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Abstract: Photochromic compounds have attracted much attention for their potential applications
in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven
by their key photochemical and photophysical properties, which can be reversibly modulated by
light irradiation. Among them, diarylethene compounds have garnered extensive investigation due
to their excellent thermal stability of both open- and closed-form isomers, robust fatigue resistance,
high photocyclization quantum yield and good photochromic performance in both solution and solid
phases. However, a notable limitation in expanding the utility of diarylethene compounds is the
necessity for ultraviolet light to induce their photochromism. This requirement poses challenges,
as ultraviolet light can be detrimental to biological tissues, and its penetration is often restricted in
various media. This review provides an overview of design strategies employed in the development
of visible-light-responsive diarylethene compounds. These design strategies serve as a guideline
for molecular design, with the potential to significantly broaden the applications of all-visible-light-
activated diarylethene compounds in the realms of materials science and biomedical science.
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1. Introduction

Photochromic compounds, characterized by their reversible photoisomerization, color
transitions, and modulation of photochemical and photophysical properties upon specific
light irradiation, have garnered significant interest for their potential applications in the
fields of materials science and biomedical science [1–3]. Following extensive research over
the years, a multitude of photochromic compounds, including diarylethene (DAE) [4,5],
spiropyran [6], azobenzene [7,8], hexaarylbiimidazole [9], fulgide [10], and donor–acceptor
Stenhouse adducts (DASAs) [11], have been extensively and intensively investigated
(Scheme 1).

The aforementioned photochromic compounds can be classified based on the na-
ture of their photochromic reaction process [12]. For instance, spiropyran, fulgide and
diarylethene derivatives exhibit cyclization–cycloreversion reaction processes, azobenzene
and stilbene derivatives undergo trans-cis photoisomerization, hexaarylbiimidazole deriva-
tives demonstrate homolytic cleavage, and salicylideneaniline and dinitrobenzylpyridine
(DNBP) participate in proton transfer processes.

Furthermore, photochromic compounds can be classified into T-type and P-type
categories depending on the ground-state potential energy barrier between the original
stable species and the photogenerated metastable species [13,14]. For T-type photochromic
compounds, the photogenerated species are thermally unstable and tend to revert to the
initial state in the dark at room temperature. In contrast, P-type photochromic molecules
feature thermally stable photogenerated species that are reluctant to return to their initial
state in the dark at room temperature.
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Scheme 1. Photochromic reactions of typical photochromic compounds. 

Additionally, they can be further divided into positive and negative photochromic 
compounds. Negative photochromic compounds undergo photoisomerization reactions 
from stable colored isomers to their corresponding metastable colorless isomers [15], 
whereas positive photochromic compounds perform their photo-induced isomerization 
reactions from stable colorless isomers to metastable colored isomers. 

Diarylethene, a quintessential P-type photochromic compound, has garnered signif-
icant research attention owing to its exceptional thermal stability of both open and closed-
form isomers, robust fatigue resistance, high photocyclization quantum yield [16], and 
excellent photochromic performance in both solution and solid phases (Figure 1). 

 

Figure 1. Molecular structures and UV-Vis absorbance spectra of the open- and closed-ring isomers 
of diarylethenes (o-DAE and c-DAE). 

The inaugural research paper on diarylethene compounds was published in 1988 by 
Irie and Mohri [17]. After more than three decades of investigation, a significant limitation 
hindering the future application of these compounds is the reliance on UV light for the 
actuation of the molecular switch in at least one direction. UV light is known to be detri-
mental to biological tissue and has limited penetration in certain media [4,5]. Conse-
quently, the design and development of diarylethene compounds capable of undergoing 
photoisomerization upon irradiation with low-energy light are essential for unlocking a 
wide array of promising applications in biology, medicine, and materials science. 

The objective of this review is to provide a summary of recent achievements in the 
development of photochromic diarylethene compounds that can be triggered in both di-
rections by visible light. Additionally, the design strategies, illustrated with example mo-
lecular structures, are also discussed in this review paper. 

  

Scheme 1. Photochromic reactions of typical photochromic compounds.

Additionally, they can be further divided into positive and negative photochromic com-
pounds. Negative photochromic compounds undergo photoisomerization reactions from
stable colored isomers to their corresponding metastable colorless isomers [15], whereas
positive photochromic compounds perform their photo-induced isomerization reactions
from stable colorless isomers to metastable colored isomers.

Diarylethene, a quintessential P-type photochromic compound, has garnered sig-
nificant research attention owing to its exceptional thermal stability of both open and
closed-form isomers, robust fatigue resistance, high photocyclization quantum yield [16],
and excellent photochromic performance in both solution and solid phases (Figure 1).
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Figure 1. Molecular structures and UV-Vis absorbance spectra of the open- and closed-ring isomers
of diarylethenes (o-DAE and c-DAE).

The inaugural research paper on diarylethene compounds was published in 1988 by
Irie and Mohri [17]. After more than three decades of investigation, a significant limitation
hindering the future application of these compounds is the reliance on UV light for the
actuation of the molecular switch in at least one direction. UV light is known to be detri-
mental to biological tissue and has limited penetration in certain media [4,5]. Consequently,
the design and development of diarylethene compounds capable of undergoing photoiso-
merization upon irradiation with low-energy light are essential for unlocking a wide array
of promising applications in biology, medicine, and materials science.

The objective of this review is to provide a summary of recent achievements in the
development of photochromic diarylethene compounds that can be triggered in both
directions by visible light. Additionally, the design strategies, illustrated with example
molecular structures, are also discussed in this review paper.

2. Visible-Light-Activated Diarylethenes
2.1. Extended π Conjugation

The most effective and straightforward approach to designing visible-light-response
diarylethene photochromic materials is to extend the π conjugation of a specific diarylethene



Molecules 2024, 29, 5202 3 of 27

compound [18]. The extended π system aims to reduce the HOMO–LUMO gap of the
open-form isomer, thereby inducing a red shift in its absorption wavelength. However,
as the π conjugation increases, the contribution of the singlet excited state to the central
hexatriene unit decreases, potentially suppressing or even eliminating the photoreactivity
of the developed diarylethene compounds.

The first successful attempt to design and synthesize diarylethene compounds, namely
1o and 2o, which feature extended π-conjugation and red-shifted absorption without a loss
in photoreactivity, was reported by Lehn and coworkers (Scheme 2, Table 1) [19]. The intro-
duction of two additional thiophene units at the 5- and 5′-positions of the dithienylethene
led to the red-shift of both maximum absorption wavelengths for both the open- and
closed-form isomers. That is, the characteristic absorption wavelengths for the open-form
isomers of 1o and 2o are 445 nm and 475 nm, respectively. Then, the cyclization reaction
of these two compounds can be induced at 400 nm. Even though no relevant quantum
yields were reported in this paper, the subsequent publications have verified that the
diarylethene compounds with longer π-conjugation at the side chains certainly suppressed
their photochromic reactivity and quantum yields [20,21].
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Table 1. Photophysical and photochemical parameters of 1o–7o in solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) Φoc λPL Φf Solvent Ref.

1o 372 (5.3), 445 - - - cyclohexane [19]
2o 391(5.6), 475 - - - cyclohexane [19]
3o 431 (-) - 490 0.26 MeCN [22]
4o 436 (-) - 499 0.18 CHCl3 [23]
5o 330 (2.4), 374 (2.5) 0.23 - - 1,4-dioxane [24]
6o 330 (2.3), 375 (2.3) 0.30 - - 1,4-dioxane [24]
7o 330 (2.3), 377 (2.6) 0.32 - - 1,4-dioxane [24]

λmax: absorption maximum; ε: molar absorption coefficient; Φoc: cyclization quantum yield; λPL: fluorescence
maximum; Φf: fluorescence quantum yield.

