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Abstract
Objectives: We propose and validate a domain knowledge-driven classification model for diagnosing post-acute sequelae of SARS-CoV-2 infec
tion (PASC), also known as Long COVID, using Electronic Health Records (EHRs) data.
Materials and Methods: We developed a robust model that incorporates features strongly indicative of PASC or associated with the severity 
of COVID-19 symptoms as identified in our literature review. The XGBoost tree-based architecture was chosen for its ability to handle class- 
imbalanced data and its potential for high interpretability. Using the training data provided by the Long COVID Computation Challenge (L3C), 
which was a sample of the National COVID Cohort Collaborative (N3C), our models were fine-tuned and calibrated to optimize Area Under the 
Receiver Operating characteristic curve (AUROC) and the F1 score, following best practices for the class-imbalanced N3C data.
Results: Our age-stratified classification model demonstrated strong performance with an average 5-fold cross-validated AUROC of 0.844 and 
F1 score of 0.539 across the young adult, mid-aged, and older-aged populations in the training data. In an independent testing dataset, which 
was made available after the challenge was over, we achieved an overall AUROC score of 0.814 and F1 score of 0.545.
Discussion: The results demonstrated the utility of knowledge-driven feature engineering in a sparse EHR data and demographic stratification 
in model development to diagnose a complex and heterogeneously presenting condition like PASC. The model’s architecture, mirroring natural 
clinician decision-making processes, contributed to its robustness and interpretability, which are crucial for clinical translatability. Further, the 
model’s generalizability was evaluated over a new cross-sectional data as provided in the later stages of the L3C challenge.
Conclusion: The study proposed and validated the effectiveness of age-stratified, tree-based classification models to diagnose PASC. Our approach 
highlights the potential of machine learning in addressing the diagnostic challenges posed by the heterogeneity of Long-COVID symptoms.

Lay Summary
Post-acute sequelae of SARS-CoV-2 infection (PASC), also called Long COVID, refers to a range of symptoms that continue for weeks or months 
after recovering from the initial COVID-19 infection. While some people recover fully, others experience persistent issues like fatigue, difficulty 
breathing, coughing, and memory impairment, which can severely affect their daily lives. In this study, we developed a machine learning model to 
help health care providers diagnose Long COVID more effectively using retrospective electronic health records (EHRs). The model is designed to be 
interpretable, providing insights to what the important features are and how the model reaches its conclusions. Importantly, the model is designed 
to account for the differences in how PASC manifests in various age groups, ensuring reliable diagnosis and care for patients across all age groups.
Key words: PASC; Long COVID; electronic health records; N3C; clinical decision model. 

Background and significance
After the acute phase of a COVID-19 infection, many 
people report new, lasting, and/or worsening symptoms. 
These symptoms are often unrelated to the symptoms experi
enced during the acute infection phase and occur even after 
testing negative for COVID-19. This phenomenon is known 

as post-acute sequelae of SARS-CoV-2 infection (PASC), oth
erwise commonly known as Long COVID, and is thought to 
have affected as many as 15% of adults in the United States.1

Research to understand who will go on to develop PASC, its 
prognosis, and recommended care paths has been challenging 
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due to the wide range and inconsistency of PASC manifesta
tion across multiple organ systems.

Current studies estimate that the prevalence of PASC 
diagnosis falls between 10% and 30% of those previously 
infected with COVID-19, and that the risk of developing 
PASC ranges anywhere from 10% to 70% based on 
certain risk factors.2 Although the risk of developing PASC 
is positively correlated with the severity of the acute 
COVID-19 infection, 10%-35% of people who had mild 
responses to the infection also reported developing 
PASC.3,4

At the time of writing, PASC has been tied to more than 
200 symptoms.2 Although the most common symptoms of 
COVID-19 are respiratory, the symptoms of PASC can be 
multisystemic, affecting the heart, lungs, immune system, 
pancreas, gastrointestinal tract, neurological system, blood 
vessels, reproductive system, etc.2,3 While common symp
toms of PASC are being identified,5 the ability to predict the 
development of PASC prior to its onset remains elusive. In an 
effort to centralize clinical knowledge about COVID-19 and 
its complications, the National Institutes of Health (NIH) 
National Center for Advancing Translational Sciences 
(NCATS) built the National COVID Cohort Collaborative 
(N3C) Data Enclave,6 a national multi-institutional database 
populated with electronic health records (EHR) data from 
COVID-19 patients that currently contains data from 
upwards of 60 health organizations in the United States. 
With this data, the NIH posed the Long COVID Computa
tional Challenge (L3C), with dual goals to develop an algo
rithm to predict PASC before it occurs and to learn what 
characteristics predispose individuals to PASC risk. Through 
our participation in the L3C challenge (September-December 
2022), we developed and validated an explainable machine 
learning (ML) model to predict the likelihood of developing 
PASC from prior EHR data and to translate that likelihood 
to a binary label (PASC diagnosis or not) that can be vali
dated against real-world data.

