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Abstract: Height is an important health parameter employed across domains, including healthcare,
aesthetics, and athletics. Numerous non-contact methods for height measurement exist; however,
most are limited to assessing height in an upright posture. This study presents a non-contact approach
for measuring human height in 2D space across different postures. The proposed method utilizes
computer vision techniques, specifically the MediaPipe library and the YOLOv8 model, to analyze
images captured with a smartphone camera. The MediaPipe library identifies and marks joint points
on the human body, while the YOLOv8 model facilitates the localization of these points. To determine
the actual height of an individual, a multivariate linear regression model was trained using the ratios
of distances between the identified joint points. Data from 166 subjects across four distinct postures:
standing upright, rotated 45 degrees, rotated 90 degrees, and kneeling were used to train and validate
the model. Results indicate that the proposed method yields height measurements with a minimal
error margin of approximately 1.2%. Future research will extend this approach to accommodate
additional positions, such as lying down, cross-legged, and bent-legged. Furthermore, the method
will be improved to account for various distances and angles of capture, thereby enhancing the
flexibility and accuracy of height measurement in diverse contexts.

Keywords: non-contact; height measurement; MediaPipe

1. Introduction

It is critical to have an accurate and convenient method for measuring human height,
which is an important variable in healthcare for calculating Body Mass Index (BMI) and
determining various treatment-related metrics [1]. BMI enables the classification of individ-
uals as overweight, underweight, or of ideal weight [2]. Moreover, BMI is instrumental
in population-based studies due to its widespread acceptance in identifying specific body
mass categories that may indicate health or social issues. Recent evidence also suggests
that particular BMI ranges are associated with moderate and age-related mortality risks [3].

Height measurement is typically performed in an erect standing posture. For non-
critical patients, contact methods such as table scales, standing scales, or medical measuring
devices are commonly employed. However, for critically ill patients in intensive care units
(ICUs), requiring them to move or assume an upright position for height measurement
is often impractical [4]. Additionally, severely ill patients are frequently unconscious or
incapacitated, complicating accurate height assessments. Therefore, the development of a
non-contact height measurement method for critically ill patients is particularly important
in the ICU setting [5,6].
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Currently, height measurements for ICU patients in hospitals in Vietnam are frequently
conducted by nurses; however, the nurse-to-patient ratio is often insufficient. This situation
introduces significant challenges in obtaining accurate measurements. Accurate height
data are crucial, as it is integral to calculating treatment parameters such as creatinine
indices [7,8]. Thus, the implementation of an automatic, non-contact height measure-
ment method represents a critical step toward ensuring the highest possible accuracy for
calculating treatment parameters.

Several non-contact methods have been proposed for measuring height in special
populations, such as the elderly, hospitalized individuals, bedridden patients, and those
with skeletal deformities. A study conducted at Jimma University demonstrated that
height estimates derived from linear body measurements, including arm span, knee height,
and half-arm span, serve as useful surrogate measures [9]. However, the study was
limited by a narrow age range, including only adults aged 18 to 40 years, which may not
adequately represent the broader adult population, especially considering the potential
decline in height in older age groups. Furthermore, Haritosh has investigated the use of
facial proportions to estimate body height [10]. This method involves calculating height
from facial images by extracting facial features through convolutional neural networks
and predicting height using artificial neural networks. However, the average error rate
in the measurement is approximately 7.3 cm, which constitutes a significant deviation in
height assessment.

A common method for estimating human height from images or videos is skeletal
extraction [11]. This approach utilizes computer vision and image-processing methodolo-
gies to analyze visual data. The accuracy of this method can be affected by various factors,
including camera focal length, angle, and ambient-lighting conditions. To enhance the
precision of height measurements, we propose a study employing MediaPipe to extract
skeletal point coordinates from images capturing both a person and a reference object—a
black cardboard of fixed dimensions. These coordinates, represented in a two-dimensional
space as X and Y values, are used to calculate the lengths of bone segments, thus facilitating
height estimation. Following the extraction of skeletal points, a machine-learning model
will be employed to train the input data and estimate human height. We hypothesize that
the use of a reference object will improve the accuracy of height measurement.

