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Abstract: The soybean (Glycine max) is a globally important crop due to its high protein and oil
content, which serves as a key resource for human and animal nutrition, as well as bioenergy
production. This review assesses recent advancements in soybean genetic improvement by conduct-
ing an extensive literature analysis focusing on enhancing resistance to biotic and abiotic stresses,
improving nutritional profiles, and optimizing yield. We also describe the progress in breeding
techniques, including traditional approaches, marker-assisted selection, and biotechnological inno-
vations such as genetic engineering and genome editing. The development of transgenic soybean
cultivars through Agrobacterium-mediated transformation and biolistic methods aims to introduce
traits such as herbicide resistance, pest tolerance, and improved oil composition. However, challenges
remain, particularly with respect to genotype recalcitrance to transformation, plant regeneration,
and regulatory hurdles. In addition, we examined how wild soybean germplasm and polyploidy
contribute to expanding genetic diversity as well as the influence of epigenetic processes and micro-
biome on stress tolerance. These genetic innovations are crucial for addressing the increasing global
demand for soybeans, while mitigating the effects of climate change and environmental stressors. The
integration of molecular breeding strategies with sustainable agricultural practices offers a pathway
for developing more resilient and productive soybean varieties, thereby contributing to global food
security and agricultural sustainability.

Keywords: soybean; genetic transformation; crop improvement; biotic stress; abiotic stress

1. Introduction

The soybean (Glycine max (L.) Merr.) originated in China and has become globally
important as a source of nutrition for humans and animals, as well as for bioenergy
production [1]. The species has 40 chromosomes (2n = 40), and its reproductive system
is predominantly self-pollinating, with cleistogamous flowers, leading to a 97–99% self-
pollination rate [2,3]. The soybean’s versatile applications have positioned it as a critical
component in global agronomic and trade systems. In 2020, the USA, Brazil, and Argentina
contributed to 80% of global soybean production with an estimated of 338 million metric
tons [4–6]. As a primary source of protein and oil, the soybean is integral to the agricultural
sector, contributing to economic stability and promoting sustainable practices, particularly
through crop rotation systems that enhance soil fertility [7–9].

The soybean contributes 25% of the global commercial vegetable oil market and 70%
of available plant-based protein source [10]. Its oil is fundamental for human consumption,
biodiesel, lubricants, and bio-based polymers production, containing 13% saturated fats
and unsaturated fatty acids like oleic, linoleic, and linolenic acids [11,12]. With 35% protein
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content (on a 13% moisture basis), the soybean surpasses other staple crops like wheat,
rice, and corn, and is rich in antioxidants, minerals, vitamins, and dietary fiber [13,14].
Additionally, soybeans contain bioactive compounds, such as isoflavones and saponins,
which are linked to health benefits, including potential menopause delay and cancer
prevention [4,5]. Soybean products, especially those from fermentation (including soy
protein, soy sauce, soy milk and soybean products), are extensively used in Asia for human
consumption and are vital in the livestock and poultry industries for high-quality feed [13].
Its nutritional profile and high protein content make it a key component of balanced diets,
addressing malnutrition and supporting vegetarian diets, thus promoting global food
security and human welfare [15].

Soybean cultivation is most successful in warm and moist climates, with one or
two agricultural cycles depending on water availability. The cultivation process begins
with land preparation, followed by mechanical or manual sowing, often using fungicide-
treated seeds to prevent rotting. Phosphorus and potassium applications are required [16].
Inoculation with Rhizobium is recommended to enhance nitrogen fixation and maintaining
soil pH between 6.0 and 7.5 is crucial to avoid aluminum toxicity [17]. Many commercial
soybean cultivars are sensitive to photoperiod, with flowering occurring under short-day
conditions. Soybean plants typically take 75–80 days to reach full maturity, depending on
day length exposure. However, anti-nutritional factors such as protease inhibitors, lectins,
phytates and tannins, can impair nutrient assimilation [18]. Despite its benefits, soybean
cultivation faces challenges related to sustainable production, land-use dynamics, and the
need for genetic improvements [19].

This review addresses the impact of biotic stressors on soybean cultivation, highlight-
ing major pests, diseases, and associated management strategies. Challenges posed by
abiotic stress, including drought, salinity, and extreme temperatures, are examined along-
side the molecular mechanisms and breeding strategies developed to mitigate these effects.
Subsequent sections focus on conventional breeding, genetic engineering, and genome-
editing approaches that have revolutionized the soybean genetic improvement. Finally,
advances in soybean transformation techniques are discussed, along with future directions
in soybean research and the role of biotechnology in promoting sustainable agriculture.

