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Abstract: Underwater simultaneous localization and mapping (SLAM) is essential for effectively
navigating and mapping underwater environments; however, traditional SLAM systems have limita-
tions due to restricted vision and the constantly changing conditions of the underwater environment.
This study thoroughly examined the underwater SLAM technology, particularly emphasizing the
incorporation of deep learning methods to improve performance. We analyzed the advancements
made in underwater SLAM algorithms. We explored the principles behind SLAM and deep learning
techniques, examining how these methods tackle the specific difficulties encountered in underwater
environments. The main contributions of this work are a thorough assessment of the research into
the use of deep learning in underwater image processing and perception and a comparison study of
standard and deep learning-based SLAM systems. This paper emphasizes specific deep learning tech-
niques, including generative adversarial networks (GANs), convolutional neural networks (CNNs),
long short-term memory (LSTM) networks, and other advanced methods to enhance feature extrac-
tion, data fusion, scene understanding, etc. This study highlights the potential of deep learning in
overcoming the constraints of traditional underwater SLAM methods, providing fresh opportunities
for exploration and industrial use.

Keywords: underwater simultaneous localization and mapping (SLAM); underwater navigation;
deep learning; odometry navigation

1. Introduction

The Earth’s oceans, which span over 71% of the planet’s surface, are precious resources
for scientific investigation and environmental understanding [1,2]. Unmanned underwater
vehicles (UUVs) [3,4] have a variety of crucial applications, including marine mining and
pipeline inspection [5–7]. However, their efficacy is frequently hampered by the limits
of conventional navigation systems [8,9]. Inertial sensors and acoustic beacons used for
underwater navigation suffer from accumulated errors, limited range, and environmental
interference [9,10]. Furthermore, optical problems such as low lighting, turbidity, scat-
tering, and wavelength absorption affect visual dependability [11]. The lack of access to
global positioning systems (G.P.S.) [12–14] affects accurate location determination and data
collecting in underwater situations.

The difficulties of underwater navigation have increased the demand for more de-
pendable and precise solutions. Recent advances in deep learning [15], particularly in
visual simultaneous localization and mapping (SLAM) [16], have revealed intriguing areas
for improvement. Significant progress has been achieved in tackling the specific constraints
of underwater environments, resulting in enhanced capabilities for unmanned underwater
vehicles (UUVs) [17,18]. This study investigates these improvements, evaluating their
potential to transform underwater navigation and perception.
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This paper reviews crucial studies on how deep learning improves underwater SLAM
systems. The literature selection methodology includes comprehensive searches in scientific
databases such as IEEE Xplore, SpringerLink, ScienceDirect, Nature, and Google Scholar
using keywords such as “underwater SLAM”, “deep learning”, “UUV navigation”, “N.N.
underwater” [19–25], “RNN SLAM”, “GAN underwater” [26–28], and “V.A.E. mapping”.
Papers were selected based on their ability to advance the field, their citation count, their
publication in reputable journals and conferences, and their relevance to the incorporation
of deep learning techniques [29] into underwater SLAM. Recent developments and seminal
works were assessed. To preserve the quality and relevance of the review, papers that
were not peer-reviewed, lacked experimental validation, or did not explicitly address
underwater applications were excluded.

The chosen articles were classified into different groups according to their main em-
phasis, including conventional primary techniques, CNNs for extracting features, R.N.N.s
for modeling temporal aspects, DRL for modeling and mapping, GANs [30] for augmenting
data, and V.A.E.s for exploring latent space. Every publication underwent a thorough as-
sessment to identify and extract the main contributions, methodology or processes, results,
and implications for the discipline. To enhance the understanding of the status of the
field, we emphasized the most influential and significant papers in each area, ensuring a
well-organized and comprehensive overview. This study seeks to give a clear roadmap
for academics and practitioners interested in advancing the area of underwater simulta-
neous localization and mapping (SLAM) by integrating deep learning techniques [15,31].
It accomplishes this by categorizing the existing literature and emphasizing the most
influential studies.

There are eight main sections in this paper: (1)Introduction, which establishes the
study goals and relevance, gives background information on underwater SLAMs, and
emphasizes the function of deep learning; (2) progress in algorithmic underwater SLAM
with an emphasis on performance in underwater environments, which objectively assesses
the most recent advancements in SLAM technologies; (3) mathematical foundations of
underwater SLAM and deep learning approaches, which presents the theoretical models
underlying these methods; (4) deep learning uses in underwater perception, navigation,
and image processing, which examines deep learning techniques for enhancing underwater
sensing and navigation; (5) strengths and limitations of deep learning-based underwater
SLAM and odometry navigation, which provides a review of the benefits and drawbacks
of deep learning for SLAM; (6) comparative analysis of underwater SLAM techniques,
which evaluates the resilience and efficiency of several SLAM strategies; (7) deep learning’s
superiority over conventional methods, which emphasizes the technology’s benefits in
solving undersea problems; and (8) conclusion and following directions, which emphasizes
deep learning’s developing importance in underwater SLAM, summarizes findings, and
recommends following research directions.

2. Common Underwater SLAM Advancements and Algorithm Performance

SLAM has advanced, especially with the extended Kalman filter (E.K.F.) [32] SLAM
for probabilistic robot pose and landmark estimation. Due to its linearization assumptions,
EKF SLAM [33] struggles in complicated nonlinear situations despite its popularity. The
square root information filter (SRIF) [34] algorithm addresses these issues. By controlling
the covariance matrix and resolving numerical instability, SRIF improves underwater UUV
navigation stability, numerical reliability, and operational efficiency.

Different SLAM methods address various issues in various contexts. Particle filter
SLAM [35] thrives in highly nonlinear settings, while graph-based SLAM [36] optimizes
graph representations for configuration detection. Bayesian and Rao–Blackwellized particle
filter (RBPF) SLAMs increase mapping and localization using Bayesian [37] estimation and
computational efficiency, respectively.