Given the heterogeneity of PASC, successes have 
been seen in model building on stratified subsets of the 
N3C cohort. For example, Pfaff et al. and Socia et al. 
trained separate XGBoost models based on hospitalization 
due to COVID-19, stratifying those who had and had not 
been hospitalized with COVID-19.7,8 Both studies reported 
differences in feature importance and performances 
among the stratified models. In addition to hospitalization 
status, a later study by Pfaff et al. also suggested that PASC 
manifests differently across age groups as “a collection of 
subphenotypes”.9 Moreover, the value of incorporating 
vital signs, demographics, conditions, and procedures into 
models to characterize and/or predict PASC have 
been uncovered by previous studies.7–10 Based on these 
works, here we adopted the approach of building separate 
XGBoost models on a population stratified by age. 
We hypothesized that stratifying the N3C population by 
age would also capture the phenotypic differences between 
the hospitalized patients vs the nonhospitalized patients 
given that age and hospitalization rate are positively corre
lated.11 Further, we hypothesized engineering clinically rel
evant features according to findings from previous 
literature will enhance the performance and explainability 
of our model.

Methods
Description of L3C cohort
The dataset provided for the L3C challenge was a subset of 
the N3C data enclave,6 a collaborative effort to harmonize 
data regarding COVID-19, following the Observational 
Medical Outcomes Partnership v 5.3 Common Data Model 
for data schema and storage. Specifically, the L3C challenge 
dataset, which was curated from the N3C dataset for the pur
pose of the challenge, contained both censored (data avail
able only up to 4 weeks after initial diagnosis of COVID-19) 
and uncensored (all available data without a time cutoff) 
demographic and clinical information from the EHR for 
57 624 patients. All data in the N3C enclave are deidentified.

The final dataset released by the L3C consortium con
tained all PASC patients (diagnosed with U09.9) from the 
N3C data enclave, and the non-PASC patient cohort was ran
domly downsampled to match a 1:4 ratio of PASC to non- 
PASC patients. The 1:4 case-to-control ratio was established 
by the L3C challenge organizers as part of the study design. 
While we adhered to this predetermined ratio, the specific 
rationale behind this choice was not disclosed to us and falls 
outside the scope of our paper. In addition, the censored and 
uncensored datasets with 57 624 patients were the only train
ing dataset available to us for the entire duration of the chal
lenge timeline.

Definition of PASC
The outcome labels provided by the L3C consortium follow a 
“silver standard” because the negatively labeled outcomes 
are not rigorously validated as true negatives. Patients who 
have an International Classification of Diseases (ICD-10) 
code U09.9 are labeled as true positives for PASC and are 
otherwise labeled as negative. However, individuals may not 
seek clinical care despite presenting symptoms of PASC, may 
not be aware of having PASC, and/or may not have received 
the U09.9 ICD-10 code during their clinical encounter. For 
these various reasons, the N3C database’s negatively labeled 
data most likely contains patients who have actually had 
PASC (ie, false negatives).

Feature selection and feature engineering
We leveraged domain knowledge gathered from the literature 
to select relevant features for PASC and reduce mutual infor
mation by combining features that we would expect to have a 
similar role in the context of COVID-19.12 For example, we 
combined the use of BiPAP (reverse transcription polymerase 
chain reaction) or CPAP (continuous positive airway pressure) 
as a binary indicator for noninvasive ventilation and catego
rized the use of endotracheal intubation and tracheostomy as 
invasive ventilation. Our final transformed dataset consisted 
of 184 features (Table S2) that included information about 
patient demographics, symptoms, clinical conditions, vaccina
tion status, lab testing results, procedures, and administered 
medical devices such as different types of ventilators. We used 
a binary coding system to simplify these features: categorical 
features are coded with one-hot-encoding, and continuous 
variables and quantitative variables are coded as 
0 (corresponding to False) if within the normal range or 1 (cor
responding to True) if outside of normal range. Normal 
ranges for lab testing results and other continuous measure
ments are found on the Mayo Clinic’s public database.13

We also created a combined binary indicator for race/ 
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ethnicity, including an “unknown” category for patients with 
unknown or unreported race information.