2. Materials and Methods
2.1. The Proposed Method

Figure 1 illustrates a diagram of the proposed height measurement method. The block
diagram consists of six primary blocks. The first block serves as the input, which is an
image of a person in a vertical position. The second block identifies and marks human
body landmarks (skeleton points) using the OpenCV and MediaPipe libraries. The third
block calculates the length of each skeleton using the MediaPipe library. This step involves
calculating a centimeter-per-pixel (cm/pixel) ratio using a reference object, counting the
number of pixels in each skeleton, and then calculating the skeleton length in centimeters.
In the fourth block, the lengths of the skeletons are fed into a multivariate linear regression
model to train the model. In the fifth block, human height is predicted using the trained
model. Finally, in the sixth block, human height is obtained.

The OpenCV (Open Computer Vision) is a leading open-source library for computer
vision, machine learning, and image processing. It is written in C/C++, which enables it
to achieve very fast calculation speeds and allows for use in real-time applications [12].
MediaPipe is a series of cross-platform machine-learning solutions used for tasks such
as face detection, face mesh, and human pose estimation [13]. It consists of three main
parts, namely a framework for inference from sensory data, a set of tools for performance
evaluation, and a collection of reusable inference and processing components [14]. YOLOv8
is a computer vision model for object recognition and detection developed by Ultralytics in
2016 [15]. Among different object detection algorithms, the YOLO (You Only Look Once)
framework has stood out for its remarkable balance of speed and accuracy, enabling the
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rapid and reliable identification of objects in images. Since its inception, the YOLO family
has evolved through multiple iterations, each building upon previous versions to address
limitations and enhance performance [15].
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Using the OpenCV and MediaPipe, a total of 501 landmarks (skeleton joints) were
identified. These landmarks were then fed to a customized multiclass classification model
to understand the relationship between each class and its coordinates for classifying and
detecting a body posture [16]. The OpenCV library was first used for image processing.
After that, the MediaPipe library was applied to extract x, y, and z coordinates, as well as
the number of pixels for each joint. Finally, the YOLOv8 model was employed to identify
the black cardboard, calculate the number of pixels in the cardboard, and determine the
ratio of cm/pixel according to Equation (1):

(k) =
height(cm)

dis(pixel)
(1)

The human body was divided into six segments: h1 is the distance from the shoulder
to the hip, h2 is the distance from the hip to the knee, h3 is the distance from the knee to the
ankle, h4 is the distance from the ankle to the sole of the foot, h5 is the distance from the
middle of the shoulder to the middle of the mouth, and h6 is the distance from the middle
of the mouth to the nose. The distance between two points, A(xa, ya) and B(xb,yb), was
calculated. In this project, our calculations were based on the normalized coordinates xi
obtained from MediaPipe yi. These coordinates were then converted to a pixel coordinate
system using Equations (2) and (3).

Xi = image_width ∗ xi (2)

Yi = image_height ∗ yi (3)

The pixel coordinates were then used to calculate the distances between landmarks
and the lengths of the skeleton segments in the human body. The coordinates of the
midpoint of the shoulder and the coordinates of the midpoint of the hip were used to
calculate the distance h1 (Equation (4)):

h1 = k ×

√(
X23 + X24

2
− X11 + X12

2

)2
+

(
Y23 + Y24

2
− Y11 + Y12

2

)2
(4)

The skeletal segment h2 was calculated as the distance between points 23 and 25
(Equation (5)):

h2 = k ×
√
(X25 − X23)

2 + (Y25 − Y23)
2 (5)
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Similarly, the distance h3 was calculated as the distance between points 27 and 25
(Equation (6)):

h3 = k ×
√
(X27 − X25)

2 + (Y27 − Y25)
2 (6)

The distance h4 from the ankle to the sole of the left foot was calculated as follows:

h4 = k × | (Y 29 − Y31)x27 + (X31 − X29)Y27 + (Y 31 − Y29)X29 − (X31 − X29)Y29|√
(Y29 − Y31)

2 + (X31 − X29)
2

(7)

