidemia, and melanogenesis [593,594]. Mung
bean significantly reduces serum glucose, total cholesterol, and triglycerides levels. It
also inhibits gluconeogenesis and glycolysis, as well as α-glucosidase and α-amylase
activity [595–597]. Mung bean is a rich source of proteins, vitamins, minerals, and bioactive
compounds that include quercetin, myricetin, kaempferol, catechin, vitexin, isovitexin,
coumaric acid, luteolin, and caffeic and gallic acid, which all help enhance insulin sensitivity
and reduce oxidative stress and blood glucose levels [598,599].

98. Vitis vinifera (Grapes)

Vitis vinifera (Vitaceae), commonly called grapes, can aid in diarrhea, wounds, hepatitis,
stomachaches, cardiovascular diseases, varicose veins, hemorrhoids, atherosclerosis, and
diabetes [600]. It is known for regenerating clonal pancreatic β-cells and regulating plasma
glucose levels by inhibiting the intestinal absorption of glucose [601]. The phytomolecules
found in grapes, such as triterpenoid acids, gallic acid, catechin, epicatechin, gallocate-
chin, p-coumaric, and ferulic, acids may contribute to its anti-inflammatory, antioxidant,
anticholesterolemic, and glucose-lowering properties [602].

99. Zea mays (Corn)

Zea mays (Poaceae), or corn, is a popular ethnomedicine for malaria, bladder stones,
heart diseases, and diabetes [603,604]. Corn is a superfood that is rich in fiber and nu-
trients. Recent findings reveal that corn silk (the extended stigmas of Z. mays flowers)
improves insulin resistance by lowering LDL cholesterol, total cholesterol, triglyceride, and
malondialdehyde levels. It also reduces body weight and the accumulation of lipids in
the liver [605]. Moreover, corn possesses antioxidant, anti-inflammatory, antimutagenic,
anti-angiogenesis, and anticarcinogenic properties. One in vivo study revealed that the
flavonoid glycoside hirsutrin was the main constituent beneficial in diabetic complications
through suppressing aldose reductase and the formation of galactitol [606]. The antidia-
betic properties of corn have been attributed to flavonoids, alkaloids, saponins, phenols,
tannins, and phytosterols that could inhibit α-amylase and α-glucosidase and aid diabetic
nephropathy [607,608].

100. Zingiber officinale (Ginger)

Zingiber officinale (Zingiberaceae), commonly called ginger, is a traditional treatment
for muscular aches, arthritis, rheumatism, diabetes, hypertension, infections, and helminthi-
asis [609]. Ginger plays a significant role in regulating blood sugar levels by promoting
the actions of GLUT-4 and PPAR-γ, which help muscles absorb glucose more efficiently.
It also protects insulin-producing β-cells in the pancreas [610]. Ginger is rich in vari-
ous compounds (e.g., gingerols) that have a range of pharmacological effects, including
anti-inflammatory and neuro- and cardio-protective properties [611].
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Table 1. Traditional uses, pharmacological actions, and phytoconstituents of dietary plants.

Dietary Plants
Plant Parts
Used Traditional Uses Pharmacological Actions Diabetic Model Treatment Dose Duration of

Treatment
Phytochemicals References

Scientific Name Common
Name

1. Abelmoschus
esculentus L. Okra Fruit, roots

Chronic kidney disease,
T2DM, cardiovascular
diseases

Blood glucose↓, TC↓, TG↓,
LDL-C↓, VLDL↓, HDL↑,
body weight↓, α-amylase
and α-glucosidase activity↓

STZ-induced T2DM
mice
(n = 10)

200–400 mg/kg/day 56 days

Oxalic acid, iodine, pectin,
flavonoids, saponins,
alkaloidsd-galactose,
L-rhamnose, D-galacturonic

[142–144,612]

2. Actinidia chinensis Kiwi Fruit Dyspepsia, vomiting, loss of
appetite, diabetes

serum microRNA-424↑,
Keap1↑, Nrf2↑, IL-6↓, IL-1↓,
SOD↑, GSH↑, ALT↓, AST↓,
inflammation↓

T2DM patients
(50–70 years old,
n = 55–61)

10 mg/kg/day 270 days
Triterpenoids, polyphenols,
β-carotene, lutein,
xanthophylls, amino acids

[145–148]

3. Aegle marmelos L. Stone apple Fruit

Inflammation, asthma,
hyperglycemia, febrifuge,
hepatitis, analgesic,
antifungal agent, colitis,
flatulence, dysentery, fever

Glucose tolerance↑,
α-amylase and
α-glucosidase activities↓,
insulin secretion↑, intestinal
glucose absorption↓, BMI↓,
polydipsia↓, polyphagia↓

STZ-induced T2DM
diabetic rats (n = 9–11) 250–500 mg/kg/day 28 days

Marmelosin, psoralen,
limonene, citronellal, citral,
marmin, skimmianine,
aegelin, fagarine, lupeol,
cineol,
halfordiol, citronellal,
cuminaldehyde, eugenol,
marmesinin

[149–151]

4. Agaricus bisporus Mushroom Rhizome
Cold, cough, influenza,
asthma, cancer, diabetes,
hepatic disorders

Blood glucose↓, TC↓, TG↓,
LDL-C↓, insulin secretion↑,
glucagon secretion↓

STZ-induced
Sprague-Dawley rats
(n = 6–8)

200 mg/kg/day 21 days

Lectins, β-glucans,
polyphenols,
p-hydroxybenzoic acid,
protocatechuic acid, gallic
acid, cinnamic, p-coumaric
acid, ferulic acid,
chlorogenic acid,
and catechin

[152–156]

5. Allium cepa Onion Fruit

Wound healing, scars,
keloids, bee sting
inflammation,
dysmenorrhea, vertigo,
fainting, migraine, bruises,
earache, jaundice, pimples,
diabetes

Blood glucose↓, FBG↓, TC↓,
TG↓ α-amylase and
α-glucosidase activity↓,
insulin secretion↑,
β-cell protection↑,
oxidative stress↓

Alloxan-
induced diabetic rats
(n= 27)

200–300 mg/kg/day 42 days

Quercetin, lectin, steroids,
catechol, thiocyanate,
isoflavones, humulone,
quercetin, apigenin, rutin,
myricetin, kaempferol,
catechin, resveratrol, ajoene,
phenolics, phenolic acids,
and anthocyanins

[157–161]

6. Allium sativum L. Garlic Fruit

Cold, fever, headache,
abdominal pain, sinus
congestion, gout,
rheumatism, hemorrhoids,
asthma, bronchitis, cancers,
cough cardiovascular
diseases, arthritis,
tuberculosis, rhinitis,
malaria, dermatitis,
enlarged spleen, fistula, UTI,
kidney stone

Blood glucose↓, TC↓, TG↓,
GLUT-4 activity↑, β-cell
function↑, glucose uptake↑,
creatinine↓, uric acid↓,
urea↓, AST and ALT↓,
insulin sensitivity↑, insulin
secretion↑, insulin
production↑, glucose
tolerance↑,

STZ-induced
Wistar rats
(n = 6)

100–500 mg/kg/day 14 days

AJoene, cysteine, allicin,
β-resorcylic acid, gallic acid,
rutin, protocatechuic
acid, quercetin

[162–167]
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Table 1. Cont.

Dietary Plants
Plant Parts
Used Traditional Uses Pharmacological Actions Diabetic Model Treatment Dose Duration of

Treatment
Phytochemicals References

Scientific Name Common
Name

7. Aloe barbadensis Mill. Aloe vera Leaves

Wound healing,
constipation, colic, worm
infestation, dermatitis,
hypertension

FBG↓, TG↓, TC↓, AGE
formation↓, body weight,
diabetic nephropathy↓

STZ-induced
Wistar rats
(n = 7)

300 mg/kg/day 49 days
Flavonoids, acemannam,
flavones, quinone, galactan,
pectin, ornanic acids

[166,168–
173,613]

8. Anacardium
occidentale L. Cashew nut Nut, leaves,

bark

Fevers, aches, pains,
diarrhea, diabetes, skin
irritations, arthritis

Blood glucose↓, SOD↑, IR↓,
gluconeogenesis↓,
insulin secretion↑

Alloxan-induced
Wistar rats
(n = 6)

100–250 mg/kg/day 40 h

Arginine, isoleucine, leucine,
lysine, arachidic acid,
lignoceric acid, gadoleic
acid, linolenic acid,
cyanidin, peonidin,
anacardic acid, cardanol,
limonene, lactone,
palmitic acid

[174–177]

9. Ananas comosus L. Pineapple Fruit, peel,
leaves

Pain, skin diseases, edema,
wound, indigestion,
diabetes and blood clotting

IR↓, insulin sensitivity↑,
HDL-c↑, HbA1c↓, body
weight↓, LPL activity↑,
HMGCoA reductase
activity↓

Alloxan- induced
Wistar rats
(n = 6)

400 mg/kg/day 15 days
Bromelain, flavonoids,
coumaric acid, ellagic acid,
ferulic acid, chlorogenic acid

[178–184]

10. Apium graveolens Celery Leaves, seeds,
roots

Arthritis, spleen
dysfunction, diabetes, sleep
disturbances, CNS disorders

Blood glucose↓, PPBG↓,
plasma insulin↑, GLUT-4
transloaction↑,
mitochondrial dysfunction↓,
insulin sensitivity↑,
inflammation↓

Elderly diabetic
patients above 60 years
(n = 8, 5 female, 3 male)

250 mg/kg/3 times
a day 12 days

Quercetin, thymoquinone,
frocoumarin coumaric acid,
gallic acid, flavonoids,
alkaloids, steroids,
limonene, selinene,
glycosides

[185–190,614]

11. Artocarpus
heterophyllus Jackfruit

Fruit, leaves,
bark, seeds,
roots

Wound healing, cancer,
diabetes

PPBG↓, FBG↓, IR↓, HbA1c↓,
α-amylase and
α-glucosidase activities↓,
HDL-c↑, LDL↓

T2DM patients
(18–60 years,
n = 20)

30,000 mg/kg/day 84 days

Carotenoids, tannins,
volatile acids, sterols,
chrysin, silymarin,
isoquercetin

[193–197]

12. Asparagus officinalis Asparagus Stem Asthma, liver, rheumatic,
kidney, bladder diseases

Blood glucose↓, β-cell
function↓, FBG↓, TG↓,
serum insulin↑, body
weight↓, hepatic glycogen↓

STZ-induced
Wistar rats
(n = 6)

250–500 mg/kg/day 28 days
Asparagine, tyrosine,
arginine, flavonoid, saponin,
resin, tannin

[198–202]

13. Avena sativa Oats Grains Dermatitis, cancer, diabetes,
cardiovascular disease

PPBG↓, HbA1c↓, body
weight↓, HDL↑, MDA↓,
FBG↓, IR↓, TC↓, TG↓,
LDquinol-C↓, SOD↑

T2DM patients
(50–70 years,
n = 14)

1 IU/kg/ day 28 days

β-glucan, tocopherols,
tocotrienols, phenolic acids,
sterols, selenium,
avenanthramides

[203–207,615]

14. Averrhoa carambola L. Star fruit Fruit

Chronic headache, fever,
cough, gastroenteritis,
diarrhea, diabetes,
ringworm infections, skin
inflammations hypertension,
hyperglycemia

Blood glucose↓, TG↓, TC↓,
FFAs↓, serum insulin↑,
glucose uptake↑, glycogen
synthesis↑