Addressing missing values
The EHR is sparse in nature with a large number of missing 
values, and the proportion of missingness also varies per indi
vidual.14 Following our feature engineering method, we 
replaced all missing values with 0 (corresponding to False). 
This was done under the assumption that any test, procedure, 
or device usage was not needed by the patient or was within 
normal ranges if it was not ordered/prescribed by a clinician 
(Figure S1). For conditions, it was assumed that the patient 
did not present with the condition at evaluation if that condi
tion was not recorded in the EHR.

Model development
Given the heterogeneity of PASC, successes have been seen in 
model building on stratified subsets of the N3C cohort.7,8 As 
we found differences in PASC prevalence and medical condi
tions across age groups,15,16 we stratified the cohort into four 
age groups and trained four independent XGBoost classifica
tion models. The age groups were defined as pediatrics <15 
years, young adults (15-44), mid adults (45-64), and older 
adults ≥ 65. For each of our XGBoost classifiers, we imple
mented a nested cross-validation method to tune hyperpara
meters and evaluate the performance of our classifiers on 
each age group. The parameters tuned included the maxi
mum depth of the trees (“max_depth,” ranging from 1 to 9), 
the minimum loss reduction required for further splitting 
(“gamma,” ranging from 1 to 9), both L1 and L2 regulariza
tion terms (“reg_alpha,” ranging from 40 to 180, and 
“reg_lambda,” ranging from 0.2 to 1, respectively), the sub
sample ratio of columns for each tree (“colsample_bytree,” 
ranging from 0.5 to 1), the minimum sum of instance weight 
needed in a child node (“min_child_weight,” ranging from 0 
to 10), the learning rate (eta, ranging from 0.005 to 0.5), and 
the number of trees (“n_estimators,” ranging from 50 to 

500), and subsample ratio of training instances 
(“subsample,” ranging from 0.5 to 1). These parameters were 
selected based on their importance in controlling the com
plexity and generalization of the model. In each of the 5 outer 
folds, we tuned the parameters for each of the four XGBoost 
models through an inner-fold 5-fold cross-validation and also 
calibrated the classifier using sklearn’s implementation of 
CalibrateClassifierCV with 3-fold cross-validation.17 To aid 
the model’s utility and explainability, we also evaluated the 
relative importance of features using Shapley values.18,19

For training, we used the censored training set provided by 
the N3C as part of the L3C challenge. The dataset contained 
57 624 patients who tested positive for COVID-19 on RT- 
PCR (reverse transcription polymerase chain reaction)-based 
lab tests within 7 days of an inpatient or outpatient visit 
(Table 1).

Adhering to the requirements of the L3C challenge, we 
define the day of the positive test of the initial acute SARS- 
CoV-2 infection as the patient’s COVID-19 index date. Using 
the censored training set, our model was built to predict an 
individual’s likelihood of developing PASC at ≥4 weeks past 
their COVID-19 index date using EHR data up to and before 
that 4-week mark. A PASC diagnosis that occurred sooner 
than 4 weeks after the COVID-19 index date was not treated 
as a positive label (relabeled as false for our training) unless a 
subsequent PASC diagnosis was issued after the 4 weeks past 
COVID-19 index data. The scope of the L3C challenge 
strictly required PASC codes past 4 weeks after COVID-19 
index, so PASC codes issued prior to 4 weeks past COVID- 
19 index were irrelevant to our analysis.

Evaluation approach/study design
Our model was developed to predict whether a PASC code 
appears as soon as 4 weeks after an initial COVID-19 infec
tion (ie, the COVID-19 index date). We evaluated our model 
based on the AUROC and F1 score using 5-fold cross- 
validation on the training set.20,21 AUROC was chosen to 

Table 1. Demographic distribution of participants included in the study (n¼57 624).