The distance h5 was calculated as the distance from the midpoint of the shoulder to
the midpoint of the mouth (Equation (8)):

h5 = k ×

√((
X11 + X12

2
− X9 + X10

2

)2
+

(
Y11 + Y12

2
− Y9 + Y10

2

)2
(8)

Finally, the distance h6 from the midpoint of the mouth to the nose was calculated
as follows:

h6 = k ×

√((
X0 −

X9 + X10

2

)2
+

(
Y0 −

Y9 + Y10

2

)2
(9)

2.2. Predicting Result of Height Measurement

A multivariable linear regression, which is an extension of a single-variable linear
regression algorithm, was used to train and predict body height. This algorithm has proven
to be highly effective in predicting outcomes based on two or more independent variables.

The multivariate linear regression [17] equation takes the following form:

Y = β0 + β1 × X1 + β2 × X2 + . . . + βn × Xn + ε (10)

where Y is the dependent variable that needs to be predicted. X1, X2, . . ., Xn are the
independent variables, and β0, β1, β2, . . ., βn are the relationship coefficients.

After calculating the length of each skeletal segment, we applied a multivariate linear
regression equation to predict human height. Equation (10) becomes the following:

h = β0 + β1h1 + β2h2 + β3h3 + β4h4 + β5h5 + β6h6 + ε (11)

where h is the predicted height; h1, h2, h3, . . ., h6 are the calculated distance of skeleton
segments; and β0, β1, β2, . . ., β6 are the correlation coefficients obtained during the process
of training the multivariate linear regression model.

The multivariate linear regression model is an important tool for investigating rela-
tionships between several response variables and multiple predictor variables. The primary
focus is on making inferences about the unknown regression coefficient matrices. We
propose multivariate bootstrap techniques as a means for drawing inferences about these
matrices. A real data example and two simulated data examples that provide finite sample
verifications of our theoretical results are presented in [18,19].

2.3. Data Collection

This study was approved by the Hanoi University of Science and Technology. Data
were collected from 166 adult subjects who agreed to participate in the study. Photographs
of the subjects were taken with a smartphone camera. The smartphone was fixed on a
tripod at a height of approximately 115 cm from the ground (Figure 2). The tripod was
positioned at distances of 200 cm and 300 cm from the subject. A 20.5 cm × 30.5 cm black
cardboard was placed next to the subject on the wall, with the center of the cardboard at a
height of approximately 115 cm from the ground. On the opposite side of the subject, a
wall height chart was attached.
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Figure 2. Tripod set up and camera.

Subjects were guided to perform four different postures during the experiment. Firstly,
there was the standing-upright position (Figure 3a), where subjects stood straight and
looked directly ahead. This position simulates the body in a natural state, with no tilt or
rotation. Secondly, in the 45-degree rotation position (Figure 3b), subjects turned their
bodies 45 degrees away from the camera while looking straight ahead. This pose simulates
the body at a slight angle, which can affect how bone segments appear in the image.
Thirdly, in the horizontal 90-degree rotation position (Figure 3c), subjects turned their
bodies 90 degrees from the camera and looked straight ahead. This position simulates the
body at a greater angle and illustrates patients’ positions in a hospital bed. This helps to
better understand the differences in measurements of bone segments when the body is
in a horizontal state, which is important in medical applications. Finally, in the kneeling
position (Figure 3d), subject turned their bodies 90 degrees but bent their knees. This
position is especially important for understanding changes in bone segments when the
body is in a bent-knee state, simulating situations where the body is not completely upright.
In each pose, subjects remained in position throughout the image capturing process to
ensure the accuracy of the measurements. Staying steady and immobile during each scan
is crucial to ensure that body landmarks are accurately and consistently identified.