Underwater sensor constraints must be addressed. Innovative technologies like sonar-
based [38] mapping and loop closure detection improve SLAM performance.
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Visual SLAM [39] algorithms for underwater use have been tested. ORB-SLAM [40]
performs best in well-lit and feature-rich situations, while ROVIO [41] uses visual and
inertial data to excel in dynamic underwater environments. LSD-SLAM [42] maps perform
well in texture-rich underwater environments, and DVO-SLAM [43,44] handles depth
changes well. The multi-state constraint Kalman filter (MSCKF) [45,46] uses visual and
inertial measurements for precise navigation, and SVO [47,48] is efficient for lightweight
underwater vehicles. Deep learning-enhanced [49] VISLAM [50] algorithms can extract and
map features in challenging underwater settings. FAB-MAP [51], designed for underwater
applications, performs well in varied underwater environments with distinct visual aspects.

Recent advances in underwater SLAM systems, as shown in Figure 1, have improved
navigation accuracy. Even though underwater navigation is complex, deep learning and
SLAM have improved UUVs for oceanographic investigation [52]. Deep learning improves
SLAM by employing neural networks to enhance mapping and navigation, especially
with LiDAR and vision sensors [53,54]. Regularly distributed artificial magnetic beacons
can provide a repeated regional magnetic field, allowing autonomous cars to navigate
with high positioning accuracy by considering landmarks for SLAM algorithms [55]. The
VINS-MONO [56] technique uses FAST feature point extraction and inverse optical flow to
increase speed and accuracy, addressing underwater picture degradation [57]. End-to-end
networks for low-light SLAM preprocessing have also been developed with a low-light
improvement branch and a self-supervised feature point detector to increase feature point
extraction and reduce re-projection mistakes [58].
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Generative adversarial networks (GANs) [27] for real-time underwater image im-
provement have improved SLAM performance by tackling poor visibility, low contrast, and
color distortion, providing robust and accurate monocular SLAM systems. In unknown
underwater environments, multi-vehicle collaborative mapping is more efficient due to
algorithms like Gaussian mixture robust branch and bound (GMRBnB) that improve map
registration accuracy and outlier tolerance [59]. Improved unscented Kalman filter SLAM
(IUKF-SLAM) was designed to improve the accuracy, consistency, and convergence of
the unscented Kalman filter (U.K.F.) [60] used in SLAM, displaying a better performance
compared to existing E.K.F. [33,61] and U.K.F. approaches [62]. Underwater SLAM com-
bines several information sources to overcome the limits of standard navigation systems,
particularly in complex and unstructured underwater landscapes, allowing high-precision
navigation and placement even without satellite information [63].

These advances in underwater SLAM algorithms, including deep learning integration,
magnetic beacon use, image enhancement, collaborative mapping, and improved filtering,
have greatly enhanced underwater navigation systems’ accuracy and reliability, making
systems more autonomous and effective in underwater exploration and operations.

3. Mathematical Formulas for Underwater SLAM and Deep Learning Methods

Underwater SLAM uses a variety of mathematical formulas and algorithms to map
and navigate effectively. The PF-backend (particle filter-backend) approach utilizes particle
filters for loop closure estimates and map consistency [64]. Variational Bayesian (V.B.)
learning estimates UUV route and observation noise using the inverse-gamma distribution.
The Gaussian mixture robust branch and bound (GMRBnB) technique improves map
registration by extracting features and inliers. For robust SLAM, dual-stage bathymetric
data association and Euler-deconvolution algorithms localize magnetic beacons. For real-
time location, coalition game theory optimizes artificial magnetic beacon distribution.
Neural network-detected semantic landmarks are used in object-level SLAM [65]. The
preparation of mechanically scanned imaging sonar (MSIS) data allows for the utilization
of traditional 2D laser SLAM frameworks, such as Gmapping and Cartographer, to tackle
obstacles encountered underwater [66,67]. These methods jointly enhance the accuracy
and dependability of SLAM by tackling problems such as error accumulation and feature
extraction in low-texture situations. Below are some derivations of the mathematical
formulae used in SLAM.

E.K.F. State Update

Xk|k = Xk|k−1 + Kk

(
Zk − h

(
Xk|k−1

))
(1)

Xk|k: Update state estimate, Zk: Measurement at time k, h: Measurement function.

E.K.F. Covariance Update
Pk|k = (I − Kk Hk)Pk|k−1 (2)

Pk|k: Update covariance estimate, I: Identity matrix.

Particle Filter Weight Update

Wt[i] ∞ Wt−1[i].p(zt| xt[i], mt−1) (3)

Wt[i]: Weight of the particle i at time t, zt: Measurement at time t,
xt[i]: State of particle i at time t, mt−1: Map at time t − 1.

Particle Filter Resampling

{Xt[i] , Wt [i]}N
i=1 ∼ {Xt[i] ,

∼
Wt [i]}

N

i=1 (4)

Xt[i]: State of particle i, Wt[i]: Weight of particle i,
∼
Wt[i]: Normalized weight of the

particle i.
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Convolution Operation

(I ∗ K)(i, j) = ∑ m ∑ n I(i + m, j + n). K(m, n) (5)

I: Input image, K: Kernel, (i, j): Position in the output image.

ReLU Activation Function
f (x) = max(0, x) (6)

f (x): Output, x: Input.

R.N.N. Hidden State Update

ht = σh(Whxt + Uhht−1 + bn) (7)

ht: Hidden state at time t, σh: Activation function, Wh: Weight matrix for input, xt:
Input at time t, Uh: Weight matrix for the hidden state, bn: Bias term.

LSTM Input Gate
it = σ(Wixt + Uiht−1 + bi) (8)

it: Input gate at time t, σ: Sigmoid function, Wi: Weight matrix for input, xt: Input at
time t, Ui: Weight matrix for the hidden state, bi: Bias term.