STZ-induced Kunming
mice (n = 10) 150–1200 mg/kg/day 21 days

Catechin, epicatechin,
procyanidins, gallic acid,
protocatechuic acid, ferulic
acid, rutin, isoquercitrin,
quercitrin,
anthocyanin, anthocyanidin,
leucoanthocyanidins,
triterpenoids

[208–212,616]
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15. Azadirachta indica Neem
Leaves, stem,
bark, flower,
roots, fruit

Fever, skin diseases,
infection, inflammation and
dental disorders

PPBG↓, FBG↓, HbA1c↓, IR↓,
endothelial function↑,
oxidative stress↓, systemic
inflammation↓

T2DM patients
(30–65 years old,
n = 20)

125–500 mg/kg/twice
a day 84 days

Nimbidin, nimbin, nimbidol,
quercetin nimbosteron,
saponin, tannin, flavonoids

[213–217]

16. Beta vulgaris Beetroot Fruit
Dandruff, loss of libido,
stomachaches, diabetes,
arthritis, constipation

Blood glucose↓, HbA1c↓,
FBG↓, TC↓, TG↓, LDL-C↓,
IR↓, HDL↑, ALT↓, AST↓,
gluconeogenesis↓,
α-amylase and
α-glucosidase activity↓

T2DM patients
(57 ± 4.5 years,
n = 44)

100,000 mg/kg/day 56 days

Betalains, betanin,
carotenoids, coumarins,
sesquiterpenoids, betagarin,
betavulgarin, quercetin,
kaempherol, tiliroside,
astragalin, rhamnocitrin,
rhamnetin,
betavulgarosides,
betacyanin

[218–220,617]

17. Brassica juncea Mustard Seeds
Arthritis, foot-ache,
lumbago, diabetes,
rheumatism

Blood glucose↓, FBG↓, TC↓,
TG↓, prediabetic IR↓,
glucose tolerance↑, insulin
secretion↑, intestinal
glucose absorption↓

Fructose-induced
Sprague Dawley rats
(n = 6)

100 mg/kg/day 30 days

Chlorogenic acid, sinigrin,
p-coumaric acid, vanillic
acid, flavonoids, chlorogenic
acid, polyphenols, allyl
isothiocyanate, cinnamic
acid, kaempferol

[221–224]

18. Brassica oleracea
var. capitata Cabbage Flower

gastritis, peptic ulcers,
irritable bowel syndrome,
diabetes, idiopathic
cephalalgia

FBG↓, TC↓, TG↓, LDL-C↓,
HDL↑, insulin sensitivity↑,
β-cell function↑

Alloxan-induced
diabetic rabbits
(n = 7)

500 mg/kg/day 30 days

Myricetin, quercetin,
kaempferol, apigenin,
luteolin, cyanidin daidzein,
genistein, glycitein,
biochanin A, formononetin

[225–227]

19. Brassica oleracea
var. italica Broccoli Flower

Xerophthalmia,
hyperlipidemia,
fibromyalgia, cancer,
diabetes

Blood glucose↓, lipid
peroxidation↓, IL-6↓,
TNF-α↓, HbA1c↓, insulin
sensitivity↑, β-cell
function↑, glucose
production↓.

T2DM Albino
Wistar Rats
(n = 8)

400 mg/kg/day 42 days

Glucosinolates,
isothiocyanates,
sulforaphane, sinapic acid,
gallic acid, vanillic acid,
p-coumaric acid, ferulic acid,
chlorogenic acid, apigenin,
kaempferol, luteolin,
quercetin, and myricetin

[228,229,618]

20. Camellia sinensis Tea Leaves

Flatulence, indigestion,
vomiting, obesity, diarrhea,
hyperglycemia, stomach
discomfort

Blood glucose↓, IR↓, MDA↓,
oxidative stress,
inflammatory cytokines↓,
α-amylase and
α-glucosidase activity↓,
insulin release↑, glycation↓,
glucose tolerance↑

STZ-induced
Wistar rats
(n = 8)

100–200 mg/kg/day 28 days

Caffeine, theanine,
proanthocyanidins,
myricetin, kaempferol,
quercetin, chlorogenic acid,
coumarylquinic acid,
theogallin, catechins,
epicatechin

[230–233,619]
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21. Capsicum annuum L. Red pepper Seeds Dyspepsia, ulcer, anorexia,
GERD and diabetes.

FBG↓, HbA1c↓,
inflammatory cytokines↓,
TG↓, TNF-α↓, IL-6↓, plasma
insulin↑, gluconeogenesis↓,
AMPK↑, FOXO1↑, glucose
uptake↑, GLUT-4
translocation↑

High fat died induced
C57BL/KsJ
(n = 8)

200 mg/kg/day 56 days

Lycopene, flavonoids,
carotenoids, flavones,
apigenin, quercetin,
isoquercetin, capsinoids,
polyphenols

[234–238]

22. Carica papaya Papaya Fruit, seeds,
leaves

Hypertension, fever
(dengue), obesity, jaundice,
UTI, ulcer, constipation,
bronchitis, cough, diarrhea,
asthma, piles, malaria,
wound healing

Blood glucose↓, TG↓, TC↓,
α-amylase and
α-glucosidase activities↓,
oxidative stress↓

STZ-induced
Wistar rats
(n = 6)

750–3000 mg/
100 mL/day 28 days

Papain, quercetin,
kaempferol, p-coumaric
acid, carpinine, carpaine,
choline, β-carotene, linalool,
oleic acid, linolenic acid

[239–242]

23. Carissa carandas Bengal
currant Fruits

Anorexia, brain disease,
cough, asthma, constipation,
diarrhea, diabetes, pain,
pharyngitis, scabies, leprosy,
malaria, myopathic spams,
fever, epilepsy, seizures

Blood glucose↓,
inflammation↓,
α-amylase and
α-glucosidase activity↓

Alloxan-induced
albino rats
(n = 5)

400 mg/kg 1 day
Lignans, flavonoids,
steroids, phenolic acids,
alkaloids

[243–247]

24. Catharanthus roseus L. Vinca
Rosea

Flowers,
leaves

Cancer, diabetes, stomach
disorders, kidney, liver,
cardiovascular disorders

Blood glucose↓, insulin
secretion↑,
β-cell function↑, TC↓,
creatinine↓

Alloxan- induced
Albino rabbits (n = 5) 0.5–1 mg/kg/day 24 h

Gallic acid, rutin,
p-coumaric acid, ajmalicine,
vindoline, catharanthine,
vinblastine, vincristine,
caffeic acid, quercetin,
kaempferol, syringic acid,
chlorogenic acid, ellagic
acid, coumarins

[248–252]

25. Centella asiatica Centella
leaves Leaves

Leprosy, lupus, varicose
ulcers, eczema, psoriasis,
diarrhea, fever, amenorrhea,
female genitourinary tract
infections, diabetes, anxiety

Blood glucose↓,
insulin sensitivity↑,
oxidative stress↓,
inflammation↓

STZ-induced
Sprague-Dawley rats
(n = 6)

500–1000 mg/kg/day 14 days

Asiaticoside, madecassic
acid, madecassoside,
centellase, quercetin,
kaempferol, phytosterol

[253–256]

26. Chenopodium quinoa Quinoa Grains Dyslipidemia, diabetes,
heart disease

Blood glucose↓, FBG↓, IR↓,
TC↓, TG↓, LDL-C↓,
α-glucosidase activity↓,
lipid accumulation↓,
glucose tolerance↑, insulin
sensitivity↑

High fat diet induced
C57BL/6J mice (n = 6) 2000 mg/kg/day 84 days

Saponins, phytosterols,
phytoecdysteroids,
phenolics, tocophenols,
betalains, tannins, glycine
betaine

[257–263]

27. Cicer arietinum Chickpea Grains
Digestive diseases, cancer,
cardiovascular disease,
diabetes

Blood glucose↓,
inflammation↓, organ
function↑, intestinal
dysbiosis↓, α-amylase,
α-glucosidase and DPP4
activity↓, carbohydrate
metabolism↑, body weight↓

STZ-induced HFF rats
(n = 7) 3000 mg/kg/day 28 days

Uridine, adenosine,
tryptophan,
3-hydroxy-olean-ene,
biochanin

[264–269,620]
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28. Cinnamomum verum Cinnamon Bark

Nausea, vomiting, fever,
halitosis, arthritis, coughing,
hoarseness, frigidity,
cramps, intestinal spasms,
bronchitis, asthma,
odontalgia, cardiac diseases,
diarrhea, vaginitis,
neuralgia, rheumatism,
piles, urinary disease

Blood glucose↓, GLUT-4
translocation↑, glucose
uptake↑, Mitochondrial
UCP-1↑, insulin secretion↑,
α-glucosidase activity↓,

STZ-induced
Wistar rats
(n = 20)

30 mg/kg/day 22 days

cinnamaldehyde,
cinnamates, cinnamic acid,
eugenol, cinnamyl acetate,
cubebene, terpinolene,
linalool, linalyl acetate,
benzyl cinnamate,
piperitone, β-sitosterol,
flavanol, glucosides,
coumarin, protocatechuic
acid, vanillic acid,
syringic acid

[270–273]

29. Citrullus lanatus L. Water-
melon Fruit, seeds

Gastrointestinal disorders,
urinary disorders,
aphrodisiac, fever,
laxative, emetic

FBG↓, serum lipid profile↓,
glucose-6-phosphatase↓,
lipid peroxidation↓,
GLUT4↑, GLUT2↑,
hexokinase activity↑

Alloxan-induced Wistar
Albino rats (n = 3) 500–1000 mg/kg/day 14 days

Stigmasterol, quinic acid,
malic acid, epicatechin,
caffeic acid, rutin,
p-coumaric acid, quercetin,
ferulic acid, scopoletin,
apigenin, kaempferol, β
carotene, citrulline,
lycopene, α tocopherol

[274–277]

30. Citrus limon Lemon Fruit, peel,
leaves

Cough, scurvy, cold, fever,
rheumatism, sore throat,
diabetes, irregular
menstruation

Serum glucose↓, body
weight↓, TC↓, TG↓, LDL↓,
VLDL↓, GSH↑, insulin
sensitivity↑, GLUT-4
translocation↑, AGE
formation↓,
Glucose uptake↑

STZ-induced
Wistar rats
(n = 6)

200–400 mg/kg/day 15 days

Limocitrin, hesperidin,
diosmin, hesperetin,
didymin, naringin,
naringenin, tangeretin,
rutine, quercetin, β-pinene,
γ-terpinene, D-limonene,
ferulic acid

[278–285]

31. Citrus maxima Pomelo Fruit, peel

Asthma, fever, ulcer,
diarrhea, cough,
Alzheimer’s disease,
diabetes, insomnia

Blood glucose↓, TG↓, TC↓,
HDL↑, LDL↓, α-amylase,
α-glucosidase and
angiotensin I-converting
enzyme activity↓, body
weight↓, glucose tolerance↑

Alloxan- induced
diabetic rats
(n = 7)

200–600 mg/kg/day 14 days

Terpenoids, sterols,
carotenoids, polyphenols,
chlorogenic acid, ferulic
acid, caffeic acid, gallic acid,
ρ-coumaric acid.