Diarylethene compounds 3o and 4o (Scheme 2, Table 1) were synthesized via Mc-
Murry coupling and ring-opening metathesis polymerization (ROMP), respectively [22]. In
this case, the open-form isomers of 3 and 4 exhibited maximum absorption wavelengths
of 431 nm (MeCN solution) and 436 nm (CHCl3 solution), respectively. Moreover, the
thiophene-vinyl component, which is well conjugated with a low energy gap, contributes to
the higher photoluminescence quantum yields exhibited by compounds 3o and 4o, which
are 0.26 and 0.18, respectively. Unfortunately, neither of these two compounds exhibits
photochromism upon UV or visible light irradiation. This lack of photochromism could
be attributed to the electron density distribution within the thiophene-vinyl potion, rather
than the dithienylethene unit. Nonetheless, this design strategy provides a pathway for
creating diarylethene compounds with absorption bands in the visible region.

Three diarylethene compounds 5o–7o (Scheme 3, Table 1) by introducing ethyl [23],
neopentyl or isobutyl [24] substituents at the reactive carbons (2- and 2′-positions) of an
oxidized bis(benzothienyl)perfluorocyclopentene derivative were prepared by Irie and
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coworkers (Scheme 3). All three of these diarylethene compounds undergo both cyclization
and cycloreversion reactions upon irradiation with visible light and exhibit turn-on-mode
fluorescent switches. Moreover, compounds 6o and 7o, which have neopentyl or isobutyl
substituents at the reactive carbons, exhibit cycloreversion quantum yields that are one
or two orders of magnitude higher than that of compound 5o. However, no significant
differences in the cyclization and fluorescence quantum yields were observed among these
three compounds.
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All-visible-light-triggered photochromic fluorescent dithienylethene- phenanthroimi-
dazole dyads 8o [25] and 9o and 10o [26] were developed by Wang and coworkers in 2022
(Scheme 4, Table 2). Upon alternate irradiation with 420/540 nm light, compound 8o exhib-
ited effective photochromic and fluorescent switching in solution, polymethyl methacrylate
(PMMA) film, single crystal, and solid powder. Additionally, multi-stimuli responsive
chromism and fluorescent switching were achieved with good isomerization reactions
when treated with excessive trifluoroacetic acid (TFA). The successfully obtained specific
images on filter paper upon the light irradiation of both compound 8o and acid-treated
8o-H+ through a mask demonstrates the development of the photoswitchable dual-mode
patterning application.

Table 2. Photophysical and photochemical parameters of 8o–10o in solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) Φoc Φco λPL Φf Solvent Ref.

8o 372 (6.33) 0.34 466 0.1941 CHCl3 [25]
8c 516 (2.57) 0.02 - - CHCl3 [25]

8o+H+ 378 - 476 0.0644 CHCl3 [25]
8c+H+ 749 (0.68); 754 (0.67); 751 (0.22) - - - CHCl3 [25]

9o 375 (5.62) 0.30 433 0.0973 THF [26]
9c 518 (2.56) 0.01 - - THF [26]

10o 374 (4.68) 0.40 436 0.0767 THF [26]
10c 517 (1.86) 0.02 - - THF [26]

λmax: absorption maximum; ε: molar absorption coefficient; Φoc: cyclization quantum yield; Φco: cycloreversion
quantum yield; λPL: fluorescence maximum; Φf: fluorescence quantum yield.

Upon alternate irradiation with 420 nm and 560 nm light, diarylethene compounds 9o
and 10o demonstrate efficient absorption and emission spectral changes in solution, PMMA
film, solid state, and crystal state and even on filter paper (Scheme 4, Table 2). Additionally,
diarylethene compounds 9o and 10o exhibit efficient solid-state photochromism and dual-
color fluorescence switches their properties, endowing them with potential applications in
light-manipulative data storage, anti-counterfeiting and super-resolution imaging. Notably,
compound 9o shows efficient reversible fluorescence “OFF–ON” switching in Hela cells
upon all-visible-light irradiation, indicating its potential application in cellular imaging.
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Scheme 4. Molecular structures and photochromic reactions of 8o–10o with phenanthroimidazole as
the side chain.

A photochromic molecular switch, denoted as 11o (Scheme 5, Table 3), was developed
by linking two photoactive groups, a diarylethene unit and a benzothiazole thiophene
styrene, via a π-extended conjugation strategy [27]. With alternate irradiation with light
wavelengths at 420 nm and > 500 nm, compound 11o exhibited excellent photochromic
and fluorescent switching in solid-state composite film. This characteristic suggests potential
applications in light-recording technology and high-security-level anticounterfeiting systems.
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Scheme 5. Molecular structures of diarylethene compounds 11o–14o.

Table 3. Photophysical and photochemical parameters of 11o–14o in solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) Φoc Φco λPL Φf Solvent Ref.

11o 259, 429 0.06 0.002 554 0.02 MeCN [27]
12o 354 (5.34) 0.43 0.04 - 0.0072 THF [28]
13o 355 (7.48) 0.39 0.07 - 0.0088 THF [28]
14o 360 (8.64) 0.41 0.10 - 0.0409 THF [28]

λmax: absorption maximum; ε: molar absorption coefficient; Φoc: cyclization quantum yield; Φco: cycloreversion
quantum yield; λPL: fluorescence maximum; Φf: fluorescence quantum yield.
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By extending π-conjugation length with aggregated-induced emission units, three
all-visible-light triggered fluorescent diarylethene photoswitches (12o–14o) were designed
and prepared by Chi and coworkers (Scheme 5, Table 3) [28]. These three diarylethene
compounds (12o–14o) undergo reversible photochromism in tetrahydrofuran (THF) solu-
tion and PMMA films upon alternate irradiation with 450 nm and 560 nm light. Moreover,
their extended absorption band in the powdered state enables effective photochromic and
fluorescent switching upon similar irradiation, endowing these compounds with versatile
switching capabilities in different forms.

Given the visible-light-triggered reversible photochromic and fluorescent switching
abilities, diarylethene compounds 12o–14o can be used for all-visible-light-driven pattern-
ing applications as an information storage medium on a filter paper. The results indicate
that these diaryltehene derivatives have a promising application for visible-light-driven
information storage medium, data encryption, and anti-counterfeiting materials.

Hu and coworkers reported a series of photoswitchable diarylethene compounds,
designated as 15o–22o (Scheme 6, Table 4), which were synthesized by coupling an asym-
metric diarylethene unit with a super multiplexed Carbow [29]. The absorption bands of
the open-form isomers of these compounds can extend into the visible region, thereby en-
abling photocyclization reactions to be triggered by 405 nm light irradiation. Moreover, the
cycloreversion reaction can be induced by 640 nm light irradiation. Additionally, live-cell
time-lapse imaging of selective organelle dynamics using functionalized Carbow-switches
demonstrates the promising applications of these compounds in the biomedical field.
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Scheme 6. Molecular structures of diarylethene compounds 15o–22o with super-multiplexed Carbow
palette.

Table 4. Photophysical and photochemical parameters of 15o–22o in CHCl3 solution.

Compd. λmax/nm
(ε/104 M−1 cm−1)

Solvent for
Absorption

Conversion
Yield (%)

Solvent for
Conversion Yield Ref.