LSTM Output Gate
Ot = σ(W0xt + U0ht−1 + b0) (9)

Ot: Output gate at time t, σ: Sigmoid function, W0: Weight matrix for input, xt: Input
at time t, U0: Weight matrix for the hidden state, b0: Bias term.

LSTM Hidden State Update
ht = Ot ⊙ tanh(ct) (10)

ht: Hidden state at time t, Ot: Output gate at time t, tanh: Hyperbolic tangent function,
ct: Cell state at time t.

Bellman Equation
Q(s, a) = r + γmax

a′
Q
(
s′, a′

)
(11)

Q(s, a): State-action value, r: Reward, γ: Discount factor, a′: Next action, s′: Next state.

GAN Loss Functions

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1 − D(G(Z)))] (12)

G: Generator, D: Discriminator, x: Real data, z: Latent variable, pdata(x): Data distribu-
tion, pz(z): Latent distribution.

V.A.E. Loss Function

(L(x, z) = Eqϕ(z|x)[logpθ(x|z)− DKL(qθ(z|x) ∥ pθ(z)) (13)

L(x, z): VAE loss, qθ(z|x): Approximate posterior, pθ(x|z): Likehood, DKL: Kullback-
Leibler divergence.

In SLAM, state estimation is vital for accuracy and efficiency. The E.K.F. handles
nonlinear systems, predicting and updating states using sensor data. Equations (1) and (2)
guide state updating and covariance updates, and Kalman gain could also be added to
minimize uncertainty. For more complex non-Gaussian environments, particle filters
(Equations (3) and (4)) offer robust alternatives by assigning particle weights and resam-
pling for diversity.

Deep learning models enhance feature extraction in SLAM through convolutions
(Equation (5)) and ReLU activation (Equation (6)). Recurrent neural networks (R.N.N.s)
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and LSTMs (Equations (7)–(10)) handle temporal dependencies for more stable mapping
in dynamic environments. Reinforcement learning (Equation (11)) optimizes exploration,
while GANs and V.A.E.s (Equations (12) and (13)) generate environmental models, improv-
ing SLAM’s robustness in unstructured spaces.

4. Deep Learning Techniques in Underwater Image Processing, Navigation,
and Perception

Deep learning techniques are a groundbreaking approach in machine learning that
involves using neural networks with numerous layers to analyze and understand intricate
patterns in data. Convolutional neural networks (CNNs) [68] are highly effective in image
tasks, as they can capture hierarchical features for tasks like image recognition and computer
vision applications. On the other hand, recurrent neural networks (R.N.N.s), play a crucial
role in processing sequential data, such as language and time-series information, because
they can retain context and dependencies. Transfer learning strategies utilize pre-trained
models to enhance performance on specific tasks, enabling efficient information transfer.
Generative adversarial networks (GANs) [27–30] introduce a new method for generating
realistic data. Advanced natural language processing (N.L.P.) models, such as BERT and
G.P.T., demonstrate exceptional proficiency in comprehending and producing language
that resembles human speech. Deep learning techniques [29,69] have been widely used
in underwater applications to improve the accuracy of visual perception systems. These
techniques have been applied in several areas, such as image processing, navigation, and
perception, and have shown impressive proficiency in object detection, recognition, and
segmentation tasks. Transfer learning has successfully addressed the problem of limited
data availability, leading to encouraging outcomes in different undersea situations. In
addition, integrating sensor data, such as sound and visual inputs, using deep learning
architectures improves perceptual abilities, resulting in more precise mapping and better
comprehension of the surroundings.

Deep learning has dramatically improved underwater image processing, navigation,
and perception, effectively tackling specific issues. Methods such as VDSR and BCFO-based
deep CNN enhance the clarity of images and object detection accuracy [21,70]. The FUnIE-
GAN architecture enhances visual perception measures such as PSNR (peak signal-to-noise
ratio), SSIM (structural similarity index), UCIQE (universal image quality index), and
entropy [71]. The combination of VGG16 and visual saliency models improves image clarity
and enhances the accuracy of colors [72]. Deep learning enhances underwater perception
by using advanced techniques such as RCNN (region convolutional neural network) and
CFTA (color filter tensor analysis). These techniques specifically target the challenges of
inadequate illumination and limited visibility in underwater environments [73]. Surveys
indicate that deep learning performs more remarkably in effectively managing difficulties
like underwater turbulence, low contrast, and color distortion [74]. Convolutional neural
networks (CNNs) illustrated in Figure 2, are highly proficient in the classification and
detection of underwater species and objects, hence assisting in the protection of marine
ecosystems [19]. These improvements enable new opportunities for exploring the ocean as
well as different industrial uses (Tables 1 and 2 elaborate on the comparative analysis of the
traditional deep learning-based underwater SLAM techniques).

The underwater SLAM RNN process using long short-term memory (LSTM) and
recurrent neural networks (R.N.N.s) for underwater SLAM are shown in Figure 3. A
sequence of retrieved features from consecutive frames is sent into the LSTM network to
capture temporal dependencies. Temporal modeling via the LSTM network refines the
robot’s trajectory. Finally, the LSTM output refines feature-matching pose predictions for
accurate and efficient underwater SLAM.

The procedures involved in employing DRL for underwater SLAM are shown in
Figure 4. The state representation, which includes the current position, orientation, velocity,
observed features, and sensor data, is where the process begins. The action space delineates
the range of conceivable motions, depth modifications, and velocity changes. The reward
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function promotes goal achievement, energy efficiency, obstacle avoidance, map accuracy,
and exploration. Algorithms such as D.Q.N. and P.P.O. are used in policy learning to
maximize cumulative rewards. Lastly, a UUV equipped with the trained policy is used for
mapping, exploration, and navigation.
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Figure 2. Deep CNNs in underwater SLAM process. This flow chart shows how deep CNNs [70] are
used for underwater SLAMs. Images are captured using a UUV camera and preprocessed for visibility.
For feature extraction, preprocessed pictures are routed via convolutional, activation, and pooling
layers. Fully connected layers provide a high-level visual knowledge and match features between
frames. Matching features estimate pose, update the robot’s trajectory, and map the environment.