Age group

Characteristics Pediatrics (0-14) Young adults (15-44) Mid adults (45-64) Older adults (≥65)

No. (%) 4811 (8) 25 768 (45) 17 005 (30) 10 040 (17)
Gender, no. (%)

Male 2550 (53) 9741 (38) 6808 (40) 4533 (45)
Female 2261 (47) 16 027 (62) 10 197 (60) 5507 (55)

Age (years), mean (SD) 8.1 (4) 31.7 (8.7) 54.6 (5.7) 73.6 (6.4)
Race/Ethnicity, no. (%)

American Indian or Alaska Native/non-Hispanic  
or unknown

<20 85 (<1) 85 (<1) <50 (<1)

Asian/non-Hispanic or unknown 100 (2) 574 (2) 261 (2) 158 (2)
Black or African American/non-Hispanic or unknown 1184 (25) 5637 (22) 3417 (20) 1466 (15)
Native Hawaiian or other Pacific Islander/non-Hispanic  

or unknown
<20 49 (<1) 30 (<1) <20

White/non-Hispanic or unknown 2064 (43) 12 678 (49) 9975 (59) 6882 (69)
Other/non-Hispanic or unknown 64 (1) 330 (1) 102 (<1) 61 (<1)
Unknown/non-Hispanic or unknown 738 (15) 3552 (14) 1618 (10) 861 (9)
All race/Hispanic or Latino 646 (13) 2863 (11) 1517 (9) 556 (6)

PASC, no. (%)
PASC 142 (3) 2742 (11) 3806 (22) 2341 (23)
No PASC 4669 (97) 23 026 (89) 13 199 (78) 7699 (77)

To protect person privacy, we suppress cell sizes less than 20 (unless it is actually 0) according to N3C reporting policy. We further obfuscated the American 
Indian or Alaska Native, no. for older adults to prevent computation from the marginal totals.
Abbreviation: PASC, post-acute sequelae of SARS-CoV-2 infection.
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assess the model’s ability to differentiate PASC vs non-PASC 
patients. Given the imbalance in the given dataset, the F1 
score was considered to be a more relevant metric than 
accuracy.

Further, we constructed calibration curves (also known as 
reliability diagrams) to compare the model’s predicted proba
bility of PASC code against the true frequency of the positive 
label.22 Matching the calibration curve was essential to 
ensure that the model’s predicted probabilities of PASC cor
respond to the expected distribution of probabilities based on 
the real training data.

Results
Five-fold cross-validation on training dataset
Based on our hypothesis that PASC and health care utiliza
tion would manifest differently by age group, we stratified 
the classification task among pediatric, young, mid, and older 
age groups. Models for the young, mid, and older age groups 
had AUROC >0.80 using 5-fold cross-validation (Table 2). 
From the 5-fold cross-validation on the training dataset, 
good performances (AUROC ≥0.80) were achieved in the 
young adults (mean AUROC¼0.872, mean F1¼0.468), mid 
adults (mean AUROC¼ 0.844, mean F1¼ 0.585) and the 
older adults groups (mean AUROC¼ 0.815, mean 
F1¼0.565). The performance, however, was inferior in the 
pediatric group (mean AUROC¼0.833, mean F1¼0.024). 
Particularly, we found a steep decline in the pediatric group’s 
F1 score compared to that of the other age groups (Figure 1 
and Table 2). This drop could be due to the particularly low 
prevalence of PASC in the pediatric population (Table 1) as 
indicated by the high “negative to positive support ratio,” 
which is calculated as the average of the ratio between the 
number of PASC negative cases and PASC positive cases, to 
quantify the class imbalance in each age group. In particular, 
there are 33 negative PASC cases for each positive PASC inci
dence in the pediatric group from the training dataset.

From all experiments on the training data, our model 
achieved AUROC scores above 0.80, yet the F1 score was not 
as high. This indicates that our model’s precision and recall 
are not balanced, suggesting that the model is either biased 
toward generating false positives or false negatives. Indeed, 
our model’s performance has a high number of false positives 
as indicated by the relatively low precision (Table 2), which 
indicates that a significant proportion of the model’s identi
fied PASC patients are not actually true PASC patients.