15o 309 (3.00) DMSO 38 CHCl3 [29]
16o 312 (2.75) DMSO 72 CHCl3 [29]
17o 307 (2.79) DMSO 83 CHCl3 [29]
18o 313 (2.66) DMSO - CHCl3 [29]
19o 358 (4.98) DMSO 86 CHCl3 [29]
20o 337 (3.30) DMSO 85 CHCl3 [29]
21o 350 (3.43) DMSO 92 CHCl3 [29]
22o 359 (3.83) DMSO 93 CHCl3 [29]

λmax: absorption maximum; ε: molar absorption coefficient; conversion yield: conversion ratio from open form to
closed from at PSS state.

Moreover, with the optimization of both electronic and vibrational spectroscopy,
the target diarylethene compounds 15o–22o exhibit excellent visible-light-activated pho-
tochromic properties and stimulated Raman scattering (SRS) response, featuring a large
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frequency shift and signal enhancement. These properties, as described above, endow
the compounds with excellent performance in SRS detection applications. This includes
reversible and spatially selective multiplexed SRS imaging of various organelles within
living cells, characterized by high sensitivity, specificity, biocompatibility, and spatiotempo-
ral selectivity.

An all-visible-light-triggered photoswitch, designated as 23o, was constructed by Li
and coworkers (Scheme 7, Table 5) [30]. Thanks to the electron donating conjugation effect
of triphenylamine phenyl (TPAP), the open-form isomer 23o exhibits a strong response
to short-wavelength visible light and undergoes cyclization reaction upon 405 nm light
irradiation in both solution and PMMA films. Notably, a near-complete photocyclization
reaction, with a ring-closure reaction yield exceeding 96.3%, can be achieved with 405 nm
light irradiation. Consequently, this compound can be utilized as optical information media
that can be initiated by all visible light, including multilevel data storage, rewritable QR
codes, and encryption/anti-counterfeiting applications.
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Bisthienylethene-dipyrimido [2,1-b][1,3]benzothiazole Triad 24o was reported by Sun
and coworkers (Scheme 7, Table 5) [31]. The open-form isomer of 24o exhibits an absorption
tail that extends to 450 nm in both solution and PMMA film, indicating the potential
application for practical solid-state luminescent material by dual-visible-light-induced
photoisomerization.

Recently, Fukaminato and coworkers designed and synthesized a series of all-visible-
light-activated diarylethene–perylenebisimide dyads by introducing different spacer groups
(Scheme 8, Table 5). In particular, the diarylethene derivative 25o, featuring a covalently
attached perylenebisimide (PBI) unit via ester spacer, exhibited reversible cyclization and
cycloreversion reactions upon alternate irradiation with green (500−550 nm) and red (>600
nm) light. This characteristic makes it a prime example of an all-visible-light-activatable
photoswitch, showcasing its potential for applications in all-visible-light-activated opto-
electronic devices and molecular switches [32].

Inferring from the experimental results and theoretical calculations, the mechanism for
visible-light-induced cyclization of 25o involves the generation of the triplet-excited state of
the diarylethene unit through multiplicity conversion on the basis of intramolecular energy
transfer from the singlet excited state of the PBI unit, and the cyclization subsequently pro-
ceeds [33]. However, this compound performed only about 10% photoinduced conversion
yield in typical heavy-atom-free solvents and very low photocyclization quantum yield
(0.04%) in ethyl acetate solution.

In order to overcome this drawback, diarylethene compound 26o, which features a
ketone group as the spacer between the diarylethene and the PBI units, was prepared [34].
This modification led to reversible photocyclization and photocycloreversion reactions
of 26o upon alternate irradiation with 532 nm and 633 nm laser lights in C2H5I solvent.
Notably, diarylethene compound 26o achieved nearly complete photoconversion yields
in solvents containing heavy atoms and maintained over 50% conversion yield even in
heavy-atom-free solvents. Furthermore, the photocyclization quantum yield of compound
26o (0.4%) was approximately 10 times higher than that of compound 25o in ethyl ac-
etate solution.
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To address the issue of reduced reactivity in solvents containing heavy atoms, di-
arylethene DAE-PBI dyads (27o–30o) with heavy bromine atoms at various positions were
prepared [35]. The incorporation of bromine atoms [36] significantly enhanced the visible-
light-induced cyclization reactivity and increased the photocyclization quantum yields
of diarylethene compounds 27o–30o in conventional organic solvents, compared to the
previous dyad 25o, which lacked heavy atoms in the molecule skeleton. The theoretical
studies have shown that the involvement of heavy atom atomic orbitals in the LUMOs is
crucial for enhancing the reactivity of the visible-light-induced cyclization.

Table 5. Photophysical and photochemical parameters of 25o–30o in solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) Φoc Φco Φf τf(ns) Solvent Ref.

23o 354 (10.64) 0.31 0.002 THF [30]
24o 305 (3.91) 0.094 0.006 hexane [31]
25o 354 (10.64) 0.04 1.0 × 10−3 0.93 4.2 CCl4 [32]
26o - 0.40 0.006 0.97 3.6 CCl4 [34]
27o - 0.34 1.5 × 10−3 - - EtOAc [36]
28o - 0.35 7.8 × 10−3 - - EtOAc [36]
29o - 0.34 1.2 × 10−3 - - EtOAc [36]
30o - 0.35 3.9 × 10−3 - - EtOAc [36]

λmax: absorption maximum; ε: molar absorption coefficient; Φoc: cyclization quantum yield; Φco: cycloreversion
quantum yield; Φf: fluorescence quantum yield; τf: fluorescence lifetime.

This design strategy provides an innovative and straightforward method for preparing
diarylethene switches that can be induced by all-visible light [37–39].

Linking a visible light-response difluoroboron β-diketonate to a diarylethene unit
is another effective strategy for extending the π-system of diarylethene compound. This
modification enables photoswitches that are activated by low-energy light operating in both
directions [40]. As shown in Scheme 9 and Table 6, the resulting compound 31o displays
characteristic absorption bands at 402 nm and at around 300 nm, which are attributed to the
dibenzoylmethanato boron difluoride complex fluorophore and the diarylethene unit [41].
The absorption band of the corresponding closed form extends into the 500–700 nm range,
and the photocycloreversion can be triggered by visible light (>560 nm). Interestingly, the
dyad 31o undergoes efficient photochromic reactions in solution, in nanoparticles (NPs),
and in powder solid. Furthermore, the open-form isomer of 31o exhibits strong blue-
colored fluorescence in THF solution with a relatively high fluorescence quantum yield



Molecules 2024, 29, 5202 9 of 27

(Φf = 0.37, λex = 385 nm), where the pure closed-form isomer is entirely non-fluorescent.
This turn-off mode fluorescent property suggests an efficient intramolecular fluorescence
resonance energy transfer (FRET) occurring in the closed-form isomer.
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Recently, 32o was prepared by incorporating a difluoroboron β-diketonate (BF2bdk)
unit and a dithienylethene unit [42]. The resulting 32o exhibits absorption maxima at
478 nm and 509 nm in toluene, which are derived from the intramolecular charge transfer
(ICT) transition [43]. The cyclization and cycloreversion reactions can be effectively ini-
tiated upon alternate irradiation with green light (530 nm) and near-infrared (NIR) light
(730 nm), respectively. These processes demonstrate significant quantum yields: 0.56 for the
cyclization reaction and 0.031 for the cycloreversion reaction. Notably, the fast reversible
transformation achieves the photostationary state within only 20 s in PMMA films.