Table 1. A comparison of traditional underwater SLAM techniques caption.

Algorithm Accuracy Computational Efficiency Robustness Scalability Sensor Fusion Capability

ORB-SLAM High Moderate Moderate High Moderate
ROVIO High High Moderate High Moderate

LSD-SLAM Moderate High Moderate High Moderate
DVO-SLAM High Moderate High Moderate Low

MSCKF High Very high High High High
VSO Moderate Very high Low Low Low

VSLAM High Moderate High High High
RTAB-Map Moderate High Moderate High Low
EKF-SLAM High Moderate High High High

Graph-Based SLAM High Moderate High High High
GMapping Moderate High Moderate Moderate Moderate
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Table 2. Comparative analysis of deep learning-based underwater SLAM techniques.

Algorithm Feature Extraction
Quality

Temporal Modeling
Accuracy

Data Augmentation
Efficiency

Pose Estimation
Precision

Mapping
Accuracy

DeepVO High High Moderate High High
PoseNet High High Low High Moderate

DVL-SLAM Moderate Moderate Low Moderate Moderate
SuperPoint High N/A N/A High High

DeepMatcher High N/A N/A High High
GAN-SLAM High N/A High High High
VPF SLAM Moderate N/A High Moderate High
RTAB-Map High High Moderate High High

D.S.O. High High Moderate High High
ORB-SLAM2 High High High High High

LOAM High High Moderate High High
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Figure 5 shows how GANs generate realistic underwater images for SLAM deep
learning model training. Real underwater photos are used to train the GAN. The discrimi-
nator network separates real from manufactured underwater images while the generator
generates them. Adversarial training loops the generator and discriminator to increase
visual realism. Synthetic data is added to the training dataset for SLAM jobs to improve
underwater SLAM algorithm performance and robustness.
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Figure 6. Comprehensive variational autoencoders.

The procedures for applying V.A.E.s for unsupervised learning of latent represen-
tations of underwater environments are shown in Figure 6. Starting with the encoder
network, which maps input images to a latent space capturing the salient characteristics
of the underwater environment, the process moves from the latent space and the decoder
network then rebuilds the photos. Then, a map of the surroundings is created using the
latent space representations, enabling efficient underwater SLAM.

Figure 7 aggregates the whole underwater SLAM in the UUVs process. Data collecting
starts the process; underwater photos and sensor data are obtained. Image quality is
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improved, and sensor data is preprocessed in the preprocessing phase. CNNs [75] are
used in feature extraction to extract important picture features. Recurrent neural networks
(R.N.N.s) or long short-term memory (LSTM) networks represent temporal dependen-
cies in temporal modeling. Pose estimation computes the robot’s posture with temporal
modeling features. With generative adversarial networks (GANs) [27] employed for data
augmentation and latent space exploration, deep reinforcement learning (DRL), shown in,
helps navigate and generate a map, facilitating navigation and mapping.
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Underwater SLAM systems have performed much better when advanced neural net-
work designs like CNNs, GANs, and LSTMs were incorporated to handle issues like low
visibility and changing conditions. Teixeira et al. found that deep learning models outper-
form classical approaches in underwater settings, improving visual odometry accuracy [76].
CNNs are particularly good at extracting features from underwater data, which makes
them useful for tasks like multi-target tracking and habitat mapping [77–79]. Neural net-
works improve AUV (Autonomous underwater vehicle) navigation and obstacle avoidance,
enabling them to adapt to changes in their surroundings and system degradation [80,81].

To enable real-time navigation by processing sequential input, LSTM networks process
dynamic planning [82,83]. Also, deep networks make possible model-free localization,
efficiently managing noise and variability [84,85]. According to some researchers, un-
supervised neural networks increase mapping efficiency by improving loop detection.
However, problems still exist, such as the requirement for massive databases and process-
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ing power. The DM-GAN model, which improves depth map accuracy, is an example of
how GANs support dense mapping in monocular SLAM [86]. Furthermore, GANs, aid in
path planning by producing tenable routes for self-navigating systems [87].

Adding deep learning to SLAM increases accuracy by enhancing feature extraction
and loop closure detection [88,89]. Spatial maps are improved by semantic mapping using
CNNs. To demonstrate the efficacy of generative models in SLAM tasks, systems such
as GEN-SLAM utilize generative modeling for monocular localization [90]. Even with
the progress made, there are still difficulties in smoothly combining these models with
conventional SLAM frameworks [91] and showing the improvements of deep learning
methods in underwater SLAM. The next part of our dissertation elaborates on the strengths
and weaknesses of deep learning UUV SLAM (with the workflow illustrated in Figure 7)
and visual odometry navigation.

5. Deep Learning-Based Underwater SLAM and Odometry Navigation: Strengths
and Weaknesses

Deep learning-based SLAM and odometry [92,93] navigation systems exhibit several
strengths. These include advanced feature extraction, where deep learning models identify
intricate patterns from sensor data, thus enhancing mapping accuracy and navigation, and
the use of end-to-end learning, simplifying navigation and boosting efficiency [3]. Addi-
tionally, deep learning [94,95] models can seamlessly integrate information from various
sensors, handling diverse data sources coherently. They are capable of modeling nonlinear
relationships and adapting to dynamic changes, making them suitable for unpredictable
underwater scenarios [24,96,97].

Moreover, transfer learning allows pre-trained models to be adapted for underwater
navigation, accelerating the training process and enabling quicker deployment in real-
world scenarios [25]. However, these systems face challenges such as high computational
demands and the ‘black box’ nature of neural networks, which may raise interpretability
concerns [38,98]. Despite these challenges, the advantages presented by deep learning
methods, make it a transformative force in advancing underwater SLAM navigation,
offering promising avenues for further research and development.