[286–288,621]

32. Citrus reticulata Orange Fruit, peel
Alzheimer’s disease, cough,
phlegm, diabetes, hepatic
steatosis, cancer

mRNA expression↑,
GLUT-4 translocation↑,
insulin sensitivity↑, serum
fructosamine level↓, glucose
tolerance↑

STZ-induced
Wistar rats
(n = 6)

100 mg/kg/day 28 days
Flavonoids hesperidin,
quercetin, naringin,
nobiletin, tangeretin

[289–293]

33. Cocos nucifera Coconut Fruit, husk,
water

Diarrhea, diabetes,
dermatitis, renal diseases,
stomachaches, fever, asthma,
abscesses, amenorrhea,
gonorrhea, menstrual
disorders

Blood glucose↓, α-amylase
and α-glucosidase activity↓,
DPPH free radicals↓, IR↓,
oxidative stress↓,
neuropathy↓, β-cell
regeneration↑

STZ-induced
Wistar rats
(n = 6)

250–500 mg/kg/day 28 days

Chlorogenic, gallic, ferulic,
salicylic, coumaric acids,
glycosides, rutin, quercetin,
vanillin, catechin,
epicatechin, neochlorogenic
acid, chlorogenic acid, lutein

[295–302]
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34. Coffea Arabica L. Coffee Leaves, fruit,
beans

Flu, anemia, edema,
asthenia., asthma, backache,
cough, jaundice, diarrhea,
intestinal pain, migraine,
headache, fever, purulent
wounds, pharyngitis,
diabetes, stomatitis

Blood glucose↓, insulin
secretion↑, α-amylase and
α-glucosidase activity↓,
nephropathy↓, plasma
insulin↑, IR↓, TG↓

STZ-induced
Wistar rats
(n = 6–8)

1000 mg/kg/day 90 days

Chlorogenic acids, caffeic,
p-coumaric, vanillic, ferulic,
protocatechuic acids,
flavonoids, alkaloids,
caffeine, sitosterol,
stigmasterol, coffeasterin,
kaempherol, quercetin,
sinapic, quinolic,
trigonelline, caffeoylquinic,
dicaffeoylquinic

[303–305,622]

35. Colocasia esculenta Taro Stem, leaves
Rheumatic pain, diabetes,
hypertension, pulmonary
congestion

Blood glucose↓, HbA1c↓,
TC↓, TG↓, LDL-C↓, VLDL↓,
HDL↑, body weight↓

STZ-induced
Wistar rats
(n = 6)

405–810 mg/kg/day 28 days

Tannins, phytates, oxalates,
tryptophan, chlorogenic
acid, anthraquinone, vitexin,
catechins, apigenin,
cinnamic acids, isovitexin,
orientin, isoorientin,
rosmarinic acid

[306–310]

36. Coriandrum sativum Coriander Seeds, leaves
Diarrhea, flatulence, colic,
indigestion, gastrointestinal
diseases, diabetes

Diabetic neuropathy↓,
Blood glucose↓, MDA↓,
GSH↑, SOD↑, TC↓, TG↓,
LDL-C↓, AGEs formation↓,
lipid peroxidation↓,
oxidative stress↓, TNF-α↓

STZ-NAD induced
Wistar rats
(n = 6)

100–400 mg/kg/day 45 days

Flavonoid, tocopherol,
tocotrienol sterol,
carotenoids, terpenoids,
steroids, saponin, tannin,
alkaloids

[302,311–314]

37. Crocus sativus L. Saffron Flower stigma CNS diseases, diabetes,
obesity, cancer, dyslipidemia

Blood glucose↓, MDA↓,
NO↓, GSH↑, SOD↑, TC↓,
TG↓, LDL-C↓, α-amylase
and α-glucosidase activity↓,
inflammation↓

STZ-induced
Wistar rats
(n = 9)

10–40 mg/kg/day 28 days
Crocin, β carotenes,
crocetin, picrocrocin,
zeaxanthene, safranal

[315–320]

38. Cuminum Cyminum L. Cumin
seeds Seeds

Diarrhea, dyspepsia,
epilepsy, toothache,
whooping cough, flatulence,
indigestion, diabetes,
jaundice

Blood glucose↓, AGEs
formation↓, HbA1c↓,
creatinine↓, blood urea
nitrogen↓, serum insulin↑,
oxidative stress↓,
nephropathy↓

STZ-induced
Wistar rats
(n = 6)

200–600 mg/kg/day 28 days

Carvacrol, carvone,
α-pinene, limonene,
γ-terpinene, linalool,
carvenone, p-cymene, cumin
aldehyde, limonene, α- and
β-pinene, terpinenes,
safranal, and linalool

[321–323]

39. Cucumis sativus Cucumber Fruit, seeds

Sunburn, skin irritation,
constipation, thermoplegia,
gall bladder stone,
hyperdipsia, diabetes

Blood glucose↓ IR↓, body
weight↓, insulin sensitivity↑,
gluconeogenesis↓, glucagon
secretion↓

STZ-induced
Wistar rats
(n = 6)

200–800 mg/kg/day 9 days

Cucurbitacin, cucumerin,
cucumegastigmanes vitexin,
orientin, apigenin,
isoscoparin

[324–327]

40. Cucurbita pepo L. Pumpkin Fruit, seeds

Dermatitis, depression,
irritable bladder, intestinal
inflammation, prostate
enlargement, hyperglycemia

Blood glucose↓, TC↓, TG↓,
LDL-C↓, HDL↑, IR↓, ROS↓,
SOD↑, GSH↑, MDA↓

STZ-induced T2DM
mice
(n = 10)

400 mg/kg/day 56 days

β-carotene, zeaxanthin,
lutein, flavonoids, alkaloids,
polysaccharides,
polyphenols

[328–332]
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41. Curcuma longa L. Turmeric Fruit

Cough, diabetes, arthritis,
gall bladder stones,
dermatitis, cancer, intestinal,
stomachic diseases

Blood glucose↓, FBG↓,
insulin sensitivity↑, β-cell
function↑, IR↓, GLUT-2
activity↑, insulin secretion↑,
glucose uptake↑

STZ-NA induced
Wistar rats
(n = 6)

30–60 mg/kg/day
(n = 6) 30 days

Caffeic acid, curdione,
coumaric, caffeic acid,
casuarinin, curcuminol,
isorhamnetin, valoneic acid,
eugenol, corymbolone,
demethoxycurcumin

[333–337]

42. Daucus carota Carrot Fruit

Diarrhea, constipation,
intestinal inflammation,
weakness, illness, diabetes,
rickets

Blood glucose↓ IR↓,
Obesity↓, body weight↓,
BMI↓, α-amylase and
α-glucosidase activity↓

High fructose induced
Wistar rats
(n = 6–14)

50 mL/kg/ day 56 days

Carotenoid, polyacetylenes,
ascorbic acid, α and
β-carotene, lutein, lycopene,
anthocyanins

[338–341,623]

43. Ficus carica Fig Fruit, leaves,
bark, roots

Dermatitis, leprosy, cancer,
anemia, diabetes, paralysis,
urinary tract infection, ulcer,
liver diseases

FBG↓, PPBG↓, TG↓, HDL↑,
LDL↓, VLDL↓, TC↓,
pancreatic β-cell apoptosis↓,
pancreatic AMPK↑,
caspase-3↓, body weight↓

STZ-induced
C57BL/6 mice (n =12) 2000 mg/kg/day 42 days

Eugenol, anthocyanins,
volatile compounds,
phenolic acids, flavones,
flavanols

[342–347]

44. Fragaria ananassa Strawberry Fruit, leaves
Wound healing, platelet
aggregation, obesity,
diabetes

Blood glucose↓, IR↓, insulin
secretion↑, α-amylase and
α-glucosidase activities↓,
plasma creatinine↓, MDA↓,
TNF-α↓, IL-6↓, caspase-3↓

STZ-induced
Albino rats
(n =4)

50–200 mg/kg/day 30 days

Quercetin, kaempferol,
rutin, gallic acid,
chlorogenic acid, caffeic
acid, ellagitannins,
octadecatrienoic acid,
vitamin C and E, folic acid,
carotenoids, anthocyanins,
gallotannins

[263,348–
351,624]

45. Glycine max Soya bean Seeds, leaves
Osteoporosis,
cardiovascular disease,
diabetes

Blood glucose↓, FBG↓, IR↓,
TC↓, TG↓, LDL-C↓,
α-glucosidase activity↓,
HbA1c↓, HDL↑, body
weight↓, glucose uptake↑

T2DM obese patients
(43–51 years,
n = 15)

2000 mg/kg/day 84 days

β-conglycinin, phenolic
acids, flavonoids,
isoflavones, saponins,
phytosterols, sphingolipids

[352–356,625]

46. Helianthus annuus Sunflower Flowers,
seeds

Diabetes, nephrotoxicity,
cardiovascular disease,
hematologic disorders

Blood glucose↓,
nephropathy↓, FBG↓, BMI↓,
body weight↓, AGEs
formation↓, DPPH↓, NO↓,
urea↓

Alloxan-
Induced
Albino rats
(n = 6)

150–600 mg/kg/day 21 days

Flavonoids, alkaloids,
saponins, tocopherols,
carotenoids, saponins,
tannins, chlorogenic acid,
and caffeic acid

[357–360]

47. Hibiscus rosa-sinensis
Linn. China rose Flowers,

leaves
Tumor, hairloss, infertility,
diabetes, wounds

Blood glucose↓, insulin
secretion↑, β-cell function↑,
TC↓, TG↓, hepatic
glycogen↓, SOD↑

STZ-induced Long
Evans rats (n = 6–8) 250–500 mg/kg/day 28 days

Quercetin, cyanidin,
ascorbic acid, genistic acid,
lauric acid, thiamine, niacin,
margaric acid, calcium
oxalate, hentriacontane

[361–365]
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48. Hylocereus undatus Dragon
fruit Fruit, seeds Diuretic, healing agent,

laxative, gastritis aid

Blood glucose↓, MDA↓,
FBG↓, SOD↑, GLUT2↑,
oxidative stress↓

STZ-induced Sprague
Dawley rats
(n = 6)

250–500 mg/kg/day 35 days

Lycopene, β-carotene,
betacyanin, oleic acid,
octacosane, phthalic acid,
eicosane, tetratriacontane,
tacosane, campesterol
linoleic acid, palmitic acid,
gallic acid, syringic acid,
protocatechuic acid,
p-coumaric acid

[366–368,626]

49. Ipomoea batatas Sweet
potato Fruit

Aphrodisiac, burns, catarrh,
diarrhea, fever, nausea,
splenosis, stomach distress,
anemia, tumors,
hypertension, prostatitis,
asthma,

Blood glucose↓, IR↓, Insulin
sensitivity↑, glucose
tolerance↑, insulin
secretion↑

T2DM patients
(58 ± 8 years, n = 6) 4000 mg/kg/day 42 days

Anthraquinones, coumarins,
flavonoids, saponins,
tannins, phenolic acids,
quercetin, chlorogenic acid,
terpenoids, β-carotene,
zeaxanthin, lutein,
anthocyanins

[369–373,627]

50. Juglans regia L. Walnut Nut, leaves

Curing bacterial infections,
stomachaches, thyroid
issues, diabetes. cancer,
heart conditions, sinusitis

Blood glucose↓, α-amylase
and α-glucosidase activity↓,
PTP1B↓

STZ-induced
Wistar rats
(n = 7)

25–100 mg/kg/day 28 days

tocopherol, gallic acid,
protocatechuic acid, caffeic
acid, chlorogenic acid,
catechin, vanillic acid,
epicatechin, p-coumaric acid,
isoquercitrin, quercetin,
luteolin, kaempferol,
and apigenin

[374–377]

51. Lactuca sativa Lettuce Leaves Hyperglycemia, osteodynia,
inflammations

FBG↓, TC↓, TG↓, LDL-C↓,
HDL↑, β-cell function↑,
SOD↑, GSH↑, glucose
production↑

STZ-induced
Wistar rats
(n =10)

50 mg/kg/day 28 days

flavonoids, quercetin,
flavonols, anthocyanins,
hydroxycinnamoyl
derivatives

[378–382]