Table 6. Photophysical and photochemical parameters of 31o–36o in solution.

Compd. λmax/nm
(ε/104 M−1 cm−1)

Conversion
Yield (%) Φoc Φco Φf Solvent Ref.

31o 300, 402 94 - - 0.37 THF [41]
32o 478 (3.12); 509 (3.68) - 0.56 0.031 - toluene [42]
33o 472 (10.2) - 0.06 0.0023 0.063 toluene [44]
34o 480 (9.37) - 0.242 0.067 0.52 toluene [45]
35o 454 (8.48) - 0.161 0.053 0.38 toluene [45]
36o 498 (8.60) - 0.093 0.058 0.45 toluene [45]

λmax: absorption maximum; ε: molar absorption coefficient; Conversion yield: conversion ratio from open form to
closed from at PSS state; Φoc: cyclization quantum yield; Φco: cycloreversion quantum yield; Φf: fluorescence
quantum yield.

A compound featuring a triphenylethene and a BF2bdk-functionalized dithienylethene,
designated as 33o, has been designed and prepared by Guo and co-workers [44]. Upon
alternate irradiation with blue light (460–470 nm) and NIR light (760–770 nm), compound
32o displays excellent visible light-triggered photochromism and fluorescent switching
behavior in both toluene and PMMA films. Interestingly, due to the responsiveness of the
BF2bdk group to volatile organic amines, compound 32o displayed distinct fluorescent turn-
on and colorimetric sensing performance for volatile n-propylamine in THF. It also exhibited
fluorescent turn-off and colorimetric sensory behavior towards n-propylamine vapor in
PMMA films. Consequently, 32o can be employed as a novel dual sensor for detecting
volatile primary or secondary amine vapors in the environment and in biological systems.

Dithienylethene-bridged difluoroboron β-diketonate dyes 34o–36o were designed
and investigated by Liu, Zhu, Li and co-workers (Scheme 10) [45]. In this study, the di-
fluoroboron β-diketonate group serves a dual role, functioning as an electron acceptor
and responding to amine vapors. All of these three compounds display excellent NIR
photochromism and fluorescent switching behaviors upon alternate irradiation with blue
light (460–470 nm) and NIR light (760–770 nm) in toluene solution and PMMA films. The
photochromic properties, including absorption maxima, molar extinction coefficients, opti-
cal response rates, and cyclization and cycloreversion quantum yields, can be modulated by
the differences in the π-conjugated systems between the difluoroboron β-diketonate moiety
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and the dithienylethene unit. In addition, these dyes demonstrate an unprecedented triple
sensing performance for volatile n-propylamine vapor in the PMMA film state.
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diketonate group.

The 2,2′-positions of the diarylethene compound are involved in bond formation that
is photoinduced by cyclization reaction, and indeed, provide a typical method for designing
visible-light response switches by extending the π-conjugation. Introducing different units,
especially chromophore [46], into the 2 or 2′-position of the diarylethene compound, can
induce a hypochromatic-shift of the closed-form isomer compared to the open-form isomer.

As shown in Scheme 11 and Table 7, Irie and coworkers successfully designed a visible-
light activated diarylethene compound by incorporating a perylene monoimide (PMI) dye
at one of the reactive carbons [47]. By alternate irradiation with light wavelengths of 560 nm
and 405 nm, compound 37o exhibited excellent photochromic reactions, switching between
its open- and closed-form isomers. The photoconversion efficiencies of compound 37o
are larger than 90% for both cyclization and cycloreversion reactions, but the quantum
yields are relatively low at less than 0.01. However, when a perylene diimide (PMI)
is placed in the 2-position of the diarylethene unit instead of PDI, the corresponding
diarylethene compounds 38o and 39o lose their photochromic abilities. Even when two
PMI units are introduced to both side chains at the ends of the diarylethene compound,
the resulting diarylethene compounds (40o–43o) also fail to demonstrate photochromism.
Density functional theory (DFT) calculations suggest that this phenomenon is due to the
localization of the LUMOs on the PMI units, which do not extend to the hexatriene part.
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In general, extending the π conjugation to the side chains of the diarylethene com-
pounds can reduce the quantum yields of both cyclization and cycloreversion reactions or
even lose photoreactivity. Therefore, another straightforward method for modification of
the diarylethene compounds involves constructing the ethene bridge unit [48].
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Table 7. Photophysical and photochemical parameters of 37o and 38o in solution.

Compd. λmax/nm
(ε/104 M−1 cm−1)

Conversion
Yield (%) Φoc Φf solvent Ref.

37o 543 (4.39) 97 6.4 × 10−4 0.016 1.4-dioxane [43]
38o 554 (4.64) >99 3.1 × 10−4 0.11 1.4-dioxane [43]

λmax: absorption maximum; ε: molar absorption coefficient; Conversion yield: conversion ratio from open form to
closed from at PSS state; Φoc: cyclization quantum yield; Φf: fluorescence quantum yield.

In 2017, Yam and coworkers prepared a series of visible-light-induced photochromic
thieno [3,2-b]phosphole oxides 44o–49o by incorporating a phosphole backbone (Scheme 12) [49].
Upon alternate irradiation with violet (ca. 410 nm) light and green (ca. 500 nm) light, these
compounds exhibit excellent thermal irreversibility, robust fatigue resistance, and high
photochromic quantum yields (ΦO→C = 0.87 and ΦC→O = 0.44). The specific properties
of this series of diarylethene compounds are likely due to the extended π-conjugated
systems integrated into the weakly aromatic phosphole backbone. This integration can
reduce the HOMO−LOMO energy gaps of the open-form isomers and extend the excitation
wavelength into the visible region. This molecular design strategy offers a practical method
for creating diarylethene compounds that are responsive to visible light, boasting excellent
photochromic efficiency (Table 8).
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Scheme 12. Molecular structures of diarylethene compounds 44o–49o with thieno [3,2-b]phosphole
oxides units.

Table 8. Photophysical and photochemical parameters of 44o–49o in benzene solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) λem/nm Φoc Φco

Conversion
Yield (%) Φf Solvent Ref.

44o 385 (0.59) 523 0.50 0.10 88 0.064 benzene [45]
45o 333 (0.81), 410 (0.699) 543 0.87 0.44 51 0.032 benzene [45]
46o 327 (0.792), 414 (0.975) 542 0.77 0.43 85 0.048 benzene [45]
47o 310 (2.75), 419 (0.954) 562 0.35 0.042 78 0.011 benzene [45]
48o 342 (0.656), 421 (1.64) 552 0.23 0.084 83 0.056 benzene [45]
49o 310 (2.17), 411 (3.61) 645 0.35 0.087 84 0.006 benzene [45]

λmax: absorption maximum; ε: molar absorption coefficient; Φoc: cyclization quantum yield; Φco: cycloreversion
quantum yield; conversion yield: conversion ratio from open form to closed from at PSS state; Φf: fluorescence
quantum yield.

Due to their diverse photophysical properties and potential applications [50–53],
boron(III) diketonate complexes with a tetra-coordinate boron center have been utilized in
conjunction with diarylethene unit. Upon coordination of boron(III) diketonate complexes,
Yam and coworkers prepared a series of visible-light-activated diarylethene compounds
(50o–60o, Scheme 13, Table 9). Benefiting from the decrease in LUMO energy localized on
the β-diketonatoborane moieties, the photochromic reactions of these compounds can be
effectively initiated with visible light irradiation. Interestingly, the closed-form isomers of
the di-thienylethene-containing β-diketonateoboranes exhibit a response to near-infrared
light [54,55].
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Scheme 13. Molecular structures of diarylethene compounds 50o–60o with boron(III) diketonate
complexes on the ethene bridge unit.