Underwater SLAM and odometry [93,99–101] navigation systems that utilize deep
learning have notable benefits, as shown in Figures 15 and 16, but they also encounter
certain constraints [102]. These systems demonstrate exceptional performance in intricate
and disorganized contexts where conventional approaches frequently prove ineffective.
Deep neural networks (N.N.s) improve the precision of underwater acoustic localization
(U.A.L.) in environments with reverberation [103]. Generative adversarial networks (GANs)
enhance monocular visual SLAM by mitigating issues related to limited visibility and color
aberration [26]. Systems like SVIn2, which combine sonar, visual, inertial, and water-
pressure data, offer strong performance and dependable initialization [104]. Models with
low computational requirements, such as TinyOdom, allow its immediate implementation
on devices with few resources [105]. Nevertheless, the effectiveness of these systems relies
on acquiring high-caliber training data, a challenging task in underwater environments,
impacting accuracy [106]. Additionally, they need substantial processing resources, which
pose difficulties for real-time applications on constrained systems. Integrating many sensors
becomes more expensive and consumes more power as the complexity increases [107].
Additionally, the performance of neural inertial odometry frameworks might be negatively
affected by environmental fluctuations and disturbances [108]. Notwithstanding these
difficulties, progress in deep learning and sensor fusion is enhancing UUVs and applications
of underwater robotics [109–111].

Figure 8 illustrates the sequential process from gathering data to implementing learning
techniques, including supervised and unsupervised methods. The main steps involved in this
process include data preprocessing, model training using CNN/RNN [20,21,23–25] architec-
tures, and integrating input from visual, auditory, and geometric sensors in different ways.
The process ends with the implementation of localization and mapping techniques, the
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utilization of optimization strategies, and the use of advanced machine learning techniques
such as reinforcement learning and ensemble approaches. Figure 8 offers a thorough outline
of the standard procedures used to develop autonomous robotic systems.
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Figure 8. A flowchart depicting the machine learning pipeline for autonomous systems.

The diagram in part 1 of Figure 9 depicts the main techniques used in underwater
simultaneous localization and mapping (SLAM) using deep learning. These techniques can
be classified into the following three basic categories: (1) Visual SLAM, which refers to a col-
lection of methods used for tasks such as visual odometry (DeepVO) [112], pose estimation
(PoseNet) [113], and integrating Doppler velocity log data with visual SLAM (DVL-SLAM);
(2) feature extraction and matching, which involves methods like CNN-based feature ex-
tractors, self-supervised [69] interest point detection and description (SuperPoint) [114],
and feature matching in images (DeepMatcher); and (3) loop closure detection, which
includes deep loop closure detection using deep learning [115] and probabilistic place
recognition based on appearance (FAB-MAP). These technologies jointly improve the preci-
sion and durability of underwater SLAM systems, enabling better navigation and mapping
in intricate underwater settings.



Sensors 2024, 24, 7034 13 of 27

Sensors 2024, 24, x FOR PEER REVIEW 13 of 28 
 

 

Figure 8. A flowchart depicting the machine learning pipeline for autonomous systems. 

The diagram in part 1 of Figure 9 depicts the main techniques used in underwater 
simultaneous localization and mapping (SLAM) using deep learning. These techniques 
can be classified into the following three basic categories: (1) Visual SLAM, which refers 
to a collection of methods used for tasks such as visual odometry (DeepVO) [113], pose 
estimation (PoseNet) [114], and integrating Doppler velocity log data with visual SLAM 
(DVL-SLAM); (2) feature extraction and matching, which involves methods like CNN-
based feature extractors, self-supervised [69] interest point detection and description (Su-
perPoint) [115], and feature matching in images (DeepMatcher); and (3) loop closure de-
tection, which includes deep loop closure detection using deep learning [116] and proba-
bilistic place recognition based on appearance (FAB-MAP). These technologies jointly im-
prove the precision and durability of underwater SLAM systems, enabling better naviga-
tion and mapping in intricate underwater settings. 

Figure 9 part 2 depicts the supplemental deep learning approaches utilized in under-
water simultaneous localization and mapping (SLAM), categorized into the following 
three key domains: (1) Map optimization and refinement, which uses sophisticated meth-
ods like deep map optimization and neural graph optimization to enhance and streamline 
underwater maps. Sensor fusion combines data from various sensors, such as deep sensor 
fusion [117] and multi-modal learning, to improve the performance of SLAM (simultane-
ous localization and mapping). Semantic SLAM employs techniques like semantic seg-
mentation to comprehend underwater scenes and object recognition and tracking to de-
tect and monitor things in the surroundings. These strategies are crucial for improving 
underwater SLAM systems’ accuracy, durability, and efficiency. 

 
(part 1) 

 
(part 2) 

Figure 9. Introduction to deep learning methods for underwater simultaneous localization and map-
ping (SLAM) (part 1, part 2). 

Figure 10 demonstrates the crucial role of transfer learning [118] in various deep 
learning techniques used in underwater environments. Transfer learning uses pre-trained 
models that are subsequently adjusted for specific underwater tasks, including 3D recon-
struction, anomaly detection, image classification, acoustic signal processing, obstacle 
avoidance, SLAM (simultaneous localization and mapping), semantic segmentation, im-
age enhancement, and object detection. Every category uses transfer learning to modify 
general models for the specific difficulties of undersea applications, ultimately improving 
performance and efficiency. 

Figure 9. Introduction to deep learning methods for underwater simultaneous localization and
mapping (SLAM) (part 1, part 2).

Figure 9 part 2 depicts the supplemental deep learning approaches utilized in under-
water simultaneous localization and mapping (SLAM), categorized into the following three
key domains: (1) Map optimization and refinement, which uses sophisticated methods
like deep map optimization and neural graph optimization to enhance and streamline
underwater maps. Sensor fusion combines data from various sensors, such as deep sensor
fusion [116] and multi-modal learning, to improve the performance of SLAM (simultaneous
localization and mapping). Semantic SLAM employs techniques like semantic segmenta-
tion to comprehend underwater scenes and object recognition and tracking to detect and
monitor things in the surroundings. These strategies are crucial for improving underwater
SLAM systems’ accuracy, durability, and efficiency.