We analyzed the feature importance using Shapley values 
on the training dataset and found that cough (condition) and 
respiratory rate (measurement) were important predictive 
features for all age groups (Table S3 and Figure S3). The 
SHAP plot provides a visual representation of how each fea
ture contributes to the model’s predictions across different 
age groups. Specifically, the color gradient in the plot repre
sents feature values (blue for low and red for high), while the 
SHAP values indicate whether a feature increases (positive x- 
axis) or decreases the likelihood of a PASC diagnosis (nega
tive x-axis). The presence of these features indicate higher 
probability of PASC (Figure S3). Dyspnea (condition), ECG 
(electrocardiogram) (procedure), and number of level 1 visits 
(procedure) were 3 of the most predictive features in 3 of the 
4 age groups. The conditions and measurements identified in 
Table S3 are all closely related to respiratory symptoms of 
COVID-19. Our findings agree with prior literature that 
showed recurrent visits (eg, level 1 and level 2 visits) or high- 
severity emergency department visits to be associated with 
PASC.23

Within the demographics category, true age (continuous 
numerical value) was one of the most important features for 
the pediatric and the young adult groups. In addition, White/ 
non-Hispanic is another key feature in the model’s PASC pre
diction. The similarities in the top 10 important features 
(Table S3) between the features of false positives and true 
positives were analyzed. The values of the features for the 2 
groups were found to be comparable (Figure S4). For exam
ple, a high proportion of false positive patients reported 
COVID-19 related symptoms such as cough, dyspnea, and 
fatigue. Also, the false positives in the older age group had a 
high number of severe emergency department visits. There
fore, it can be concluded that the false positive patients may 
have been in critical condition or in need of chronic clinical 
management.

Testing dataset
The unseen testing set (n¼10 580) consisted of a slightly 
higher proportion of patients in the pediatric (test: 4%, train: 
3%), mid adults group (test: 36%, train: 30%), and older 
adults group (test: 20% train: 17%) (Table S1). Conversely, 
the proportion of young adults in the test dataset (35.81%) 
was lower than in the training dataset (45%). Moreover, the 
overall proportions of most minority racial groups (Asian, 
American Indian or Alaska Native, Native Hawaiian, and 
Other) were roughly similar between the two datasets, but 
there was an increase in the representation of patients 

Table 2. 5-fold XGBoost cross-validation results (training data) and test dataset.

Evaluation Age group Accuracy F1 AUROC Sensitivity Specificity Precision

Negative to  
positive  

support ratio

Training (5-fold CV 
results)

Pediatric (0-14) 0.969 ±0.001 0.024±0.047 0.833±0.022 0.014±0.029 0.998±0.002 0.067±0.133 33
Young(15-44) 0.861±0.003 0.468±0.017 0.872±0.008 0.577±0.028 0.894±0.003 0.394±0.012 8.5
Mid (45-64) 0.742±0.008 0.585±0.009 0.844±0.009 0.813±0.021 0.722±0.014 0.457±0.009 3.3
Older ≥ 65 0.699±0.012 0.565±0.006 0.815±0.011 0.838±0.023 0.657±0.021 0.426±0.010 3.5

Test dataset Pediatric (0-14) 0.956 0.000 0.718 0.000 0.998 0.000 20
Young (15-44) 0.791 0.482 0.796 0.609 0.825 0.399 5.3
Mid (45-64) 0.671 0.564 0.798 0.822 0.619 0.429 2.9
Older ≥ 65 0.666 0.582 0.790 0.827 0.602 0.449 2.6
Overall (all groups 

combined)
0.736 0.545 0.814 0.752 0.731 0.427 3.8
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identifying as White (overall percentage from train: 55% vs 
test: 64%) and a decrease in those identifying as Black or 
African American (train: 20% vs test: 15%) or missing racial 
information (train: 12% vs 5%). Also, there was an increase 
in the prevalence of PASC across all age groups (an overall 
increase of 6%).

In the testing dataset (n¼10 580), best performances were 
achieved in the young adult population (AUROC¼0.796, 
F1¼ 0.482), mid aged (AUROC¼ 0.798, F1¼0.564), and the 
older aged groups (AUROC¼ 0.790, F1¼0.582). The per
formance was lowest in the pediatric group (AUROC¼0.718, 
F1¼ 0). We also see drops in the specificity and precision with 

Figure 1. The resulting receiver operating characteristic (ROC) curves and the respective area under the ROC curve (AUROC) from 5-fold cross-validation 
training (left column) and testing (right column) are shown for each age stratum.
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the test set compared to our 5-fold validation results reported 
in Table 1, suggesting that our model may have overfit to the 
training dataset. Across all age groups and demographics, our 
dataset was successful in distinguishing PASC vs non-PASC 
with AUROC of 0.814 and F1 score of 0.545.