52. Lagenaria siceraria Bottle
gourd

Fruit, leaves,
seeds

Jaundice, diabetes,
constipation, flatulence,
insomnia, ulcer, piles, colitis,
insanity, hypertension,
congestive cardiac failure,
skin diseases, headaches

Blood glucose↓, HbA1c↓,
FBG↓, body weight↓, TC↓,
TG↓, insulin production↑,
glucose tolerance↑,
intestinal glucose
absorption↓

STZ-induced
Wistar rats
(n = 6)

200–400 mg/kg/day 15 days

Isovitexin, isoorientin,
saponarin, fucosterol,
campesterol, cucurbitacin B,
cucurbitacin D, cucurbitacin
E, isoquercitrin, kaempferol,
gallic acid, and
protocatechuic acid

[383–386]

53. Laurus nobilis Bay leaves Leaves

Stomachaches, phlegm, cold,
sore throat, headache,
indigestion, flatulence,
eructation, epigastric
bloating, diabetes

Blood glucose↓, β-cell
function↑, α-glucosidase
activity↓, Insulin
production↑,
β-cell regeneration↑

STZ-induced
Wistar rats
(n = 6)

200 mg/kg/day 28 days

Kaempferol, syringic acid,
quercetin, apigenin, luteolin,
lauric acid, palmitic acid,
linoleic acid, lutein, eugenol

[387–390]

54. Litchi chinensis Lychee Fruit, seeds
Cough, ulcer, flatulence,
testicular swelling, diabetes,
hernia, obesity

Blood glucose↓, FBG↓,
renoprotection↑, IR↓,
glucose tolerance↑, TG↓,
α-glucosidase activity↓

Alloxan- induced
Wistar rats
(n = 11)

2.6 mg/kg/day 30 days Flavonoids, triterpenes,
sterols, phenolic compounds [391–393]
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55. Luffa acutangula Ridge
gourd Fruit, seeds

Jaundice, hemorrhoids,
dysentery, headache,
ringworm infection, insect
bite, urinary bladder stone,
granular conjunctivitis,
constipation, leprosy,
diabetes

Blood glucose↓, HbA1c↓,
FBG↓, ALT↓, AST↓, TC↓,
TG↓, LDL-C↓, VLDL↓,
gluconeogenesis↓

STZ-induced
Wistar rats
(n = 6)

100–400 mg/kg/day 21 days

Luffaculin, luffangulin,
apigenin, luteolin, myristic
acid, palmitic acid, oleic
acid, linoleic acid, oleanolic
acid, machaelinic acid,
α-thujene, terpinene

[394,395,628]

56. Malus domestica
Borkh Apple Fruit, peel

Wound healing, diabetes,
asthma, obesity,
cardiovascular disease

Blood pressure↓, endothelial
function↑, lipid
homeostasis↑, insulin
resistance↓

HFHF-fed ICR mice
(n = 8) 250 mg/kg/day 28 days

Procyanidins, flavonoids,
chlorogenic acids,
hydroxycinnamic acids,
anthocyanins, quercetins

[396–405,629]

57. Mangifera indica Mango Fruit, peel,
bark, seeds

Asthma, tetanus, polyuria,
dysentery, anthrax,
indigestion, tumor,
tympanites, diarrhea, colic

FBG↓, HbA1c↓, serum
fructosamine level↓, plasma
insulin↑, α-amylase and
α-glucosidase activities↓,
PPBG↓

STZ-induced
Wistar rats
(n = 6)

100–200 mg/kg/day 60 days

Mangiferins, carotenoids,
flavonoids, anthocyanins,
gallic acid, protocatechuic
acid, chlorogenic acid,
ferulic acid

[406–411]

58. Mentha spicata Mint leaves Leaves

Cough, cold, asthma, fever,
obesity, dementia,
hypertension, abdominal
pain, headache, menstrual
pain, depression, insomnia

FBG↓, TC↓, TG↓, LDL-C↓,
VLDL↓ MDA↓, body
weight↓, HDL↑, α-amylase
and α-glucosidase activity↓

Alloxan-induced
Wistar rats
(n = 6)

300 mg/kg/day 21 days

Carvone, limonene,
1,8-cineole, pulegone,
β-bourbonene, β-pinene,
dihydrocarveol,
α-phellandrene, borneol,
linalool, germacrene D, and
piperitone

[412–414,630]

59. Moringa oleifera
Lam. Moringa Fruit, leaves

Diabetes, liver disease,
cancer, inflammation,
hypercholesteremi,
hypertension

Blood glucose↓, hepatic
functions↑, FBG↓, TC↓, TG↓,
LDL-C↓, VLDL↓, HDL↑,
α-amylase and
α-glucosidase activity↓

High fat died induced
C57BL/6 mice (n = 6) 200 mg/kg/day 21 days

Tannins, βcarotene, vitamin
C, quercetin, alkaloids,
saponins, steroids, phenolic
acids, glucosinolates,
flavonoids, terpenes

[415–419]

60. Momordica charantia Bitter
gourd

Fruit, leaves,
seeds

T2DM, dyslipidemia, cancer,
obesity, malaria, dysentery,
hypertension, worm
infections

Blood glucose↓,
fructosamine↓, IR↓, TC↓,
TG↓, insulin secretion↑,
HDL↑, MDA↓, GSH↑,
glucose uptake↑, β-cell
function↑

STZ-induced
Wister rats
(n = 6–8)

10 mL/kg/day 21 days

Saponins, triterpenes,
flavonoids, ascorbic acids,
steroids, tannins, alkaloids,
cardiac glycosides,
phlobatinnins,
anthraquinones

[420–427]

61. Morus alba L. Mulberry Fruit, leaves
Insomnia, tinnitus,
dizziness, premature aging,
diabetes

FBG↓, IR↓, TG↓, HDL↑,
LDL↓, TC↓, GLUT-4
translocation↑

STZ-induced HFF
Wistar rats
(n = 6)

400 mg/kg/day 49 days
Quercetin, isoquercetin
alkaloids, polyphenols,
flavonoids, anthocyanins

[429–432]
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62. Murraya koenigii L. Curry
leaves Leaves

Piles, inflammation, itching,
fresh cuts, dysentery,
bruises, edema, body aches,
diabetes, snakebites

Blood glucose↓, MDA↓,
GSH↑, IR↓, β-cell
regeneration↑

STZ-NA induced
Sprague Dawley rats
(n = 5)

200–400 mg/kg/day 28 days

Mahanine, mahanimbine,
murrayanol, koenimbine,
koenigicine, koenigine,
murrayone, isomahanine,
glycozoline, mukonicine,
murrayazolinol,
murrayacine, quercetin,
apigenin, kaempferol,
catechin

[433–436]

63. Myristica fragrans
Houtt. Nutmeg Fruit, seeds

Skin infection, diarrhea,
diabetes, Alzheimer’s
diseases, rheumatism,
asthma, cold, cough, malaria

Blood glucose↓, serum
insulin↑, oxidative stress↓,
β-cell function↑, AMPK↑,
IL-6↓, TNF-α↓

Chlorpromazine-
induced obese Swiss
albino mice
(n = 4–6)

50–450 mg/kg/day 7 days

Flavonoids, terpenes,
phenylpropanoids,
coumarin, lignans, alkanes,
and indole alkaloids

[437–440]

64. Nigella sativa L. Black seeds Seeds Asthma, dyslipidemia,
diabetes, diarrhea

Blood glucose↓, α-amylase
and α-glucosidase activity↓,
serum lipids↓ insulin
sensitivity↑,
gluconeogenesis↓

STZ-induced Swiss
albino mice (n = 6) 100–700 mg/kg/day 28 days

Thymoquinone, thymol,
limonene, carvacrol,
p-cymene, longifolene,
α-pinene, linoleic acid, oleic
acid, palmitic acid, saponins,
flavonoids, alkaloids

[441–445]

65. Ocimum sanctum L. Holy basil Leaves, seeds

Anxiety, cough, asthma,
diarrhea, fever, dysentery,
arthritis, eye diseases, skin
diseases, malaria, vomiting,
cardiac and genitourinary
infection

TC↓, TG↓, LDL↓,
VLDL↓, atherogenic index↓,
GSH↑,
Insulin production↑,
intestinal glucose
absorption↓

Alloxan-induced
diabetic rabbits (n = 5) 0.8 mg/kg/day 28 days

Eugenol, euginal, urosolic
acid, carvacrol, linalool,
caryophyllene, triterpenoids,
tannins

[446–449,631]

66. Olea europaea L. Olive Fruit, leaves

Diabetes, diarrhea,
inflammation, urinary tract
infection, intestinal diseases,
hemorrhoids, rheumatisms

Blood glucose↓,
inflammatory cytokines↓,
body weight↓,
gluconeogenesis↓,
glucose-6-phosphatase
enzyme activity↓

HFF-STZ-induced
Wistar rats
(n = 5)

200–400 mg/kg/day 70 days
Flavonoids, secoiridoids,
hydroxytyrosol and tyrosol,
cinnamic acid

[450–455]

67. Origanum vulgare Oregano Leaves Acne, cystic fibrosis,
diabetes, bacterial infections

Blood glucose↓, glucose
uptake↑, GLUT2↑,
α-amylase and
α-glucosidase activity↓,
oxidative stress↓

STZ-induced Diabetic
rats (n = 6) 20 mg/kg/day 15 days

Amburoside, apigenin,
luteolin 7-O-glucuronide,
rosmarinic acid, and
lithospheric acid

[456–459,632]

68. Passiflora edulis Passion
fruit Fruit, peel

Cough, diabetes,
dysmenorrhea, dysentery,
arthralgia, constipation

Blood glucose↓, TG↓, TC↓,
interleukins↓, body weight↓,
insulin sensitivity↑, glucose
tolerance↑

Cafeteria diet induced
C57BL/6 mice (n = 10)

15% of PEPF (P. edulis
peel flour) in CAF diet 112 days

Piceatannol, flavonoids,
triterpenoids, tocopherols,
linoleic acid, vitexin,
carotenoid, orientin,
isoorientin, gallic acid, rutin,
quercetin, ascorbic acid

[460–468]
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69. Persea americana
Mill. Avocado Fruit, leaves,

seeds, bark
Cardiovascular diseases,
diabetes

Blood glucose↓, metabolic
state↑, activation of
Akt/Pkb, glucose uptake↑,
β-cell regeneration↑,
HDL-c↑, LDL↓

STZ-induced
Wistar rats
(n = 7)

150–300 mg/kg/day 28 days
Flavonoids, alkaloids,
saponins, tannins,
carbohydrates, glycosides

[469–473]

70. Petroselinum crispum Parsley Leaves, seeds,
roots

Otitis, urinary tract
infection, dysmenorrhea,
hypertension, diabetes,
dermatitis, gastrointestinal
disorders

Blood glucose↓, NEG↓, lipid
peroxidation↓, body
weight↓, GSH↓, insulin
sensitivity↑,
gluconeogenesis↓

STZ-induced Swiss
albino rats
(n = 13–20)

2000 mg/kg/day 42 days

Courmarins, phthalides,
phenyl propanoids,
tocopherols, apigenin,
myristicin, apiol

[474–477]

71. Phaseolus vulgaris L. Kidney
bean Seeds

Wound healing, pharyngitis,
fever, unpleasant body odor,
obesity, diabetes, vaginal
infection

Blood glucose↓, insulin
sensitivity↑, TC↓, TG↓,
gluconeogenesis↓,
α-glucosidase activity↓

STZ-induced
Wistar rats
(n = 5)

150 mg/kg/day 40 days

Protocatechuic acid,
p-coumaric acid,
procyanidin, myricetin,
naringenin, gallic acid,
quercetin, catechin,
kaempferol, ferulic acid