2.4. Data Processing

The obtained images were processed using MediaPipe and YOLOv8 to extract the X
and Y coordinates of the landmarks on the body, as well as the parameters of the reference
object, which served for calculating the lengths of the skeletal segments. After that, the
mean and standard deviation (SD) [19] were used to remove outliers to increase model
accuracy. Specifically, data outside of the ±3 SD range were removed. The remaining valid
values were used as input for the training model. Finally, a multivariate linear regression
model was applied to the skeletal segments to estimate subjects’ height. The collected data
consisted of 166 samples for each posture, with heights ranging from 148 cm to 184 cm.
After eliminating outliners, a new dataset consisting of 162 samples was divided into 80%
for training and 20% for testing.
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3. Results
3.1. Standing Upright Position

After training the model with the training and test samples, we developed Equation (12)
to estimate height based on bone segment lengths. Table 1 provides the evaluation results
for the standing-upright position. This method has an average error of 1.94 cm (1.14%)
across the test data samples. The error is mainly due to a lack of camera calibration
and inaccuracies in extracting coordinates from MediaPipe, as well as varying lighting
conditions during data collection.

H = 1.07533865h1 +1.2476316h2 +0.59605108h3+0.6496244h4+0.76927537h5−2.13930107h6+58.4779461 (12)

Table 1. Prediction results for 17 subjects in the standing-upright posture.

Samples Actual Height
(cm)

Predicted Height
(cm)

Error
(cm)

Error Rate
(%)

1 174 170.9514 3.048575 1.752055
2 177 177.4226 0.422636 0.238778
3 162 167.6994 5.699382 3.518137
4 168 168.3282 0.328223 0.195371
5 172 169.1883 2.811732 1.634728
6 169 172.8558 3.855773 2.281522
7 170 169.2551 0.744909 0.438182
8 170 173.3402 3.340176 1.964809
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Table 1. Cont.

Samples Actual Height
(cm)

Predicted Height
(cm)

Error
(cm)

Error Rate
(%)

9 180 180.4499 0.449862 0.249923
10 175 173.0343 1.965713 1.123264
11 169 171.7793 2.779289 1.64455
12 175 175.5055 0.505452 0.28883
13 173 175.8168 2.816793 1.628204
14 168 170.0952 2.095163 1.247121
15 171 170.7831 0.216859 0.126818
16 168 167.1057 0.894323 0.532335
17 163 163.9993 0.999287 0.613059

Average 170.8 171.6241 1.939656 1.145746

3.2. 45-Degree Rotation Position

Similarly, Equation (13) was developed to estimate body height for the 45-degree
rotation position. Evaluation results for this position are presented in Table 2. The average
error is 1.91 cm (1.12%).

H = −0.70003005h1+0.98866088h2+0.76985497h3+0.35090296h4+0.68119476h5−0.40682656h6+72.229882 (13)

Table 2. Prediction results for 17 subjects in the 45-degree tilted-standing posture.

Samples Actual Height
(cm)

Predicted
Height (cm)

Error
(cm)

Error Rate
(%)

1 174 170.3426 3.657426 2.101969
2 177 178.7488 1.748834 0.988042
3 162 167.0036 5.003625 3.088657
4 168 167.3131 0.686861 0.408846
5 172 174.8213 2.821337 1.640312
6 169 166.2978 2.702194 1.598931
7 170 167.9283 2.071712 1.218654
8 170 168.6685 1.331542 0.78326
9 180 178.4254 1.574556 0.874753
10 175 174.1332 0.866795 0.495312
11 169 171.0258 2.025811 1.198705
12 175 175.7314 0.731434 0.417962
13 173 174.0368 1.03684 0.599329
14 168 164.0762 3.923809 2.335601
15 171 172.5887 1.588712 0.929071
16 168 167.4733 0.526727 0.313528
17 163 162.7955 0.20453 0.125479

Average 170.8 170.6712 1.911926 1.124612

3.3. Horizontal 90-Degree Rotation Position

After training with the dataset for posture 3, Equation (14) was derived to estimate
height for the 90-degree turned posture. Table 3 provides the evaluation results for the
horizontal 90-degree rotation position. The average error is 2.62 cm (1.54%).

H = 0.08162038h1 +0.70345667h2 +0.67353882h3 +0.55258515h4 +0.42507086h5−0.20956018h6+73.384567 (14)

3.4. Kneeling Position

For the 90-degree sideways bent-knee position, we derived Equation (15) to calculate
body height. Results are presented in Table 4. The evaluation results for this position show
an average error of 2.45 cm (1.43%).