Table 9. Photophysical and photochemical parameters of 50o–60o in benzene solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) λem/nm Φoc Φco Φf τf (ns) Solvent Ref.

50o 289 (0.63), 342 (0.92), 417 (2.15) 502 0.39 0.0005 0.167 2.44 benzene [50]
51o 287 (0.75), 364 (0.80), 434 (2.42) 517 0.35 0.0004 0.161 2.66 benzene [50]
52o 298 (0.88), 450 (2.00) 513 - - 0.02 < 0.5 benzene [51]
53o 300 (0.90), 451 (2.30) 511 - - 0.03 < 0.5 benzene [51]
54o 316 (0.88), 460 (2.92), 490 (3.82) 513 - - 0.06 < 0.5 benzene [51]
55o 303 (0.68), 360 (0.99), 448 (2.90) 526 0.12 0.004 0.39 3.07 benzene [51]
56o 305 (0.58), 372 (0.78), 460 (2.88) 529 0.12 0.002 0.40 2.94 benzene [51]
57o 316 (0.65), 380 (0.64), 492 (4.42) 545 0.05 0.003 0.30 1.63 benzene [51]
58o 300 (0.89), 383 (0.74), 466 (2.83) 545 0.15 0.004 0.32 3.19 benzene [51]
59o 310 (0.99), 391 (0.93), 475 (4.23) 554 0.14 0.002 0.36 3.70 benzene [51]
60o 318 (0.64), 405 (0.58), 510 (4.07) 557 0.03 0.004 0.34 2.04 benzene [51]

λmax: absorption maximum; ε: molar absorption coefficient; λem: fluorescence maximum; Φoc: cyclization
quantum yield; Φco: cycloreversion quantum yield; Φf: fluorescence quantum yield. τf: fluorescence lifetime.

By replacing one of the oxygen atoms in β-diketonatoborane with N-substituents,
the same group developed a series of dithienylethene-containing boron(III)ketoiminates
(61o–68o) [56]. Upon alternate irradiation with visible light at 400 nm for cyclization
reactions and 600 nm for cycloreversion reactions, all the compounds exhibit traditional
photochromic behaviors (Scheme 14, Table 10). The intramolecular charge transfer (ICT),
caused by the electron-rich properties of the N atom, may induce a larger bathochromic
shift in these compounds. Therefore, introducing an electron donor or an electron acceptor
into the diarylethene skeletons to construct a push–pull system is beneficial for inducing a
red shift in their corresponding absorption bands.

Table 10. Photophysical and photochemical parameters of 61o–68o in benzene solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) λem/nm Φoc Φco Φf τf (ns) Solvent Ref.

61o 295 (0.69), 402 (2.87) 496 - - 0.007 2.09 benzene [52]
62o 292(0.61), 399 (2.76) 478 0.022 0.012 0.247 1.00 benzene [52]
63o 292 (0.86), 393 (3.30) 473 0.012 0.009 0.097 0.59 benzene [52]
64o 292 (0.90), 397 (3.31) 468 0.027 0.016 0.262 1.03 benzene [52]
65o 295 (0.52), 424 (2.18) 543 0.005 0.004 0.014 < 0.5 benzene [52]
66o 291 (0.76), 417 (2.85) 522 0.025 0.005 0.178 1.52 benzene [52]
67o 293 (0.75), 416 (2.47) 506 0.018 0.002 0.585 2.63 benzene [52]
68o 295 (0.61), 420 (2.37) 505 0.038 0.014 0.556 2.27 benzene [52]

λmax: absorption maximum; ε: molar absorption coefficient; λem: fluorescence maximum; Φoc: cyclization
quantum yield; Φco: cycloreversion quantum yield; Φf: fluorescence quantum yield; τf: fluorescence lifetime.
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2.2. Push–Pull Systems

Likewise, incorporating an electron donor or an electron acceptor into the diarylethene
skeleton to form a push–pull system can lower the HOMO–LUMO gap, resulting in a red
shift of its absorption band [57].

Recently, Liu and coworkers developed three series of 2,3-bis(2-methyl-1-benzothiophene-
1,1-dioxide-3-yl)-thiophene derivatives (Scheme 15, Table 11). The three N,N-dimethylaniline-
functionalized diarylethene compounds 69o, 70o and 71o exhibit photochromic reactions
and turn-on fluorescence upon visible light irradiation at 405 nm [58]. The corresponding
closed-form isomers performed a photoinduced cycloreversion by irradiation with visible
light (>495 nm), except for the closed-form isomer (71c) of 71o. When treated with trifluo-
roacetic acid, the acidic form 71c-H+ exhibits a robust photochromic reaction, which can be
activated by 405 nm/>495 nm visible light. Moreover, the photochromic reactivity can be
quenched again by neutralizing the acid with triethylamine. Notably, this represents the
first gated photochromic diarylethene with light-triggered turn-on fluorescence.
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Scheme 15. Molecular structures of oxidized bis(benzothienyl)thiophene derivative 69o–76o with
different substituent groups on the thiophene bridge unit.

Table 11. Photophysical and photochemical parameters of 69o–76o in toluene solution.

Compd. λmax/nm
(ε/104 M−1 cm−1)

Conversion
Yield (%) Φoc Φco Solvent Ref.

69o - - 0.17 0.05 toluene [54]
70o - - 0.15 0.04 toluene [54]
71o 328, 390 - 0.27 <1.0 × 10−5 toluene [54]
72o - (0.33 at 360 nm) - - - toluene [55]
73o - (1.17 at 360 nm) - - - toluene [55]
74o - (0.53 at 356 nm) 42.3 0.106 0.014 toluene [56]
75o - (1.36 at 356 nm) 24.3 0.106 0.002 toluene [56]
76o - (0.78 at363 nm) 74.8 0.784 0.034 toluene [56]

λmax: absorption maximum; ε: molar absorption coefficient; conversion yield: conversion ratio from open form to
closed from at PSS state; Φoc: cyclization quantum yield; Φco: cycloreversion quantum yield.
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Two additional visible-light-triggered fluorescence “turn-on”-mode diarylthene com-
pounds, 72o and 73o, were designed with the aid of DFT and time-dependent density
functional theory (TD-DFT) theoretical calculation by the same group (Scheme 15) [59].
The introduction of strong electron-donating group, 9,9-dimethyl-9,10-dihydroacridine or
Carbazole, shifts the absorption edge of the open-form isomers to the visible light region
(~430 nm). Their photochromic reactions can be effectively initiated by alternate irradiation
with 405 nm and visible light (495 nm < λ < 700 nm) in toluene solution. Interestingly, the
closed-form isomers of both diarylethene compounds exhibit bright yellow intramolecular
charge transfer emission with a fluorescence lifetime on the nanosecond scale. Furthermore,
both compounds display excellent thermal stability, fatigue resistance, and photostability.

In the same year, Liu and coworkers published another paper detailing three D-A-
type, visible-light-induced fluorescence “turn-on”-mode diarylethene compounds 74o–
76o. These compounds were synthesized by integrating a dibenzo[b,d]thiophene donor
into a 2,3-bis(2-methyl-1-benzothiophene-1,1-dioxide-3-yl)-thiophene acceptor (Scheme 15,
Table 11) [60]. Similar to the aforementioned molecules, the introduction of the dibenzo[b,d]
thiophene donor helps to extend the molecular π conjugation and increase intramolecular
charge transfer, which is beneficial for red-shifting the absorption of the open-form isomers
to the visible light region. These compounds 74o–76o were cyclized into closed-form
isomers with relatively high photoluminescence quantum yields (0.18–0.21) upon 405 nm
visible light irradiation. The initial open-form isomers were then obtained with visible light
(>450 nm) irradiation of the corresponding closed-form isomers. Additionally, these three
molecules also exhibit good thermal stability, fatigue resistance and photostability.