[478–481]

72. Phoenix dactylifera L. Date Fruit, leaves
Fever, inflammation,
nervous disorders, loss of
consciousness, dementia

Blood glucose↓, serum
insulin↑, MDA↓, TNF-α↓,
CRP↓

STZ-induced
diabetic rats
(n =10)

200 mg/kg/day 30 days

Ellagic acid, gallic acid,
p-coumaric acid, apigenin,
naringin, gallic acid,
catechin, ferulic acid, sinapic
acid, epicatechin, vanillic
acid, coumarin, quercetin,
rutin, myricetin, luteolin,
kaempferol, isorhamnetin,
rhamnetin, β-sitosterol,
isorhamnetin, procyanidin,
protocatechuic acid

[482–485,633]

73. Phyllanthus emblica L. Amla Fruit, leaves,
bark, roots

Cold, fever, cough,
hyperacidity, peptic ulcer,
erysipelas, jaundice,
diarrhea, dysentery, leprosy,
hemorrhages,
hematogenesis, anemia,
asthma, bronchitis, colic,
dyspepsia, hepatopathy,
leucorrhea, menorrhagia

Blood glucose↓, TG↓, TC↓,
LDL↓, HDL↑, α-amylase
and α-glucosidase
activities↓, AMPK↑

STZ-induced
Wistar rats
(n = 6)

25–75 mg/kg/day 28 days

Phyllembelic acid, gallic
acid, ellagic acid, pectin,
quercetin, linolenic, linoleic,
oleic, stearic, palmitic,
myristic acid, tannins,
chebulic, chebulagic,
chebulinic acids, alkaloids
phyllantidine, phyllantine,
lupeol, leucodelphinidin.
corilagin, digallic acid,
kaempferol, and zeatin

[486–489,634]

74. Piper betle L. Betel leaf Leaves

Wound healing, bronchitis,
diabetes, cough, indigestion
in children, headaches,
arthritis,

FBG↓, HbA1c↓, IR↓, insulin
production↑, glucokinase
activity↑

STZ-induced
Wistar rats
(n = 6)

75–150 mg/kg/day 30 days
Estragole, linalool, safrol,
terpenes, phenols, steroids,
saponins, tannins

[490–493]
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75. Pisum sativum L. Pea Seeds

Blood purifying, wrinkled
skin, acne, phlegm,
intestinal inflammation,
constipation, diabetes

Blood glucose↓, HbA1c↓,
NO↓, plasma insulin↑,
glucose homeostasis↑,
glucose tolerance↑,
polyphagia↓, TG↓, LDL-C↓,
α-glucosidase activity↓,
body weight↓

STZ-induced ICR mice
(n = 6) 100–400 mg/kg/day 42 days

Flavonoid, quercetin, ellagic
acid, coumaric acid,
β-sitosterol, β-amyrin,
catechin, myricetin, vanillic
acid, kaempferol

[494–497]

76. Prunus armeniaca L. Apricot Fruit, leaves

Cancer, atherosclerosis,
angina, retinopathy,
nephropathy, hypertension,
diabetes

Blood glucose↓, FBG↓,
α-glucosidase activity↓,
HbA1c↓, insulin secretion↑,
oxidative stress↓

Alloxan-induced
Swiss mice
(n = 7)

2–8 mg/kg/day 56 days

Chlorogenic, gallic, ferulic,
salicylic, coumaric acids,
glycosides, rutin, quercetin,
vanillin, catechin,
epicatechin, neochlorogenic
acid, chlorogenic acid, lutein

[498–500]

77. Prunus domestica Plum Fruit

Anemia, neurasthenia,
leukorrhea, Alzheimer’s
disease, irregular
menstruation, anxiety,
diabetes, constipation

Blood glucose↓, TG↓, TC↓,
LDL↓, α-amylase and
α-glucosidase activities↓,
HMGCoA reductase↓,
oxidative stress↓

STZ-induced Swiss
Albino mice (n =10) 50 mg/kg/day 20 days

Chlorogenic acid,
neochlorogenic acid,
tocopherols, β-carotenes,
quercetin, myricetin,
kaempferol, citric acid,
malic acid

[501–508]

78. Prunus dulcis Almonds Nut
CNS disorders, respiratory
disorders, diabetes, urinary
tract infections

FBG↓, TC↓, TG↓, LDL↓,
stomach emptying, time↓,
insulin production↑

T2DM patients
(58 ± 2 years, n = 20) 60,000 mg/kg/day 84 days

Oleic acid, linoleic acid,
palmitic acid, arachidic acid,
anthocyanin, kaempferol,
quercetin, isorhamnetin,
galactosidase,
chlorogenic acid

[509,510]

79. Prunus persica L. Peach Fruit, peel,
leaves

Enhancing blood circulation,
blood clotting, constipation,
diabetes

Body weight↓, lipid
metabolism↑, lipogenesis↓,
fatty acid oxidation↑,
α-amylase and
α-glucosidase activities↓,
β-cell regeneration↑

HFF C57BL/
6 male mice
(n = 12)

200–600 mg/kg/day 56 days

Procyanidin, epicatechin,
catechin, prunin, phloridzin,
naringenin, neochlorogenic
acid, caffeoylquinic acid,
chlorogenic acid, quercetin,
aucubin, kaempferol,
prunitrin

[511–514,635]

80. Punica granatum Pome-
granate

Fruit, peel,
seeds

Dysentery, diarrhea, piles,
bronchitis, biliousness,
diabetes

Blood glucose↓, TG↓, TC↓,
HDL↑, LDL↓, intestinal
glucose absorption↓,
GLUT-4 translocation↑

Alloxan-induced
Albino eats
(n = 6)

500 mg/kg/day 14 days

Ellagic acid, gallotannins,
anthocyanins, quercetin,
kaempferol, luteolin
glycosides, punicalin,
punicafolin, luteolin,
apigenin, anthocyanins,
linoleic, oleic, palmitic,
stearic, linolenic, and
arachidic and
palmitoleic acids

[515–518]
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81. Psidium guajava L. Guava Fruit, leaves Dysentery, diabetes and
diarrhea

PPBG↓, FBG↓, HbA1c↓, IR↓,
TG↓, TC↓, α-amylase and
α-glucosidase activities↓,
malondialdehyde↓

Prediabetes and mild
T2DM patients
(n = 120)

190 mg/kg
3 times a day 84 days

Quercetin, avicularin,
apigenin, guaijaverin,
kaempferol, hyperin,
myricetin, gallic acid,
catechin, epicatechin,
chlorogenic acid,
epigallocatechin gallate,
caffeic acid

[519–527]

82. Raphanus sativus L. Radish Fruit, leaves

Gallbladder stone, jaundice,
flatulence, indigestion,
various gastric ailments,
piles, constipation,
indigestion, colic, dyspepsia,
liver enlargement, diabetes

IR↓, intestinal glucose
absorption↓, glucose
uptake↑, glycoalbumin↓,
fructosamine↓

STZ-induced
T2DM rats
(n = 8)

2.2% of the diet/ day 21 days

Myricetin, catechin,
epicatechin, quercetin,
vanillic acid, sinapic acid,
p-coumaric acid, β-carotene,
camphene, piperitone,
carvacrol, linoleic acid, oleic
acid, anthocyanin

[528–531]

83. Rosmarinus
officinalis L. Rosemary Leaves

Mycosis, alopecia,
ultraviolet damage, skin
cancer, inflammatory
diseases, diabetes

FBG↓, TC↓, TG↓, LDL-C↓,
GLUT-4 translocation↑,
HDL↑, Irs1↓, IR↓,
gluconeogenesis↓, glucose
uptake↑

STZ-induced
Wistar rats
(n = 6)

4000 mg/kg/day 28 days

Flavonoids, carnosol,
carnosoic, rosmarinic,
ursolic, oleanolic,
micromeric acids

[527,532–537]

84. Rubus fruticosus Blackberry Fruit, leaves

Mouthwash, gum
inflammations, mouth
ulcers, sore throat,
respiratory disorders,
anemia, diarrhea, dysentery,
cystitis, diabetes,
hemorrhoids

Blood glucose↓, α-amylase
and α-glucosidase
activities↓, oxidative stress↓

STZ-induced
Sprague–Dawley rats
(n = 6)

300 mg/L/day 35 days

Anthocyanins, malvidin,
pelargonidin, cyanidins,
kaempferol, quercetin,
myricetin, p-coumaric acid,
ferulic acid, rutin,
coumarins, gallic acid

[538–540]

85. Salvia hispanica L. Chia seeds Seeds Indigestion, hyperlipidemia,
diabetes mellitus

Blood glucose↓, HbA1c↓,
FBG↓, macrovascular
complications↓, body
weight↓, inflammatory
cytokines↓, TC↓, TG↓,
LDL-C↓, α-amylase and
α-glucosidase activity↓

T2DM patients
(n = 23) 40,000 mg/kg/day 84 days

Myricetin, quercetin,
chlorogenic acid,
kaempferol, and caffeic acid

[541–545]

86. Sesamum indicum
White
sesame
seeds

Seeds

Wound healing,
amenorrhea, ulcer, asthma,
hemorrhoids,
inflammations, diabetes

Blood glucose↓, HbA1c↓,
FBG↓, TC↓, PPBG↓,
oxidative stress↓, IR↓
nephropathy↓

T2DM patients
(18–60 years,
n = 23)

30 mg/kg/day 90 days

Sesamin, sesaminol, gamma
tocopherol, cephalin,
flavonoids, phenolic acids,
alkaloids, tannins, saponins,
steroids, terpenoids

[546–551]

87. Solanum
lycopersicum L. Tomato Fruit

Dermatitis, cancer,
hypertension,
hyperglycemia

Blood glucose↓ IR↓, SOD↑,
GSH↑, MDA↓,
inflammation↓

STZ-induced
T2DM rats
(n = 8)

30–270 mg/kg/day 56 days

Lycopene, carotenoids,
homovanillic acid,
chlorogenic acid, tomatine,
kaempferol, quercetin,
naringenin, p-coumaric acid,
caffeic acid

[552–558,636]
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88. Solanum melongena Eggplant Fruit, leaves
Arthritis, diabetes,
dyslipidemia, bronchitis,
asthma

Blood glucose↓, TC↓, TG↓,
LDL-C↓, VLDL↓, HDL↑,
oxidative stress↓, MDA↓,
α-glucosidase activity↓,
GLUT-4 translocation↑,
glucose uptake↑,
gluconeogenesis↓

Alloxan-induced
diabetic rats
(n = 6)

100–300 mg/kg/day 20 days

Solasodine, thiamin, niacin,
chlorogenic acid, saponins,
delphinidin, anthocyanin,
phenols,

[559–563]

89. Spinacia oleracea Spinach Leaves
Remedy for bloody stools,
diarrhea, stomachaches,
obesity, diabetes

Retinopathy↓, MDA↓,
inflammation↓, oxidative
stress↓, AGEs formation↓,
lipid peroxidation↓, IL-6↓,
TNF-α↓, IR↓

STZ-induced
Wistar rats
(n = 10)

400 mg/kg/day 84 days
β-carotenoids, lutein,
carotenoids, zeaxanthin,
vitamins, minerals

[564–569]

90. Syzygium
aromaticum Clove Flower buds Flatulence, diarrhea,

diabetes, indigestion
Blood glucose↓, PPAR-γ
binding↑, aldose reductase↓

Diabetic KK-Ay

Mice (n = 4) 657 mg/kg/day 21 days

Eugenol acetate, eugenol,
gallic acid, terpenes, tannins,
phenolics, steroids,
flavonoids, glycosides,
and saponins