H = 0.36422493h1+0.81095132h2+0.58705451h3+0.58410078h4+0.35394516h5−0.21066217h6+73.779571 (15)



Sensors 2024, 24, 6796 8 of 10

Table 3. Prediction results for 17 subjects in the 90-degree tilted-standing posture.

Samples Actual Height
(cm)

Predicted
Height (cm)

Error
(cm)

Error Rate
(%)

1 177 177.8865 0.886495 0.500845
2 162 169.2808 7.2808 4.494321
3 168 168.0163 0.016319 0.009714
4 172 169.4318 2.568204 1.493142
5 169 168.173 0.826959 0.489325
6 170 176.0739 6.073928 3.572899
7 170 168.528 1.47199 0.865877
8 180 183.2167 3.216669 1.787039
9 175 171.7336 3.266446 1.86654
10 169 174.7692 5.769226 3.413743
11 169 168.7802 0.219849 0.130088
12 175 172.8844 2.115569 1.208896
13 173 175.1489 2.148942 1.242163
14 168 165.562 2.438041 1.451215
15 171 173.9013 2.901262 1.696644
16 168 167.8982 0.10178 0.060583
17 163 166.2274 3.22743 1.980018

Average 170.5 171.6184 2.619406 1.544885

Table 4. Prediction results for 17 subjects in the 90-degree tilted-standing posture with bent knees.

Samples Actual Height
(cm)

Predicted Height
(cm)

Error
(cm)

Error Rate
(%)

1 174 169.3661 4.633906 2.663164
2 177 178.5004 1.50038 0.847672
3 162 163.4223 1.422282 0.877952
4 168 168.3369 0.336886 0.200527
5 172 170.5549 1.445134 0.840194
6 169 168.7444 0.255635 0.151263
7 170 176.0042 6.004188 3.531876
8 170 175.1093 5.109334 3.005491
9 180 182.6475 2.647498 1.470832
10 175 178.3741 3.374108 1.928062
11 169 172.6141 3.614117 2.138531
12 175 172.9836 2.01644 1.152252
13 173 175.8976 2.897555 1.674887
14 168 166.5528 1.44725 0.861458
15 171 169.4226 1.577427 0.922472
16 168 167.0025 0.997496 0.593748
17 163 165.3323 2.332332 1.430879

Average 170.8 171.8156 2.447763 1.428898

4. Discussion

The experimental results demonstrate that the proposed height estimation method can
estimate human height relatively accurately, with an average error ranging from 1.91 cm
to 2.62 cm (1.12–1.54%). Among the four postures, the height estimation model for the
45-degree rotation position yields the best results, with an average error of 1.91 cm (1.12%).
For the other postures, the achieved results are less accurate. The standing-upright position
has a result nearly equal to that of the 45-degree rotation posture, with an average error of
1.94 cm (1.14%). However, for the horizontal 90-degree rotation position and the kneeling
position, the errors are significantly larger, with average errors of 2.62 cm (1.54%) and
2.45 cm (1.43%), respectively. This is mainly because the MediaPipe model does not
perform as effectively when estimating height in more complex postures compared to
the standing-upright posture. Additionally, other factors, such as lighting conditions and
camera angles, also affect the accuracy of the measurement.
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5. Conclusions

This study presents a non-contact height measurement method utilizing the MediaPipe
library in conjunction with the YOLOv8 model to extract joint coordinates and calculate
bone lengths, employing a multivariate linear regression function for predicting human
height from images. Experimental results indicate that the average errors between the
estimated and actual heights range from 1.91 cm to 2.62 cm (1.12% to 1.54%). This level of
accuracy is deemed acceptable for a variety of applications. Future research will focus on
expanding the methodology to determine the height of individuals in various standing and
lying positions. The goal is to develop a flexible and efficient software application capable
of measuring height across diverse real-world contexts. The integration of technologies
such as MediaPipe and YOLOv8 demonstrates significant potential for applications in
fields such as medicine, sports, and health monitoring, where reliable and precise height
measurements from images are essential.
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