Typically, the all-visible-light triggered “turn-on”-mode fluorescent photo switches
described above can be utilized as gated photochromic materials and molecular probes for
super-resolution fluorescence imaging in biological cells.

Photochromic diarylethene compounds containing quinone functionalities were devel-
oped by Patel and coworkers (Scheme 16) [61,62]. The naphthoquinone-based diarylethene
photochromes 77o–80o undergo photocyclization reactions from open-form isomers to
closed-form isomers upon visible light irradiation at 405–410 nm. However, upon irra-
diation with 660 nm visible light, the presence of absorption at about 440 nm indicates
that both open-form and closed-form isomers coexist in the solution. The relatively low
photoswitching efficiency of these diarylethene compounds is explained by the overlap of
absorption bands between the open-form and closed-form isomers, leading to incomplete
conversion from open-form and closed-form isomers.
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Scheme 16. Molecular structures of naphthoquinone-based diarylethene compounds 77o–80o.

A series of diarylethene-amino acid photochromic fluorescent hybrids, 81o–92o, were
developed by Dubonosov and coworkers (Scheme 17, Table 12) [63]. Irradiation of the
hexane solutions of compounds 81o–92o with 463 nm light induces a rearrangement into the
colored closed-form isomers, which absorb at longer wavelengths in the spectrum, ranging
from 552 nm to 574 nm. Subsequently, rapid cycloreversion reactions can be triggered by
irradiation with visible light (>540 nm), accompanied by a color disappearance process.
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Scheme 17. Molecular structures of diarylethene-amino acid photochromic fluorescent hybrids
81o–92o.

Table 12. Photophysical and photochemical properties of 81o–92o in hexene solution.

Compd. λmax/nm
(ε/104 M−1 cm−1)

λem/nm
(Ifl, a.u.) Φf Solvent Ref.

81o 446 (0.70) 531 (680) 0.20 hexane [59]
82o 445 (0.77) 534 (590) - hexane [59]
83o 456 (0.70) 531 (630) - hexane [59]
84o 452 (0.73) 535 (610) - hexane [59]
85o 447 (0.91) 532 (640) - hexane [59]
86o 446 (0.89) 533 (610) - hexane [59]
87o 455 (0.88) 535 (710) - hexane [59]
88o 452 (0.87) 528 (400) - hexane [59]
89o 446 (0.81) 532 (670) - hexane [59]
90o 443 (0.82) 535 (420) - hexane [59]
91o 455 (0.80) 530 (610) - hexane [59]
92o 450 (0.71) 546 (395) - hexane [59]

λmax: absorption maximum; ε: molar absorption coefficient; λem: fluorescence maximum; Φf: fluorescence
quantum yield.

The alkylated diarylethene molecule 93o was designed by Miyaura and coworkers
(Scheme 18, Table 13) [64]. This diarylethene compound 93o exhibits a maximum absorption
wavelength at approximately 410 nm, with the absorption edge of the open-form isomer
reaching 500 nm. Consequently, both the cyclization and cycloreversion reactions of
the diarylethene compound 93o can be initiated by visible light. The introduction of
a push–pull system between carbonyl and dimethylamino groups in the ethene bridge
of diarylethenes 94o–96o results in intense absorption maxima from 379 nm to 433 nm,
which very much depend on the solvent and the ring size of azoheterocyclic moiety
(Scheme 18) [65]. This characteristic enables the photoinduced cyclization to occur upon
exposure to visible light in non-polar solvents. In contrast, in polar solvents, the major
photoreaction is E/Z-isomerization of the arylidene fragment. Therefore, diarylethene
compounds 94o–96o, which feature a π-conjugated push–pull system, exhibit solvent-
dependent photochromic properties.
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Table 13. Photophysical and photochemical parameters of 94o–96o in hexane solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) λem/nm Φf

τfl/ns
(CH3CN) Solvent Ref.

94o 400 (3.00) 450 0.003 2.8 hexane [61]
95o 379 (2.90) 450 0.002 2.8 hexane [61]
96o 406 (3.30) 450 0.003 2.8 hexane [61]

λmax: absorption maximum; ε: molar absorption coefficient; λem: fluorescence maximum; Φf: fluorescence
quantum yield; τf: fluorescence lifetime.

Coumarinyl(pyrrolyl)ethenes with a 1,3-thiazole bridge, 97o–101o, undergo photocy-
clization reactions when exposed to light at 365 nm in acetonitrile, and their photocyclore-
version reactions can be induced by irradiation with visible light at 540 nm (Scheme 19,
Table 14) [66]. The maximum absorption wavelength at approximately 420 nm offers
the potential for visible-light-induced photocyclization reaction. Moreover, compounds
97o–99o can serve as multifunctional sensors for detecting Pd2+, CN− and F− ions with
selective chromogenic activity. This property endows compounds 97o–99o with the po-
tential to be used as logic circuits, responding to different input signals and producing
an output signal. Additionally, bifunctional compounds 102o and 103o, which contain a
photochromic indolyl(thienyl) diaryltehene with a pyrroldione bridge directly linked by
a dimethyiene spacer to an ionochromic rhodamine moiety, were developed by the same
research group (Scheme 19) [67]. The absorption bands of both compounds 102o and 103o,
located at 450–455 nm in toluene solution, provide the potential for visible-light-induced
photochromic reactions.
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Table 14. Photophysical and photochemical properties of 94o–96o in MeCN solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) λem/nm Stokes Shift,

∆νfl (cm−1) Solvent Ref.

97o 342 (1.64), 417 (1.36) 547 5700 MeCN [62]
98o 364 (1.88), 414 (1.84) 544 5750 MeCN [62]
99o 340 (2.00), 418 (1.72) 541 5450 MeCN [62]

100o 332 (0.68), 414 (1.04) 533 5400 MeCN [62]
101o 343 (1.44), 421 (1.24) 510 4100 MeCN [62]
102o 275 (4.68), 460 (0.53) 560 MeCN [63]

103o 263 (3.03), 270 (3.28),
450 (2.85) 560 MeCN [63]

λmax: absorption maximum; ε: molar absorption coefficient; λem: fluorescence maximum.
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2.3. Energy Transfer

In addition to the design strategy of diarylethene compounds with extended π-
conjugation and a push–pull system to directly address the absorption band into the
visible region, intramolecular or intermolecular energy transfer from a sensitizer to the
photoswitch is often employed to develop visible-light-triggered diarylethene compounds.
In this case, the sensitizer can absorb radiation in the visible or even NIR region and
transfer the higher excitation energy to the diarylethene photoswitch, thereby initiating
the photochromic reaction [68]. The sensitizer can be a triplet sensitizer, a multi-photon
absorber/emitter, or an upconverting nanoparticle.