Figure 10 demonstrates the crucial role of transfer learning [117] in various deep
learning techniques used in underwater environments. Transfer learning uses pre-trained
models that are subsequently adjusted for specific underwater tasks, including 3D re-
construction, anomaly detection, image classification, acoustic signal processing, obstacle
avoidance, SLAM (simultaneous localization and mapping), semantic segmentation, im-
age enhancement, and object detection. Every category uses transfer learning to modify
general models for the specific difficulties of undersea applications, ultimately improving
performance and efficiency.

The graphic in Figure 11 depicts a range of deep learning techniques used in underwa-
ter applications. A concise explanation and practical use in underwater settings accompany
every method. Techniques such as data augmentation, self-supervised learning [69,118], un-
supervised learning [119], reinforcement learning [120,121], semi-supervised learning [122],
domain adaptation, generative adversarial networks (GANs), hybrid models, few-shot
learning, active learning, and model ensemble are used to improve the effectiveness and
efficiency in underwater environments. From here, our next focus is the comparative
analysis of underwater SLAM techniques.
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6. Comparative Analysis of Underwater SLAM Techniques

Underwater simultaneous localization and mapping (SLAM) is essential for unmanned
underwater vehicles (UUVs) [92], allowing navigation in the absence of a global positioning
system (G.P.S.). While promising, ORB-SLAM3 [123] and DF-VO encounter difficulties fac-
ing underwater obstacles, such as limited visibility and light absorption. ORB-SLAM3 [123]
performs exceptionally well in low-light conditions but lacks robustness in complicated
situations, whereas DF-VO provides superior robustness but requires more extensive pro-
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cessing resources [124,125]. Dark channel prior (D.C.P.), an image processing technique,
enhances ORB-SLAM2 [126] by reducing distortions and improving feature matching [127].
Multi-vehicle mapping, utilizing advanced algorithms such as Gaussian mixture robust
branch and bound (GMRBnB), surpasses conventional approaches in map registration.
Acoustic-based simultaneous localization and mapping (SLAM) utilizes inertial sensors
and sonar to accurately navigate conditions with limited vision. This approach incorpo-
rates dead reckoning and Bayesian–Gaussian mixtures to create real-time maps [128]. The
limitations of VSLAM [129] are addressed by advancements in low-light picture augmenta-
tion and self-supervised learning for feature detection [130]. There are still difficulties in
accurately aligning maps and dealing with abnormal data points in multi-vehicle SLAM.
Integrating various sensors and complex algorithms is crucial for enhancing accuracy
and resilience.

Navigation and mapping in underwater environments are difficult; hence, SLAM
techniques must be tested. This comparison compares standard and deep learning-based
SLAM systems based on accuracy, computing efficiency, resilience, scalability, and sensor
fusion. These criteria were chosen because they are crucial to underwater SLAM perfor-
mance. After a thorough literature analysis, each algorithm was evaluated using RMSE,
processing time, and robustness tests. Deep learning-based DeepVO [112] and GAN-
SLAM [27] provide superior feature extraction and mapping accuracy, whereas traditional
ORB-SLAM [40] and EKF-SLAM are resilient and accurate in underwater applications. The
tables below show that deep learning algorithms are better at feature extraction and pos-
ture estimation than standard methods, making them appropriate for precise underwater
mapping. This comprehensive comparison shows the present status of SLAM technologies
and highlights topics for future research, emphasizing the need for resilient, efficient, and
accurate underwater SLAM systems.

The above sections provide a qualitative summary of SLAM techniques and their
improvements, but a quantitative comparison is needed to reach a complete understanding.
Following are the criteria used to compare SLAM methods in each table:

Table 1 compares underwater-applicable classical SLAM algorithms [36,40,44,48,130]
based on accuracy, computational efficiency, resilience, scalability, and sensor fusion.

Table 2 compares underwater-applicable deep learning-based SLAM algorithms based
on feature extraction, temporal modeling, data augmentation, pose prediction, and map-
ping accuracy [131,132].

After this clear comparison, the next interest of our dissertation is to elaborate on the
advantages and superiority of deep learning relative to conventional methods.

7. Advantage and Superiority of Deep Learning Relative to the Conventional Method

Figure 12 illustrates the differences in feature extraction performance between tradi-
tional methods (solid blue line) and deep learning methods [133,134] (dashed orange line)
using hypothetical data. The X-axis represents different data points or feature indices, while
the Y-axis indicates the normalized value or significance of the extracted features. Tradi-
tional methods show significant variability with pronounced peaks and troughs, suggesting
inconsistent feature extraction performance. In contrast, deep learning methods exhibit a
more balanced and consistent extraction pattern, highlighting their potential advantage
in capturing a broader range of features effectively [135]. The data is hypothetical and
intended for conceptual demonstration.

Figure 13 depicts the disparities in the effectiveness of data fusion between conventional
techniques (represented by a solid blue line) and deep learning techniques [99,136–140]
(represented by a dashed orange line) using hypothetical data. The X-axis depicts distinct
data points, while the Y-axis indicates the standardized value of the combined data from two
sensors. Conventional techniques employ a basic mean calculation for data fusion, leading
to a direct but maybe less precise amalgamation of sensor data. Deep learning [141,142]
approaches utilize a weighted average, showcasing a more complex and presumably
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more efficient strategy for combining sensor data. The data is fictitious and provided for
conceptual purposes.
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(hypothetical data).