[570–573,637]

91. Syzygium cumini L. Java plum Fruit, seeds,
bark

Asthma, bronchitis, sore
throat, biliousness,
dysentery, diabetes, ulcers

Blood glucose↓, TG↓, TC↓,
LDL↓, HDL↑, HMGCoA
reductase↓, β cells
function↑, urine glucose↓

Alloxan- induced
diabetic Albino rabbits
(n = 5)

100 mg/kg/day 15 days
Anthocyanins, glucoside,
isoquercetin, ellagic acid,
kaemferol, myricetin

[574–576]

92. Tamarindus indica L. Tamarind Fruit, leaves,
seeds

Inflammation, stomach pain,
throat pain, rheumatism,
wound, diarrhea, dysentery,
fever, malaria, respiratory
tract infection, constipation,
cell cytotoxicity, gonorrhea,
eye diseases

Blood glucose↓, body
weight↓, glucose tolerance↑,
β-cell function↑, glucose
tolerance↑, β-cells
regeneration↑

Alloxan-induced Wistar
albino rats (n = 5) 100–250 mg/kg/day 14 days

Apigenin, anthocyanin,
procyanidin, catechin,
epicatechin, taxifolin,
eriodyctiol, naringenin

[577–581]

93. Theobroma cacao Cocoa Fruit, husk,
seeds

Measles, malaria, toothache
as well as diabetes though
improving insulin secretion,
GLUT4 translocation,
glucose uptake

Blood glucose↓, insulin
secretion↑, ATP↑, GSH↑,
Nrf2↑
α-amylase and
α-glucosidase activity↓

INS-1 derived 832/13
rat insulinoma cell line 0.0025 mg/mL 24 h

Flavonoids, procyanidins,
catechin, epicatechin,
theobromine, caffeine

[582–587]

94. Trichosanthes
cucumerina L.

Snake
gourd

Fruit, leaves,
seeds, roots

Bronchitis, headache,
cathartic, anthelmintic,
stomach disorders,
indigestion, bilious fevers,
boils, sores, eczema,
dermatitis, psoriasis, ulcers,
diabetes

FBG↓, IR↓, TC↓, TG↓,
LDL-C↓, insulin secretion↑,
intestinal glucose
absorption↓

STZ-induced
Albino rats
(n = 6)

750 mg/kg/day 28 days

Gallic acid, neochlorogenic
acid, caffeic acid, p-coumaric
acid, trans-ferulic acid,
catechin hydrate,
epicatechin, procyanidin A2,
procyanidin B2, rutin,
kaempferol, quercetin,
ursolic acid, oleanolic acid

[588–590]
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95. Trigonella
foenum-graecum

Fenugreek
seeds Seeds

Ulcer, sinusitis, hay fever,
diarrhea, diabetes, kidney
diseases

Blood glucose↓, PPBG↓,
FBG↓, glucose uptake↑,
glucose tolerance↑, insulin
sensitivity↑, intestinal
glucose absorption↓

STZ-induced
Long evans rats (n = 6) 500 mg/kg/day 28 days

Steroids, alkaloids,
flavonoids, polyphenols,
saponins

[591–594]

96. Vaccinium
corymbosum Blueberry Fruit, leaves

Cold, inflammation,
cardiovascular diseases,
diabetes, ocular dysfunction

Blood glucose↓, IR↓, insulin
secretion↑, retinopathy,
α-amylase and
α-glucosidase activities↓

STZ-induced
Wistar rats
(n = 8)

870 mg leaves/kg/day
and 430 mg leaves +
1300 mg fresh fruits
/kg/day

56 days

Anthocyanins, pectin,
anthocyanidins, delphinidin,
peonidin, malvidin,
cyanidin, chlorogenic acid,
malic acid, protocatechuic
acid, petunidin

[595–597,638]

97. Vigna radiata Mung bean Seeds

Heat stroke, gastrointestinal
disorders, dermatitis,
hyperglycemia,
hypertension,
hyperlipidemia,
melanogenesis

Blood glucose↓, TG↓, LDL↓,
NO↓, α-amylase and
α-glucosidase activity↓

Alloxan-induced
Balb/c mice
(n = 8)

200–100 mg/kg/day 10 days

Flavonoids, quercetin,
myricetin, kaempferol,
catechin, vitexin, isovitexin,
coumaric acid luteolin, and
caffeic and gallic acid

[598–604,639]

98. Vitis vinifera L. Grapes Fruit, seeds,
peel

Diarrhea, hepatitis,
stomachaches, varicose
veins, hemorrhoids,
atherosclerosis, diabetes,
high blood pressure, heavy
menstrual bleeding, uterine
bleeding, constipation

Blood glucose↓, oxidative
stress↓, β-cell
regeneration↑, intestinal
glucose absorption↓

STZ-induced
Wistar rats
(n = 3)

250–500 mg/kg/day 15 days

Triterpenoid acids, oleanolic,
betulinic acids, stilbenoid,
gallic acid, catechin,
epicatechin, gallocatechin,
p-coumaric, and caffeic and
ferulic acids

[605–607]

99. Zea mays Corn Grains, husk Malaria, bladder stone,
heart diseases, diabetes

body weight↓, FBG↓, IR↓,
TC↓, TG↓, LDL-C↓, HDL↑,
MDA↓, SOD↑, oxidative
stress↓,
α-amylase and
α-glucosidase activity↓

STZ-induced HFF rats
(n = 6) 300–1200 mg/kg/day 28 days

Flavonoids, alkaloids,
saponins, phenols, tannins,
phytosterols

[608–613]

100. Zingiber officinale Ginger Fruit

Muscular aches, pains, sore
throats, cramps,
constipation, indigestion,
vomiting, arthritis,
rheumatism, diabetes,
sprains, hypertension,
dementia, fever, infectious
diseases, helminthiasis

Blood glucose↓, TC↓, TG,
β-cell function↑, GLUT-4
activity↑, β-cell function↑,
PPAR-γ↑, glucose uptake↑,
creatinine↓, body weight↓,
urea↓

STZ-induced Sprague
Dawley rats
(n = 8)

500 mg/kg/day 49 days

β-phellandrene, camphene,
cineole, geraniol,
curcumene, citral, terpineol,
borneol, α-zingiberene,
zingiberol, gingerols,
shogaols 3-dihydroshogaols,
paradols, dihydroparadols,
gingerdiols,
diarylheptanoids,
isogingerol, isoshogaol
gingerdiones

[614–616,640]
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Dietary Plants Plant Parts Phytochemicals Pharmacological Actions Reference

1. Abelmoschus esculentus L. Fruit, roots Flavonoids, pectin, saponins, alkaloids Lowers blood glucose and lipids, reduces insulin
resistance, and enhances GLUT-4 translocation [142–144]

2. Actinidia chinensis Fruit Triterpenoids, flavonoids, phenolic acids Lowers serum glucose, inflammatory cytokines,
blood lipids [145–148]

3. Aegle marmelos L. Fruit Oleic acid, p-cymene, linolenic acid, retinoic
acid, myristic acid

Enhances glucose tolerance and insulin sensitivity,
suppresses α-amylase and α-glucosidase, delays
intestinal glucose absorption

[149–151,641]

4. Agaricus bisporus Rhizome
Catechin, lectin, β-glucans, Gallic acid,
p-coumaric acid, Ferulic acid,
Chlorogenic acid

Regulates insulin and glucagon secretion, reduces
body weight and serum glucose [152–156]

5. Allium cepa Fruit
Quercetin, lectin, steroids, catechol,
isoflavones, humulone, apigenin, rutin,
myricetin, kaempferol, catechin

Decreases α-glucosidase activity, oxidative stress,
boosts insulin and adiponectin secretion,
protects β-cells

[157–161]

6. Allium sativum L. Fruit Allicin, β-resorcylic acid, gallic acid, rutin,
protocatechuic acid, quercetin

Enhances insulin production, insulin secretion,
glucose tolerance, insulin sensitivity, and
GLUT-4 expression

[162–167]

7. Aloe barbadensis Mill. Leaves Flavonoids, proanthocyanidins,
phenolic acids

Inhibits the glycation process, AGE formation and
α-amylase, α-glucosidase enzyme activity [166,168–173]

8. Anacardium occidentale L. Nut, leaves, bark

Kaempferol, anacardic acid, quercetin,
linolenic acid, gallic acid, myricetin, catechin,
protocatechuic acid, epigallocatechin,
naringenin, epicatechin

Inhibits glutamine-fructose-6-phosphate
aminotransferase 1 (GFAT1) and dipeptidyl
peptidase-4 (DPP-4) activity

[174–177,642]

9. Ananas comosus L. Fruit, peel, leaves Sinapic acid, daucosterol, coumarin, tannins,
flavonoids, benzofuran, stillbenoid

Improves insulin sensitivity and body weight,
inhibits HMGCoA reductase activity [178–184]

10. Apium graveolens Leaves, seeds, roots Quercetin, thymoquinone, coumaric acid,
gallic acid

Improves insulin sensitivity, GLUT-4 translocation,
mitochondrial dysfunction, and inflammation [185–190]

11. Artocarpus heterophyllus Fruit, leaves, bark, seeds, roots Carotenoid, tannins, sterols, Chysin,
isoquercetine

Decreases postprandial glucose, blood lipids, and
inhibits α-amylase and α-glucosidase [193–197]

12. Asparagus officinalis Stem Asparagine, tyrosine, arginine, flavonoid,
saponin, resin

Improves insulin secretion, insulin sensitivity, and
β-cell function and lowers blood glucose [198–202]
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13. Avena sativa Grains β-glucan, oleic, linoleic acids, caffeic acids,
coumaric acids, gallic acids, avenanthramides

Reduces glycosylated HbA1c, fasting blood
glucose, postprandial glucose, insulin resistance [203–207,643]

14. Averrhoa carambola L. Fruit Anthocyanins, rutin, triterpenoids, quercetin,
catechin, epicatechin

Elevates insulin secretion, glucose uptake in
skeletal muscles, and glycogen synthesis [208–212]

15. Azadirachta indica Leaves, stem, bark, flower, roots, fruit
Nimbidin, nimbin, nimbidol, quercetin,
nimbosterone, ferulic acid,
limonene, oleuropeoside

Inhibits α-glucosidase and glucokinase, stimulates
insulin secretion [213–217]

16. Beta vulgaris Fruit
Lycopene, betalains, betagarin, betavulgarin,
quercetin, kaempherol, betanins,
carotenoid, coumarin

Inhibits α-amylase and α-glucosidase,
gluconeogenesis, glycogenesis, and reduces serum
glucose and lipids

[218–220]

17. Brassica juncea Seeds Chlorogenic acid, cinnamic acid, kaempferol,
flavonoid, coumaric acid, vanillic acid

Improves blood glucose, glucose tolerance, insulin
secretion and inhibits intestinal glucose absorption [221–224]

18. Brassica oleracea
var. capitata Flower Myricetin, quercetin, kaempferol, apigenin,

luteolin, Anthocyanidin
Increases insulin sensitivity and β-cell function
and lowers blood glucose [225–227]

19. Brassica oleracea
var. italica Flower Chlorogenic acid, apigenin, kaempferol,

luteolin, quercetin and myricetin

Reduces ROS formation and oxidative stress,
inhibits α-amylase and α-glucosidase, enhances
insulin sensitivity and β-cell function

[228,229]

20. Camellia sinensis Leaves
Theanine, proanthocyanidins, caffeine,
myricetin, kaempferol, quercetin, chlorogenic
acid, Catechins, epicatechin