Using triplet sensitization to achieve all-visible-light photochromism is also an efficient
design strategy. For easy energy transfer, the S1–S0 energy gap of the sensitizer must be
lower than that of the diarylethene photoswitch to utilize low-energy excitation light.
Additionally, the energy of the triplet state of the sensitizer should be larger than the T1
energy level of the diarylethene photoswitch (Figure 2).
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The incorporation of transition metal ions into the diarylethene skeleton facilitates
visible-light-triggered switching through intramolecular metal-to-ligand charge-transfer
(MLCT) processes [69–73]. However, due to the high cost of the metal ligands, concerns
about metal contamination [74], low cycloreversion quantum yields of MLCT-based di-
arylethene compounds [75], and poor triplet-sensitization efficiency [76,77], relatively few
visible-light-triggered diarylethene photoswitches have been successfully developed using
this design method.

In order to overcome the drawbacks described above, a diarylethene photoswitch
covalently linked to two small biacetyl triplet sensitizers was reported by Hecht and
coworkers (Scheme 20, Table 15) [78]. Benefiting from the elongated conjugation and
effective intramolecular triplet energy transfer from the biacetyl termini to the diarylethene
core, the open-form isomer 104o performs with a strong maximum absorption wave-
length at 390 nm. The photoinduced cyclization reaction can be initiated by visible-light
(λirra. = 405 nm) irradiation. The ring-closed isomer 104c can readily be converted back
to its open form 104o by irradiation with long-wavelength light (λirra. > 500 nm). The
triplet sensitization process was experimentally demonstrated by examining the oxygen
sensitivity of the photochromic reaction. Moreover, a diarylethene compound bearing one
biacetyl at the photoreactive carbon was also developed by the same group [79]. Although
the photocyclization reaction of diarylethene compound 105o from the open- to closed-form
isomer can be induced by 405 nm, the maximum absorption wavelength of the open-form
isomer of 105o was located at 289 nm, with a shoulder absorption at 265 nm. This further
confirms the dominant role of the triplet sensitization in the photochromism.
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Table 15. Photophysical and photochemical parameters of 104o–105o in MeCN solution.

Compd. λirr/nm Φ [at λirr]
Degassed

Φ [at λirr]
Non-Degassed

PSS [at λirr]
(open:closed) Solvent Ref.

104o
313 (o→c)
405 (o→c)
577 (o→c)

0.18
0.30

0.0003

0.005
0.009

0.0003

34:66
0:100
100:0

MeCN [74]

105o

289 (o→c)
365 (o→c)
405 (o→c)
577 (o→c)

0.49
0.55
0.55

0.063

0.54
0.51
0.41
0.06

0:100
0:100
0:100
100:0

MeCN [75]

λirr: light irradiation wavelength; Φoc: cyclization quantum yield; PSS: conversion ratio from open form to closed
from in the PSS state.

The all-visible-light-induced photochromism of diarylethene compounds featuring
a narrow singlet-triplet energy gap (∆EST) materials as a sensitizer was reported by Tian,
Zhang and coworkers (Scheme 21) [80]. Benefiting from the narrow ∆EST that matches the
triplet–triplet energy transfer (TTET) process, the all-organic visible-light photochromism
of diarylethenes has been successfully achieved with high efficiency and photofatigue
resistance. Moreover, the wavelength of the illuminating light can be easily modulated
by changing the related sensitizers. The all-visible-light “write-and erase” photochromic
system can also be fabricated by using 106o/2CzPN and 106o/4CzIPN in PMMA films.
One year later, the same research group developed an all-visible-light diarylethene system,
referred to as 107o, by introducing a building-block design strategy with a narrow ∆EST
sensitizer into the diarylethene core [81]. The photochromic performance of diarylethene
107o can be initiated through alternate irradiation with 420 nm/>550 nm light, demon-
strating high efficiency and robust fatigue resistance. Furthermore, this compound is also
suitable for all-visible-light patterning applications, making it viable candidate for use in
information storage media. An amplifying dual-visible-light diarylethene system made by
combining diarylethene compound 108o, a triplet sensitizer (4CzIPN), and an amphiphile
(mPEG-DSPE) was developed by Zhang and coworkers [82]. This combination resulted
in a visible-light switchable micelle, which features distance dependence and environ-
mental sensitivity in the Dexter-type triplet-triplet process. As a result, an approximately
10-fold enhancement of the TTET efficiency for photochromism was achieved. Additionally,
an amplified fluorescence on/off contrast upon bidirectional visible-light excitation at
470/560 nm was detected in full water media. Furthermore, fluorescence confocal imaging
of Hela cells incubated with this diarylethene system can be realized through alternate
irradiation with 475/560 nm light.

Recently, Wu and coworkers reported an all-visible-light-activated molecular isomer-
ization reaction, sensitized by lead halide perovskite nanocrystals (CsPbBr3 NC-PTA) [83].
This reaction capitalizes on the triplet energy transfer (TET) from CsPbBr3 NC-PTA to the or-
ganic photoswitch, enabling the diarylethene molecule 109o to exhibit photoisomerization
reaction under 5 mW illumination with a 450 nm laser. Subsequently, the colored closed-
form isomer can be readily reverted to the colorless open-form by irradiation with a 589
nm laser. This typical photochromic reaction facilitates applications such as light-induced
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information coding and patterning. The same methodology was also applied to control the
photoluminescence emission from the nanocrystals through light stimulation [84].
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An alternative method for obtaining a visible-light-triggered molecular switch in-
volves populating the singlet excited state (S1) through a triplet–triplet annihilation (TTA)
mechanism [85–87]. In this process, two molecular switches, both in the T1 state, interact
such that one is promoted to the S1 state while the other returns to the S0 state. To date,
several examples have been reported utilizing perylene [88,89] or metal complex [90,91]
triplet acceptors to achieve visible-light-triggered photochromism.

Recently, a series of diarylethene compounds (110o–112o) featuring visible-light-
induced isomerization were developed utilizing the well-studied upconversion pair 9,10-
diphenylanthracence (DPA) and platinum octaethylporphyrin (PtOEP) [92]. Both the
ring-opening and ring-closing reactions of these compounds can be triggered by a single
green light source at 532 nm (Scheme 22).
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2.4. Negative Photochromism

In most cases, the photochromic compounds described above undergo photochromic
reactions from stable colorless isomers to metastable colored isomers upon light irradiation.
These compounds refer to the positive type photochromic compounds. Furthermore,
the photochromic molecules perform their isomerization reactions from stable colored
isomers to their corresponding metastable colorless isomers by light excitation and can be
recognized as negative photochromic molecules [5,93].

The most typical characteristic for negative photochromic compounds is the transfor-
mation of the stable colored isomer into the metastable colorless or lightly colored isomer
upon exposure to visible or near-infrared light irradiation. Subsequently, the reversible
reaction can be triggered by short-wavelength light irradiation or through a thermal back
reaction in the dark [5,93]. Therefore, another ingenious method for designing visible-light-
or even NIR-light-responsive diarylethene compounds is to impart them the capability of
negative photochromism.

The first negative photochromic compound based on a diarykethene skeleton was
reported by Irie and coworkers in 2008 [94]. As shown in Scheme 23 and Table 16, the molec-
ular design strategy is to connect the oxidized thiophene rings to the central ethene moiety
through the 2-position. This typical molecular design method causes the open-form isomer
to have relatively longer π-conjugation length than the photoinduced closed ring isomer.
This specific molecular π-conjugation length changes lead to the negative photochromism
or “invisible photochromism” of diarylethene compounds upon light irradiation.
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Table 16. Photophysical and photochemical parameters of 104o–105o in solution.

Compd. λmax/nm
(ε/104 M−1 cm−1) Φoc Φco solvent Ref.