We also investigated the distribution of the true positives, 
true negatives, false positives, and false negatives of our pre
dicted labels compared to the silver standard. We observe a 
high false positive rate of our model from the confusion 
matrices, particularly in the mid adult and older adult groups 
in the testing dataset (Figure 2).

Discussion
While data-driven approaches can be powerful for discover
ing patterns, such methods can generate overly complex solu
tions that require high computational power and training 
time. In the context of health care, models that depend on a 
wide range of variables can also be difficult to explain or 
interpret in a clinical setting, and it may be impractical to 
obtain all dependent features for each patient. Hence, our 
method confined our feature space based on the findings 
from our literature review, including features that have been 
shown to be highly predictive of severe instances of COVID- 
19 infection and PASC. In addition, we stratified our popula
tion into subsets of age groups as the phenotypic presentation 
of PASC and the required clinical testing and interventions 
vary across ages. Our knowledge-driven feature selection and 
utilization of an age-stratified classification model allowed us 
to validate previously identified risk factors while revealing 
their importance and/or prevalence by age group.

To extract features from the L3C EHR data, we utilized a 
straightforward and comprehensible method of feature 

aggregation: collapsing continuous values into categorical 
values of normal (ie, values within range or values not taken) 
vs abnormal. The use of these binary indicators allowed us to 
handle the sparsity of the dataset, imputing the missing values 
as 0 (corresponding to normal) under the assumption that the 
feature was not clinically necessary for diagnosis or treat
ment. By implementing this feature engineering process, we 
significantly simplified the dataset.

Training and validating models separately for different age 
groups significantly improved algorithm performance when 
compared to training on the entire population without age- 
based stratification. Age-based stratification can yield clini
cally relevant insights such as important PASC risk factors to 
look for by age group, enhancing the interpretability of our 
model and its potential role in clinical decision-making.

While our model has low performance in the pediatric pop
ulation (<15 years old) in both the training and testing data
sets, our model performs well in all other age groups in both 
the training set under 5-fold cross-validation  as well as the 
hold-out testing dataset. We did observe a decrease in classifi
cation performance for all groups with the hold-out test set 
when compared to the cross-validation results from the train
ing set. Notably, we observed high false positives across all 
age groups, which may be attributed to potential overfitting 
during the training phase and/or the difference in the data 
source in terms of time and location. Also, the higher PASC 
incidences in the hold-out testing dataset (ie, lower negative 
to positive support ratio) compared to the training dataset 
could have led to the lower performance scores in the hold- 
out testing dataset compared to the mean of our 5-fold cross- 
validation results. As our model was trained and calibrated 
on a dataset with a certain class imbalance (ie, higher nega
tive cases), the model simply may not have seen enough 

Figure 2. Classification performance on the test data where P ¼ PASC and NP ¼ No PASC. While all models perform well on true negatives, false 
positives are notably high for mid adults and older adults.
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examples of the minority class (ie, positive for PASC) to learn 
from during training.

Overall, our model exhibits high performance in predicting 
PASC for the young, mid, and older adult age groups. Our 
model bases its prediction on variables commonly present in 
the EHR such as a patient’s medical history and list of symp
toms commonly associated with COVID-19, and hence can 
be easily deployed for assessing patients’ risk of PASC after 
an acute COVID-19 infection. The feature engineering 
method and modeling techniques we employed allow the 
model to predict PASC occurrence without requiring numeri
cal lab test results, but rather, can leverage binary features 
that indicate abnormality. The use of clinically relevant 
features and transforming continuous variables to binary 
indicators enhance the model’s interpretability and can, 
therefore, potentially be deployed as a simple PASC risk pre
diction tool (eg, a brief self-administered survey for patients).

Limitations
The L3C dataset was curated from multiple hospitals across 
the United States. The data inevitably contains inherent bias. 
For example, individuals who cannot easily access health 
care, whether due to economic constraints or the environ
ment, are underrepresented in the data. This bias may affect 
the generalizability of these findings to the broader popula
tion. Specifically, we found that a patient identifying them
selves as “White non-Hispanic” can significantly influence 
the model’s decision on whether someone develops PASC. 
Various unobserved confounders could have contributed to 
this observation: the “White non-Hispanic” population may 
have higher access to resources and health care, leading to 
more frequent visits for acute and chronic care management 
compared to other racial/ethnic groups. Without the consid
eration of confounding factors and meeting all criteria for 
causal inference, our current model cannot offer insight as to 
whether the “White non-Hispanic” population is indeed 
more likely to develop PASC. However, its feature impor
tance highlights an example of potential bias in the data.