Attenuates insulin resistance and oxidative stress,
inhibits α-amylase and α-glucosidase, regulates
inflammatory cytokines production

[230–233]

21. Capsicum annuum L. Seeds Flavonoids, carotenoids, flavones, apigenin,
quercetin and isoquercetin

Activates AMPK, increases GLUT4 translocation
and glucose uptake in skeletal muscle, and
inhibits gluconeogenesis

[234–238]

22. Carica papaya Fruit, seeds, leaves
Saponins, alkaloids, kaempferol, flavonoids,
phenols, terpenoids,
steroids, quercetin, caffeic acid

Decreases α-amylase and α-glucosidase activity,
oxidative stress, and plasma blood glucose [239–242]

23. Carissa carandas Fruits Lignans, flavonoids, Steroid, phenolic acid
Inhibits α-amylase and α-glucosidase,
pro-inflammatory cytokine release, and lowers
blood glucose

[243–247]
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24. Catharanthus roseus L. Flowers, leaves
Gallic acid, rutin, p-coumaric acid, caffeic
acid, quercetin, kaempferol, chlorogenic acid,
ellagic acid, coumarin

Increases insulin secretion and β-cell function,
decreases blood glucose and lipids [248–252]

25. Centella asiatica Leaves Centallase, quercetine, kaempferilm
triterpene, ferulic acid

Decreases oxidative and inflammatory stress, body
weight, serum glucose, and lipids [253–256]

26. Chenopodium quinoa Grains
Phytosterols, phytoecdysteroids, phenolics,
tocophenols, betalains, tannins,
glycine betaines

Inhibits α-glucosidase, improves insulin sensitivity,
lowers postprandial glycemia [257–263]

27. Cicer arietinum Grains Uridine, adenosine, tryptophan,
3-hydroxy-olean-ene, biochanin

Inhibits α-amylase, α-glucosidase, and
dipeptidyl-4 (DPP4) enzymes [264–269]

28. Cinnamomum verum Bark Cinnamaldehyde, cinnamates, cinnamic acid,
eugenol, cinnamyl acetate, linalool

Enhances β-cell function, insulin secretion, and
GLUT-4 translocation and inhibits α-amylase and
α-glucosidase

[270–273]

29. Citrullus lanatus L. Fruit, seeds Lycopene, apigenin, kaempferol, rutin,
p-coumaric acid, quercetin, ferulic acid

Inhibits α-amylase and α-glucosidase activity,
enhances GLUT4 and GLUT2 translocation, and
lowers blood glucose

[274–277]

30. Citrus limon Fruit, peel, leaves Limocitrin, D-limonene, hesperidin,
naringenin, flavonoid

Decreases blood glucose and body weight and
enhances GLUT4 translocation [278–285]

31. Citrus maxima Fruit, peel Carotenoids, terpenoids, sterols,
alkaloids, phenolics

Facilitates weight loss, inhibits α-amylase and
α-glucosidase, increases glucose tolerance, and
aids diabetic nephropathy

[286–288]

32. Citrus reticulata Fruit, peel Hesperidin, quercetin, flavonoids,
tannins, anthraquinones

Enhances mRNA expression,
GLUT-4 translocation, insulin sensitivity, and
glucose tolerance

[289–293]

33. Cocos nucifera Fruit, husk, water Tannins, resins, flavonoid, alkaloids Inhibits α-amylase and α-glucosidase activity,
regenerates β-cells, and aids diabetic neuropathy [295–302]

34. Coffea Arabica L. Leaves, fruit, beans

Coffeasterin, caffeine, caffeic acid, p-coumaric
acid, vanillic acid, ferulic acid, sitosterol,
stigmasterol, kaempherol, quercetin,
sinapic acid

Regenerates β-cells, inhibits α-glucosidase, and
enhances insulin secretion [303–305]
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35. Colocasia esculenta Stem, leaves Viexin, isovitexin, orientin, isoorientin,
rosmarinic acid, luteolin

Lowers blood glucose levels, oxidative stress, and
inflammation, inhibits aldose reductase, and aids
diabetic neuropathy

[306–310,644]

36. Coriandrum sativum Seeds, leaves Flavonoids, tocol, carotenoid, saponins Inhibits TNF-α, IL-6, and AGE formation and aids
diabetic neuropathy and nephropathy [302,311–314]

37. Crocus sativus L. Flower stigma Safranal, β carotenes, crocetin, crocin,
picrocrocin, zeaxanthene

Inhibits α-glucosidase and α-amylase, lowers
blood glucose, lipids, and inflammatory cytokines [315–320]

38. Cuminum Cyminum L. Seeds Cumin aldehyde, safranal, linalool,
carvone, carvacrol

Protects β-cells, improves insulin secretion, lowers
blood glucose [321–323]

39. Cucumis sativus Fruit, seeds
Cucurbitacin, cucumerin A and B,
cucumegastigmanes I and II,
orientin, apigenin

Reduces glucagon secretion, gluconeogenesis, and
glycolysis, enhances insulin sensitivity [324–327]

40. Cucurbita pepo L. Fruit, seeds β-carotene, lutein flavonoids,
zeaxanthin, alkaloid

Lowers glucose in blood and urine, enhances
glucose sensitivity and glutathione, reduces
lipid levels

[328–332]

41. Curcuma longa L. Fruit
Turmerine, turmerone, Cucurmin,
curcuminol, demethoxycurcumin, caffeic
acid, sinapic acid

Induces glucose uptake, GLUT-2 activity and
insulin production, increases insulin secretion,
insulin sensitivity, decreases insulin resistance

[333–337,645]

42. Daucus carota Fruit α and β-carotene, lutein, lycopene,
anthocyanins, ascorbic acid

Regulates hyperglycemia, improves insulin
resistance, delays intestinal glucose absorption,
inhibits α-amylase and α-glucosidase

[338–341]

43. Ficus carica Fruit, leaves, bark, roots Eugenol, anthocyanins, phenolic acids,
flavones, flavanols

Reduces postprandial glucose, plasma lipids, body
weight, and β-cell apoptosis [342–347]

44. Fragaria ananassa Fruit, leaves Quercetin, kaempferol, p-coumaric acid,
p-tyrosol, methyl gallate, rutin

Ameliorates peripheral insulin resistance, inhibits
α-amylase and α-glucosidase activity, increases
insulin production

[263,348–351]

45. Glycine max Seeds, leaves β-conglycinin, flavonoids,
saponins, phytosterols

Decreases insulin resistance, enhances glucose
uptake in skeletal muscles through
AMPK activation

[352–356]
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46. Helianthus annuus Flowers, seeds
Flavonoids, tocopherols, carotenoids,
saponins, tannins, chlorogenic acid,
caffeic acid

Reduces body weight, BMI, oxidative stress, AGE
formation, and fasting blood glucose [357–360]

47. Hibiscus rosa-sinensis
Linn. Flowers, leaves Quercetin, cyanidin, ascorbic acid, genistic

acid, lauric acid, thiamine, niacin
Stimulates β-cells, enhances insulin secretion and
glycogen accumulation in the liver [361–365]

48. Hylocereus undatus Fruit, seeds Oleic acid, gallic acid, lycopene, p-coumaric
acid, linoleic acid, β-carotene

Attenuates plasma glucose, endothelial
dysfunction, oxidative stress, and intestinal
glucose absorption, and boosts insulin sensitivity

[366–368]

49. Ipomoea batatas Fruit
Anthraquinones, coumarins, flavonoids,
saponins, tannins, quercetin, chlorogenic
acid, terpenoids

Mitigates insulin secretion and serum glucose,
enhances β-cell function and insulin production [369–373]

50. Juglans regia L. Nut, leaves Gallic acid, caffeoylquinic acid,
coumaroylquinic, juglone, quercetin

Increases glucose uptake and inhibits
α-glucosidase, α-amylase, and protein tyrosine
phosphatase 1B (PTP1B) activity

[374–377,646]

51. Lactuca sativa Leaves Flavonoids, quercetin, flavonols,
anthocyanins, lutein, β-carotene

Inhibits α-amylase, α-glucosidase, and DPP-4,
improves postprandial glucose and blood lipids [378–382]

52. Lagenaria siceraria Fruit, leaves, seeds cucurbitacin B, cucurbitacin D, cucurbitacin
E, isoquercitrin, kaempferol, gallic acid

Improves glucose tolerance and insulin production
and inhibits intestinal glucose absorption [383–386]

53. Laurus nobilis Leaves Eugenol, kaempferol, syringic acid, quercetin,
apigenin, luteolin

Enhances β-cell function and insulin sensitivity
and inhibits α-amylase and α-glucosidase [387–390]

54. Litchi chinensis Fruit, seeds Sterols, triterpenoids, flavonoids, phenolics
Improves insulin resistance, serum triglyceride
levels, and glucose tolerance and inhibits
α-glucosidase activity

[391–393]

55. Luffa acutangula Fruit, seeds Apigenin, luteolin, myristic acid, α-pinene,
carotene, oleanolic acid, β-myrcene, linalool

Enhances insulin secretion, suppresses
glycogenolysis and gluconeogenesis [394,395]

56. Malus domestica Borkh Fruit, peel Quercetin, pectin, flavonols, flavanols,
catechin epicatechin, cyanidin galactoside

Improves endothelial function, lipid homeostasis,
insulin resistance, and lowers serum glucose [396–405]

57. Mangifera indica Fruit, peel, bark, seeds Mangiferin, rhamnetin, catechin, epicatechin,
gallic acid

Increases insulin sensitivity, lowers postprandial
glucose, inhibits α-amylase and α-glucosidase [406–411]
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58. Mentha spicata Leaves Limonene, carvone, linalool, piperitone
Suppresses α-amylase and α-glucosidase activity
and oxidative stress, and decreases blood glucose
and lipids

[412–414]

59. Moringa oleifera Lam. Fruit, leaves Anthocyanins, sitogluside, tannin,
anthraquinones, β-carotene

Inhibits α-amylase and α-glucosidase, lowers
postprandial glucose and cholesterol, and
improves lipid metabolism

[415–419,647]

60. Momordica charantia Fruit, leaves, seeds Triterpene, proteid, steroids, flavonoids,
ascorbic acid, saponins

Regenerates β-cells, increases glucose uptake in
skeletal muscle, and suppresses intestinal
glucose absorption

[420–427]

61. Morus alba L. Fruit, leaves Quercetin, isoquercetin,
stillbenoids, flavonoids

Enhances insulin secretion, lowers blood glucose
and blood lipids, and promotes
GLUT-4 translocation

[429–432]

62. Murraya koenigii L. Leaves Murrayanol, mahanimbine, kaemferol,
catechin, apgenin

Regenerates β-cells, inhibits α-amylase and
α-glucosidase, lowers blood glucose [433–436]

63. Myristica fragrans Houtt. Fruit, seeds Lignan, flavonoids, terpenes, coumarin Inhibits TNF-α and IL-6 release, ameliorates blood
glucose, β-cell function, inflammation, and obesity [437–440]

64. Nigella sativa L. Seeds Thymoquinone, thymol, limonene, carvacrol,
p-cymene, linoleic acid, oleic acid

Inhibits hepatic gluconeogenesis, α-amylase, and
α-glucosidase, increases insulin sensitivity [441–445]

65. Ocimum sanctum L. Leaves, seeds Ursolic acid, eugenol, carvacrol,
linalool, caryophyllene

Lowers serum glucose and albumin, increases
insulin secretion and lipid metabolism,
regenerates β-cells

[446–449,648]

66. Olea europaea L. Fruit, leaves Secoiridoid glycoside, oleuropein, oleanolic
acid, flavonoid, cinnamic acid

Enhances glucose tolerance, reduces body weight,
inhibits gluconeogenesis, and lowers
plasma glucose