113o 356 (1.5) 1.9 × 10−4 - 1.4-dioxane [90]
113c 260 (2.9) - 0.55 1.4-dioxane [90]
114o 317 (0.5) 0.01 - 1.4-dioxane [90]
114c 284 (0.6) - 0.19 1.4-dioxane [90]

λmax: absorption maximum; ε: molar absorption coefficient; Φoc: cyclization quantum yield; Φco: cycloreversion
quantum yield.

As the open form with a relatively longer π-conjugation length, the absorption max-
imum of 113o is located at 356 nm with a slight yellow 1,4-dioxane solution. Then, a
new absorption band appeared in the UV region, along with a decoloration process upon
visible light (>430 nm) irradiation. Furthermore, the irradiation of 1,4-dioxane solution
of 113c with UV light (λ = 313 nm) triggers the colored reaction from colorless to pale
yellow along with the recovery of the absorption band at 356 nm which corresponds to
the open form isomer 113o. The formation of the closed-form isomer, along with the
negative photochromic reaction, was further confirmed by 13C NMR spectroscopy and
X-ray crystallographic analysis.
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By changing the substituents from phenyl units to methyl groups at the 5-position
of both oxidized thiophene units, diarylethene compound 114o in 1,4-dioxane is colorless
with the absorption band at the UV region. Similar to 113o, the light (λ = 390 nm) induced
photoisomerization causes a decrease in absorption at 317 nm and the appearance of a
new absorption band at 284 nm. Then, the initial absorption band was recovered with
UV light (λ = 284 nm) irradiation. Interestingly, there is no obvious color change with the
photoisomerization reaction of diarylethene compound 114 in the 1,4-dioxane solution. This
is another phenomenon that is defined as “invisible photochromism”. The unconventional
photochromic behaviors of compounds 113 and 114 have also been elucidated with the
help of the theoretical investigation by DFT calculation [95].

Another negative compound based on the diarylethene skeleton, called the photo-
gated [96,97] compound, was designed and reported by Hecht and coworkers [98]. In
the diarylethene compound 115, an acid-sensitive azulene moiety as one of its side aryl
groups was introduced to the molecular skeleton (Scheme 24). Upon light irradiation
(λ = 365 nm), diarylethene compound 115 exhibits a positive photochromic reaction with
the color change from a colorless open form (115o) to a colored closed form (115c). However,
the absorption band of DAE 115o was changed significantly with the addition of TFA. In
this case, the absorption band of the acid-treated 115o decreased at around 300 nm, and a
new strong absorption band extending from 350 to 550 nm appeared. This typical optical
property indicates that the protonated 115o-H+ has the potential for displaying negative
photochromic behavior. With the irradiation of visible light at the wavelength of 546 nm, the
decoloration process of 115o-H+ cyclohexane solution was observed, the absorption band at
visible region decreased, and another absorption band at ultraviolet region became greatly
prominent. This phenomenon indicates the negative photochromism of the protonation
compound 115o-H+. Subsequently, the closed isomer 115c-H+ undergoes a thermal ring-
opening reaction with a half-life of around 7 min at room temperature. This research
not only opens a new avenue for designing diarylethene compounds with visible light
excitation but also provides an artful designing method for enhancing the photochemical
efficiency compared to the original untreated molecule as well as creating multiple-stimuli
responsive molecular switches [99].
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A C-shaped hydrocarbon cethrene composed of seven fused benzenoid rings, which
can be recognized as a diarylethene derivative, shows an electrocyclization reaction via both
photochemical and thermal processes. However, the facile oxidation reaction forced the
closed-ring form to be a planar hydrocarbon, and the intermediate compound could not be
isolated or detected. The oxidation reaction quenched the photochromic reversible transfor-
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mation from closed-ring form to initial open-ring form [100–103]. Nevertheless, two methyl
substituents installed in the fjord region instead of two hydrogen atoms improved not only
the stability of the system against oxidation reaction but also the expeditiousness of the
synthesis. This design strategy enabled compound 116 to show reversible transformation
between the open- and closed-form isomers by light irradiation.

Based on the Woodward–Hoffmann rules, the conrotatory electrocyclic ring-closure and
ring-opening reaction of compound 116 can be efficiently mediated by visible (λ = 630 nm)
and ultraviolet (λ = 365 nm) light, respectively (Scheme 25). Along with the photochemical
reaction, the blue solution of the metastable open form (116o) was transformed to a colorless
solution of the stable closed form upon irradiation at 630 nm. The reversible photoreac-
tion from colorless closed form to colored open form can be induced with 365 nm light
irradiation [104]. Strictly speaking, compound 116o could not be recognized as a negative
photochromic compound because the colored open form was the metastable isomer.
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2.5. Others

Over the years, in the pursuit of developing all-visible-light-triggered diarylethene
compounds, various design strategies have emerged. These include the use of upcon-
verting nanoparticles [105,106], multiphoton absorption [107,108], supermolecular self-
assembly [109–111], coordinative cages [112], intramolecular proton transfer [113,114], and
so on.

Given the scarcity of reports on visible-light-triggered photochromic diarylethene
compounds based on the aforementioned design strategies over the past five years, and
considering that research prior to 2020 has already been summarized in two mini-review
papers [115,116], we will not further discuss these design strategies in this context.

3. Conclusions and Perspectives

Due to the specific properties, such as excellent thermal stability of both open- and
closed-form isomers, robust fatigue resistance, high photocyclization quantum yields,
and reliable photochromic performance in both solution and solid phases, diarylethene
compounds have been extensively investigated for applications in materials science and
biomedical sciences. However, the fact that the photochromic reaction from open-form iso-
mers to closed-form isomers is typically induced by ultraviolet light restricts their broader
applications. Therefore, the development of all-visible-light-activated diarylethene com-
pounds is essential for opticelectronic devices and photocontrolled biological applications.
This is because visible light excitation offers advantages such as low phototoxicity, high
permeability, and a low background signal.

In this review, we have examined several effective design strategies, such as extended
π-conjugation systems, push–pull systems, energy transfer, and negative photochromism,
have been utilized to develop diarylethene compounds responsive to visible light in both di-
rections. However, several challenges and limitations remain to be addressed: (1) Designing
all-visible-light-activated diarylethene compounds with high stability and photoisomer-
ization efficiency with respect to both LED and sunlight is essential for enriching the
design strategies and expanding their applications in portable medical devices. (2) Im-
proving the photocyclization and photocycloreversion quantum yields in both solution
and solid/crystal states is a second essential property to be enhanced. (3) Adjusting the
absorption bands of both open-form isomers and closed-form isomers to long-wavelength
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light, such as red or even NIR light, is crucial for applications requiring light penetra-
tion into (bio)materials without causing radiation damage. (4) Cytotoxicity is another
critical factor, especially for applications in photopharmacology. (5) Multi-responsibility,
such as responsiveness to pH, singlet oxygen, and human immune cell markers, is also
pivotal for their utility in biomedical field. (6) Integrating nonlinear optical features into
diarylethene compounds that can be activated with low-energy light presents another chal-
lenge. (7) Expending the applications of all-visible-light-activated diarylethene compounds
into microelectronic devices and biomedical systems is a key goal for our future research.

The development of new types of all-visible-light-activated diarylethene compounds,
achieved through ingenious molecular design strategies and structural modifications to
address the aforementioned challenges, is poised to have a profound impact on the fields
of materials science and biomedical science. Undoubtedly, the development of these
innovative molecules will spark a significant scientific and technological revolution, paving
the way for transformative advancements across various fields.
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Dynamics, Chirality, and Encapsulation Characteristics. J. Am. Chem. Soc. 2018, 140, 11091–11100.
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