Figure 14 contrasts the adaptation of classical approaches (solid blue line) versus
deep learning methods (dashed orange line) to new contexts using hypothetical data. The
X-axis depicts various data points or environmental variables, while the Y-axis shows the
normalized adaptation performance statistic. Traditional approaches exhibit heterogeneity
in adaptation, indicating possible difficulties in changing to new environments without
retraining. On the other hand, deep learning approaches show greater consistency and
adaptability, emphasizing their ability to learn and respond more efficiently to changing
settings. The data is fictitious and designed for conceptual presentation.
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Figure 15 compares the real-time processing performance between classical approaches
(represented by a solid blue line) and deep learning methods (represented by a dashed
orange line) using hypothetical data. The X-axis shows discrete time intervals or occur-
rences, whereas the Y-axis indicates the standardized processing durations. Conventional
techniques demonstrate longer processing times, indicating a slower performance. On
the other hand, deep learning techniques have considerably shorter processing durations,
suggesting their capacity to handle data more effectively in real time. The data provided is
fictitious and is intended solely for conceptual demonstration purposes.
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Figure 16 illustrates the comparative capacities of classical approaches (represented
by a solid blue line) and deep learning methods [143,144] (represented by a dashed or-
ange line). The data used in this comparison is hypothetical. The X-axis depicts varying
degrees of scene complexity, while the Y-axis indicates the standardized performance in
comprehending and analyzing the situations. Conventional approaches exhibit inconsistent
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results, frequently encountering difficulties when dealing with more complicated scenes.
Deep learning [112,114,145] approaches, on the other hand, provide exceptional perfor-
mance [146], especially in intricate environments, emphasizing their capacity to capture
and comprehend advanced semantic information efficiently. The data provided is fictitious
and is intended solely for conceptual demonstration purposes.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 28 
 

 

Figure 16 illustrates the comparative capacities of classical approaches (represented 
by a solid blue line) and deep learning methods [144,145] (represented by a dashed orange 
line). The data used in this comparison is hypothetical. The X-axis depicts varying degrees 
of scene complexity, while the Y-axis indicates the standardized performance in compre-
hending and analyzing the situations. Conventional approaches exhibit inconsistent re-
sults, frequently encountering difficulties when dealing with more complicated scenes. 
Deep learning[113,115,146] approaches, on the other hand, provide exceptional perfor-
mance [147], especially in intricate environments, emphasizing their capacity to capture 
and comprehend advanced semantic information efficiently. The data provided is ficti-
tious and is intended solely for conceptual demonstration purposes. 

 
Figure 16. Comparison of the performance in high-level scene understanding between traditional 
methods and deep learning using hypothetical data. 

The hypothetical data results reveal various advantages of deep learning over previ-
ous approaches in underwater SLAM navigation. First, deep learning approaches extract 
features more reliably and precisely than classical methods, which have abrupt peaks and 
troughs. Understanding underwater settings requires reliable feature extraction. Addi-
tionally, deep learning algorithms are more noise-resistant. Traditional approaches [148] 
are more noise-sensitive, causing more significant feature value variations. In contrast, 
deep learning approaches, as shown in Figures 14–16, preserve more stable and consistent 
values in noise, improving performance in noisy underwater settings. While straightfor-
ward, traditional data fusion approaches employ averaging, which can be inaccurate. 
Deep learning approaches use weighted averaging to integrate sensor data sources and 
improve SLAM system accuracy and reliability. 

Deep learning also excels at adaptability to hypothetical data, as illustrated in Figures 
14–16 [149]. Deep learning algorithms [132] adapt to new surroundings more reliably than 
traditional methods. Due to its higher learning capabilities, deep learning is ideal for dy-
namic underwater situations. Deep learning algorithms outperform standard methods in 
complex scenarios for high-level scene understanding. Deep learning algorithms improve 
interpretation and decision-making in complicated scenes, while traditional methods do 
poorly in such cases.  

Another benefit of deep learning is real-time processing. Traditional methods take 
longer to process, indicating slower performance. Deep learning algorithms [20] have far 
reduced processing times, indicating more efficient real-time processing, which is crucial 
for underwater SLAM applications. Hypothetical data illustrates this in Figures 14–16.  

Figure 16. Comparison of the performance in high-level scene understanding between traditional
methods and deep learning using hypothetical data.

The hypothetical data results reveal various advantages of deep learning over previ-
ous approaches in underwater SLAM navigation. First, deep learning approaches extract
features more reliably and precisely than classical methods, which have abrupt peaks and
troughs. Understanding underwater settings requires reliable feature extraction. Addition-
ally, deep learning algorithms are more noise-resistant. Traditional approaches [147] are
more noise-sensitive, causing more significant feature value variations. In contrast, deep
learning approaches, as shown in Figures 14–16, preserve more stable and consistent values
in noise, improving performance in noisy underwater settings. While straightforward,
traditional data fusion approaches employ averaging, which can be inaccurate. Deep
learning approaches use weighted averaging to integrate sensor data sources and improve
SLAM system accuracy and reliability.

Deep learning also excels at adaptability to hypothetical data, as illustrated in
Figures 14–16 [148]. Deep learning algorithms [131] adapt to new surroundings more
reliably than traditional methods. Due to its higher learning capabilities, deep learning is
ideal for dynamic underwater situations. Deep learning algorithms outperform standard
methods in complex scenarios for high-level scene understanding. Deep learning algo-
rithms improve interpretation and decision-making in complicated scenes, while traditional
methods do poorly in such cases.

Another benefit of deep learning is real-time processing. Traditional methods take
longer to process, indicating slower performance. Deep learning algorithms [20] have far
reduced processing times, indicating more efficient real-time processing, which is crucial
for underwater SLAM applications. Hypothetical data illustrates this in Figures 14–16.

Finally, traditional methods vary in retaining excellent perception and mapping quality.
However, deep learning algorithms provide more accurate and detailed underwater maps
across perceptual quality levels.