[450–455]

67. Origanum vulgare Leaves Rosmarinic acid, apigenin, luteolin
Increases glucose uptake in skeletal muscle and
GLUT-2, decreases blood glucose and oxidative
stress, inhibits α-amylase and α-glucosidase

[456–459]

68. Passiflora edulis Fruit, peel Piceatannol, flavonoids, tocopherols,
carotenoid, gallic acid, rutin

Improves serum glucose, insulin sensitivity,
glucose tolerance, and glucose uptake in skeletal
muscle, and reduces lipid accumulation and
body weight

[460–468]
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69. Persea americana Mill. Fruit, leaves, seeds, bark Myricetin, luteolin, gallic acid, ascorbic acid Activates PI3K to facilitate insulin action, inhibits
α-amylase and α-glucosidase [469–473]

70. Petroselinum crispum Leaves, seeds, roots Coumarins, tocopherols, apigenin, myristicin
Regulates plasma glucose, body weight, and
glutathione levels, increases glucose uptake in
skeletal muscles, and inhibits gluconeogenesis

[474–477]

71. Phaseolus vulgaris L. Seeds
p-coumaric acid, myricetin, naringenin, gallic
acid, quercetin, catechin, kaempferol,
ferulic acid

Suppresses α-glucosidase activity and
gluconeogenesis, delays the absorption of glucose,
increases insulin sensitivity

[478–481]

72. Phoenix dactylifera L. Fruit, leaves
Flavonoids, oleic acid, linoleic acid, catechin,
epicatechin, apigenin,
naringenin, anthocyanin

Enhances β-cell function and insulin secretion,
decreases blood glucose, inhibits α-amylase and
α-glucosidase

[482–485]

73. Phyllanthus emblica L. Fruit, leaves, bark, roots Gallic acid, ellagic acid, pectin, quercetin,
linoleic, oleic acid, myristic acid,

Inhibits α-amylase and α-glucosidase, activates
AMPK, and lowers blood glucose [486–489]

74. Piper betle L. Leaves Eugenol, selinene, hydroxychavicol,
cadinene, caryophyllene

Elevates insulin production and glucose usage,
activates glucokinase, and lowers plasma glucose [490–493]

75. Pisum sativum L. Seeds Uridine, adenosine, tryptophan,
3-hydroxy-olean-ene, biochanin

Inhibits α-amylase, α-glucosidase, and
dipeptidyl-4 (DPP4) enzymes [494–497]

76. Prunus armeniaca L. Fruit, leaves Quercetin, ferulic acid, chlorogenic acid,
lutein, catechin, epicatechin

Stimulates insulin secretion, decreases oxidative
stress, inhibits α-amylase and α-glucosidase [498–500]

77. Prunus domestica Fruit Catechin, epicatechin, chlorogenic acid,
kaempferol, quercetin

Inhibits HMGCoA reductase and α-amylase,
lowers blood glucose, lipids, and oxidative stress [501–508]

78. Prunus dulcis Nut
Oleic acid, linoleic acid, P-coumaric acid,
anthocyanin, kaempferol, quercetin,
chlorogenic acid

Increases insulin production and decreases
stomach emptying time [509,510]

79. Prunus persica L. Fruit, peel, leaves
Naringenin, ferulic acid, Chlorogenic acid,
astragalin, carotenoid, anthocyanin,
caffeic acid

Ameliorates insulin secretion, pancreatic β-cell
regeneration, and inhibits α-amylase and
α-glucosidase

[511–514]

80. Punica granatum Fruit, peel, seeds
Punicalin, punicsfolin, apigenin, quercetin,
ellagic acid, gallotannins, anthocyanins,
luteolin, kaempferol, lycopene

Enhances insulin sensitivity, insulin production,
GLUT-4 translocation, and lowers blood glucose [515–518]
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81. Psidium guajava L. Fruit, leaves Quercetin, avicularin, guaijaverin,
tannins, triterpenes

Decreases plasma glucose, gluconeogenesis,
triglycerides, total cholesterol, and increases
glucose uptake in skeletal muscle

[519–527,649]

82. Raphanus sativus L. Fruit, leaves
Myricetin, catechin, epicatechin, quercetin,
vanillic acid, Oleic acid, p-coumaric
acid, β-carotene

Inhibits intestinal glucose absorption, increases
glucose uptake in skeletal muscle, and lowers
blood glucose

[528–531]

83. Rosmarinus officinalis L. Leaves Rosmarinic acid, ursolic acid, oleonic
acid, carnosol

Enhances insulin sensitivity, GLUT-4 translocation,
glucose uptake in skeletal muscle, and
inhibits gluconeogenesis

[527,532–537]

84. Rubus fruticosus Fruit, leaves anthocyanins, malvidins, pelargonidin,
cyanidins, kaempferol, quercetin

Lowers blood glucose, inhibits α-amylase
and α-glucosidase [538–540]

85. Salvia hispanica L. Seeds Omega-3 fatty acid, myricetin, quercetin,
chlorogenic acid, kaempferol, caffeic acid

Inhibits α-amylase and α-glucosidase, reduces
body weight, inflammatory cytokine release, and
blood glucose and lipids

[541–545]

86. Sesamum indicum Seeds Sesamin, sesaminol, tocopherol, flavonoids,
saponins, steroids, terpenoids

Attenuates postprandial glucose and oxidative
stress, improves insulin secretion, glutathione
levels, and lipid metabolism

[546–551]

87. Solanum lycopersicum L. Fruit Lycopene, tomatine, kaempferol, quercetin,
chlorogenic acid, β-carotene, naringenin

Attenuates plasma glucose, inflammation, and
insulin resistance via PI3K/Akt, FOXO1, and
PPAR-γ regulation

[552–558]

88. Solanum melongena Fruit, leaves Thiamin, niacin, flavonoids, saponins,
tannins, triterpenoids, anthraquinones

Enhances glucose uptake in skeletal muscles,
GLUT-4 translocation, reduces gluconeogenesis,
α-amylase and α-glucosidase enzymes,
and hyperlipidemia

[559–563]

89. Spinacia oleracea Leaves β-carotenoids, lutein, carotenoids, zeaxanthin
Reduces serum C-reactive protein, TNF α, IL-6,
and excess AGE production, and aids
in retinopathy

[564–569]

90. Syzygium aromaticum Flower buds Eugenol, gallic acid, ferulic acid,
catechin, quercetin

Inhibits α-amylase, α-glucosidase, and aldose
reductase, lowers blood glucose, and
activates PPAR-γ

[570–573]
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91. Syzygium cumini L. Fruit, seeds, bark Anthocyanins, isoquercetin, ellagic acid,
kaempferols, myricetin

Regenerates β-cells, improves insulin production,
and lowers glucose in plasma and urine [574–576,650]

92. Tamarindus indica L. Fruit, leaves, seeds Catechin, anthocyanin, epicatechin, apigenin
Lowers blood glucose, inhibits α-amylase and
α-glucosidase, elevates glucose tolerance, and
regenerate β-cells

[577–581]

93. Theobroma cacao Fruit, husk, seeds Catechin, epicatechin, procyanidin,
saponins, terpenoids

Protects β-cells, inhibits α-amylase and
α-glucosidase, elevates ATP, GSH, Nrf2, and
glucose uptake in skeletal muscle

[582–587]

94. Trichosanthes cucumerina L. Fruit, leaves, seeds, roots
Carotenoids, gallic acid, neochlorogenic acid,
caffeic acid, p-coumaric acid, rutin,
kaempferol, quercetin, ursolic, oleanolic acids

Stimulates insulin secretion, enhances the
peripheral use of glucose, and prevents intestinal
glucose absorption

[588–590]

95. Trigonella foenum-graecum Seeds Steroids, alkaloids, flavonoids,
polyphenols, saponins

Decreases blood glucose and enhances glucose
uptake, insulin sensitivity, and glucose tolerance [591–594]

96. Vaccinium corymbosum Fruit, leaves Anthocyanins, pectin, anthocyanidins,
delphinidin, peonidin, malvidins

Suppresses α-amylase and α-glucosidase activity
and aids diabetic retinopathy [595–597]

97. Vigna radiata Seeds quercetin, myricetin, kaempferol, catechin,
coumaric acid, luteolin, caffeic, gallic acid

Hinders gluconeogenesis and glycolysis, inhibits
α-glucosidase and α-amylase [598–604]

98. Vitis vinifera L. Fruit, seeds, peel Catechin, epicatechin, epicatechin gallate,
quercetin, myricetin, resveratrol

Regenerates β-cells, lowers blood glucose, inhibits
intestinal glucose absorption, and facilitates
glycogen synthesis

[605–607,651]

99. Zea mays Grains, husk Hirsutrin, flavonoids, alkaloids, saponins,
phenols, tannins, phytosterols

Ameliorates diabetic complications by suppressing
aldose reductase and reducing galactitol formation,
inhibits α-amylase and α-glucosidase activity

[608–613]

100. Zingiber officinale Fruit Vanilloids, gingerol, paradol, shogaols,
zingerone, gingerdiols,

Activates GLUT-4 and PPAR-γ, protects β-cells,
facilitates glucose uptake in tissues [614,615]
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7. Conclusions and Future Perspectives

Plant-based dietary adjuncts represent a promising natural approach for the manage-
ment of T2DM due to the vast array of phytochemicals they contain. Unlike conventional
medications, such natural products are widely accessible, affordable, and generally free
from adverse effects. Integrating plant-derived foods into the daily diet not only helps
control the hyperglycemia observed in DM but also supports weight management in obese
individuals and has broad health benefits [652–654]. The plants highlighted in this review
can interact in a variety of ways to regulate blood glucose and restore insulin sensitivity. In
addition, it is important to mention that fiber-rich plants also play a role in obesity manage-
ment [655–657]. To date, the majority of scientific studies on antidiabetic plants have been
carried out in vitro and/or in vivo. More research is needed to identify the antidiabetic
potential of the plants selected in this review in patients with diabetes. Furthermore, more
research is needed to better understand the identity and mechanism of action of the active
phytoconstituents at the molecular level. We also need to determine what the future holds
for the potential exploitation of these natural products for the development of new and
safer pharmaceuticals that could assist the treatment of DM and its complications.
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ETC Electron Transport Chain
FOXO1 Forkhead Box O1
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GLUT-4 Glucose Transporter type 4
GLUT2 Glucose Transporter 2
GSH Glutathione
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IL-1 Interleukin-1
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Keap1 Kelch-Like ECH-Associated Protein 1
LDL-c Low-Density Lipoprotein Cholesterol
LPL Lipoprotein Lipase
MDA Malondialdehyde
Nrf2 Nuclear Factor Erythroid 2-Related Factor 2
NO Nitric Oxide
PI3K/AKT Phosphatidylinositol-3-Kinase/Protein Kinase B Pathway
PKB/Akt Protein Kinase B/Protein Kinase B
PKC Protein Kinase C
PPAR-γ Peroxisome Proliferator-Activated Receptor gamma
PPBG Postprandial Blood Glucose
PPAR-γ Peroxisome Proliferator-Activated Receptor-gamma
PTP1B Protein Tyrosine Phosphatase 1B
ROS Reactive Oxygen Species
SGLT2 Sodium-Glucose Cotransporter 2
SOD Superoxide Dismutase
SUR Sulfonylurea Receptors
TC Total Cholesterol
TG Triglycerides
TNF-α Tumor Necrosis Factor-alpha
UCP-1 Uncoupling Protein 1
VLDL Very Low-Density Lipoprotein
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