While our defined age ranges for middle-aged adults and 
older adults agree with clinical age designations,24 we experi
mentally determined the lower age for the young adult popu
lation. This decision was made by observing the distribution 
of the prevalence of PASC when grouped by age. We 
observed a drastic decrease in PASC prevalence below the age 
of 15 (Figure S2). The concept of PASC in the pediatric popu
lation may be inherently challenging to define,25 making reli
able assessment of long-term outcomes within this 
demographic difficult. However, within the scope of the L3C 
challenge, it was important to include populations across the 
lifespan, and thus pediatric populations were included despite 
their low representation in the dataset.

In our feature engineering approach for the L3C EHR data 
analysis, we transformed continuous variables into binary 
categories and imputed missing values as normal (ie, within 
normal range for lab values or patient not presenting condi
tion). While this strategy improved the sparsity of our data, it 
likely resulted in the loss of granular information, potentially 
leading to oversimplified analyses that might not adequately 
capture subtle but critical clinical variations. Similarly, due to 
the relatively low incidence of missing ethnicity data, we 
imputed the missing ethnicity information with “non- 
Hispanic,” reflecting the majority in the dataset. We also 
aggregated all racial categories for Hispanic or Latino 

participants given the small sample size. These approaches 
may have oversimplified the demographic nuances and intro
duce potential biases in our analysis.

Our primary goal for conducting the SHAP analysis was to 
provide qualitative insights into feature importance, thus we 
did not generate CIs for the SHAP values. However, for 
applications such as health care where decision-making needs 
to be transparent and reliable, obtaining CIs could be crucial 
for justifying the model’s predictions and further determining 
whether observed differences in feature importance between 
models or features are statistically significant.

In addition, the L3C data was randomly time-shifted by a 
uniform sampling of 1�180 days to protect patient privacy. 
Clinical understanding of both COVID-19 and PASC has 
been continuously evolving with new studies revealing risk 
factors for prognosis and updated diagnostic and treatment 
guidelines for clinicians. Depending on when the patient was 
seen in the clinic or was hospitalized, the clinical guidelines 
for diagnosis and management for either acute COVID-19 
infection or PASC may have been different. As ML models 
can be sensitive to such nuances, the lack of consideration for 
the timing of the data may have impacted the performance of 
our model. The lack of standardization in the definition of 
PASC and standards of care has been a challenge across the 
nation. Given that our understanding of PASC has evolved 
over time and clinicians in different locations follow different 
guidelines for diagnosing, testing, and managing PASC, our 
model may have been able to account for all variations in 
care.

Lastly, our model was designed to predict PASC diagnosis 
strictly 4 weeks after the initial acute COVID-19 infection 
diagnosis according to the solicitation of the L3C competi
tion. From our exploratory data analysis, we found that there 
was a small percentage (4%) of patients with a PASC diagno
sis (U09.9) that occurred before 4 weeks had passed since 
their initial COVID-19 diagnosis. We regarded these cases as 
false positives based on current clinical guidelines which 
define PASC as “patients who, four weeks after the diagnosis 
of SARS-Cov-2 infection, continue to have signs and symp
toms not explainable by other causes.”26 While the percent
age of false positive diagnoses from the silver standard labels 
was insignificant (4%), our decision to relabel these patients 
as true negative cases could have introduced noise in the data 
and harmed the precision of our model’s predictions. In addi
tion, using a single COVID index date (ie, initial COVID-19 
positive test from the EHR record) per person may affect the 
precision of our labels, as subsequent infections and their 
potential impact on PASC development were not accounted 
for in the provided data.

Conclusion
In this paper, we present an age-stratified XGBoost model for 
predicting PASC ≥ 4 weeks after an initial COVID-19 infec
tion date. By selecting clinically relevant features per litera
ture review, we reduced the features space and enhanced 
clinical interpretability of our model. Although limitations 
exist in our proposed approach, our model successfully dem
onstrated strong performances for the young adults, mid 
adults, and older adults age groups. For future studies, we 
aim to perform a detailed analysis of the false positives and 
incorporate time-domain in our model building (eg, 
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dynamically taking account of the recurrent encounters) to 
enhance the precision of our prediction.
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