Therefore, deep learning in underwater SLAM navigation could increase autonomous
underwater vehicle accuracy, reliability, and efficiency. Traditional methods have draw-
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backs, but deep learning uses complicated models and data-driven approaches to overcome
them. These algorithms can learn from big datasets, adapt to changing conditions, and
integrate numerous sensor data sources better, making them ideal for underwater SLAM
navigation. Further research should address constraints like computing requirements and
vast training datasets to fully realize these strategies’ benefits in real-world applications.

Deep learning brings several critical advantages to underwater SLAM (simultaneous
localization and mapping) navigation, addressing many limitations of traditional methods.

Firstly, feature extraction is a significant benefit, as deep learning models excel at
extracting complex and high-level features from raw sensor data [58]. This is particularly
useful in underwater environments, where traditional methods often struggle with noise,
low visibility, and the lack of distinctive features. Deep learning allows the extraction of
more informative and reliable features, even in challenging conditions.

Secondly, deep learning [136,137] algorithms show robustness to noise. Deep learning
models can maintain accurate positioning and mapping in underwater settings, where
environmental noise and uncertainties often affect sensors. This results in improved SLAM
accuracy and system reliability in situations where traditional methods would falter.

Another critical advantage is data fusion. Deep learning [149,150] models can integrate
data from multiple types of sensors, such as sonar, LiDAR, and cameras. This ability enhances
the SLAM system’s overall performance by providing more robust positioning and mapping,
even in cases where individual sensors may give incomplete or erroneous data.

In addition, deep learning [136–139] enables adaptability and learning. Unlike tra-
ditional SLAM approaches that rely on predefined models and assumptions about the
environment, deep learning models can learn from the data and adapt to new environments
over time. This makes them more flexible and scalable in dynamic underwater conditions
where the environment can change unpredictably.

Moreover, deep learning models excel at handling complex dynamics. Underwater
environments are highly dynamic and nonlinear, often making it difficult for traditional
methods to cope. Deep learning models, with their ability to model complex patterns,
improve the accuracy of trajectory estimation and mapping in such settings. Because
of these operational advantages, deep learning is superior in understanding complex
underwater scenes.

For example, deep learning models such as CNNs (convolutional neural networks) can
highly understand scenes. This allows them to interpret and analyze semantic information
from underwater scenes that may be too complex for traditional methods, leading to more
accurate scene interpretation.

Deep learning [69] also enables end-to-end learning, where raw sensor inputs are
processed directly into SLAM outputs without needing handcrafted feature extraction.
This reduces complexity in the system design and allows for a more seamless, automated
approach to SLAM in underwater settings.

Additionally, deep learning models demonstrate a high level of generalization across
environments. Models trained on large and diverse datasets are more likely to adapt
to new environments with minimal tuning than traditional methods requiring extensive
adjustments to function effectively [151] in different underwater terrains.

Another key benefit is the capability for real-time processing. Deep learning algo-
rithms can process complex underwater scenes in real time, making them suitable for
dynamic and time-sensitive SLAM applications, such as autonomous underwater vehicle
(AUV) navigation.

Finally, deep learning enhances perception and mapping accuracy. By using deep
learning algorithms, SLAM systems can produce more detailed and accurate underwater
maps improving perception and navigation [152].

8. Conclusions/Significance

While our work summarizes the advances made possible by deep learning in under-
water SLAM, several issues still need to be further explored. Deep learning methods have
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a limited real-time application in dynamic underwater environments because of their high
computational resource requirements, even though they are resilient in feature extraction
and noise treatment. The requirement for extensive and varied datasets for training presents
another difficulty because gathering such data in underwater environments is expensive
and challenging. Even with sophisticated algorithms, environmental disturbances, includ-
ing shifting circumstances, visibility problems, and sensor noise, still impact performance.
Furthermore, unmanned underwater vehicles (UUVs) present particular concerns about
the high energy consumption linked to operating complicated deep learning models, as
energy economy is crucial for prolonged missions. Finally, despite the significant advances
in mapping precision and flexibility that deep learning provides, hardware constraints
still limit real-time processing. These difficulties show that to fully realize the potential
of deep learning in underwater SLAM applications, more research is required in model
optimization, effective data gathering, improving data availability through simulations,
and exploring hybrid approaches combining deep learning with traditional underwater
systems and hardware solutions.

This paper lays a solid groundwork for the progress of unmanned underwater vehicle
(UUV) navigation, with a specific emphasis on enhancing AI-SLAM algorithms, specifi-
cally those powered by deep learning. Future research will focus on improving various
sensor fusion approaches and integrating advanced technologies such as multibeam sonar,
stereo cameras, LiDAR, and Imu, as well as methodologies like SBL/USBL [153,154] and
DLV [155]. The goal should be to enhance the accuracy of UUV navigation in challenging
underwater situations.

Investigating the incorporation of cutting-edge technology like machine learning and
enhanced computer vision shows potential for improving the reliability of UUV navigation
systems. Ensuring the capacity to adapt to various unmanned underwater vehicles (UUVs)
and mission needs is critical. It is imperative to have cooperation between researchers,
industry professionals, and policymakers to establish standards and effectively apply these
improvements in real-world scenarios.

This work has thoroughly examined underwater simultaneous localization and map-
ping (SLAM) technologies, specifically focusing on incorporating deep learning methods.
We have emphasized their crucial function in improving underwater navigation and percep-
tion by analyzing different sensors and their respective uses, such as vision sensors, sonar,
and LiDAR. The assessment of various simultaneous localization and mapping (SLAM)
algorithms highlighted the progress and difficulties in the field, namely the advantages of
integrating deep learning techniques such as convolutional neural networks (CNNs), long
short-term memory (LSTM) networks, generative adversarial networks (GANs) and other
deep learning methods.

We have shown that the utilization of deep learning greatly enhances the process
of extracting features, estimating poses, and fusing data, resulting in underwater SLAM
systems that are more precise and resilient. Nevertheless, these systems have difficulties,
such as intense computational requirements and the opaque nature of neural networks,
which can affect the capacity to interpret and apply them in real time.
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