2. Biotic Stress in Soybean Cultivars

Biotic stress in soybean crops is driven by a wide diversity of pests and pathogens,
varying by geography and climate (Figure 1A,B). Bacterial infections, such as those caused
by Pseudomonas syringae and Xanthomonas campestris, produce small brown pustules and
blight spots, especially under wet and cool conditions, although their impact on yield is gen-
erally minor [20]. In contrast, fungal pathogens pose a significant threat to its productivity,
with Phakopsora pachyrhizi being particularly devastating, causing premature defoliation and
reduced photosynthesis [21]. Other fungal diseases in soybeans include Septoria glycines,
Diaporthe phaseolorum, Fusarium spp., Cercospora kikuchii, Cercospora sojina, Colletotrichum
truncatum, Corynespora cassiicola, Glomerella glycines, Macrophomina phaseolina, Peronospora
manshurica, Phakopsora meibomiae, Phomopsis spp., Sclerotium rolfsii, Sclerotinia sclerotiorum,
and Rhizoctonia solani infections, all of which impair plant health [20,21].

Viral infections pose a significant threat to soybean production, leading to reduced
plant vigor, impaired photosynthetic efficiency, and substantial yield losses [22]. A variety
of viruses have been documented to infect soybean plants, including Alfamovirus AMV,
Begomovirus vignaradiatae, Comovirus siliquae, Ilavirus spp., Ilarvirus TSV, Luteovirus glycinis,
Nepovirus nicotianae, Orthotospovirus glycininecrovenae, Potyvirus glycitessellati, Potyvirus
phaseoluteum, Potyvirus phaseovulgaris, Potyvirus trifolii, Potyvirus vignae, and Sobemovirus
SBMV [23]. In addition, other biotic stressors such as nematodes—specifically Belonolaimus
longicaudatus, Heterodera glycines, Meloidogyne spp., and Rotylenchulus reniformis (Figure 1B),
and oomycetes, notably Phytophthora sojae—are also important pathogens that adversely
affect soybean health and productivity [24,25].
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Figure 1. Biotic stress in soybean cultivars. (A) Incidence of pathogens and diseases depends on
environmental conditions, the susceptibility of the soybean cultivars, and pathogen adaptation.
(B) Pathogens cause the most important economic losses in soybeans. (C) Integrated management
actions to mitigate the most common diseases.

Insect pests further compromise soybean productivity by causing direct damage to
crops and facilitating the spread of plant pathogens. In Asia, primary insect threats include
Acalymma vittata, Diabrotica undecimpunctata, Spodoptera exigua, and Spodoptera praefica, with
climate change accelerating their evolution [26]. In the Americas, major pests are Anticarsia
gemmatalis, Aphis glycines, Bemisia tabaci, Chrysodeixis includens, and Sternechus subsigna-
tus, which damage crops through defoliation, nutrient depletion, and virus transmission.
Other pests that can affect soybean cultivation include Ceratoma trifurcata, Chinavia hilaris,
Euschistus spp., Halyomorpha halys, Helicoverpa zea, Hypena scabra, Megacopta cribraria, Nezara
viridula, Piezodorus guildinii, Spissistilus festinus, and Tetranychus urticae [27,28].

Weeds are a major factor contributing to yield losses in soybean production due to
competition for essential resources such as space, water, light, and nutrients. Additionally,
weeds can exert negative effects through allelopathy and by serving as hosts for pests
and diseases. The impact of weed competition is influenced by weed density, species
composition, the competitive ability of the soybean cultivar, soil conditions, crop man-
agement practices, and the duration of coexistence between the crop and weeds. Weed
interference can result in grain yield reductions by up to 80%. Common weed species
that compete with the soybean include Amaranthus dubius, Brachiaria platyphylla, Caperonia
palustre, Cassia tora, Commelina elegans, Cucumis spp., Cynodon dactylon, Cyperus rotundus,
Echinochloa colonum, Eleusine indica, Ipomoea tiliacea, Kallstroemia maxima, Milleria quinqueflora,
Parthenium hysterophorus, Portulaca oleracea, and Sorghum halepense [29]. Interestingly, the
soybean can be used in agricultural systems, for example, intercropping with maize has
been showed to protect against infestation by the root parasitic plant Striga spp., which
underscores another application of soybean cultivation [30].

The complex interactions among biotic stressors demand the development of compre-
hensive management strategies [31]. The rise of resistant pest populations and virulent
pathogen strains, exacerbated by global trade and intensive agricultural practices, high-
lights the need for continuous monitoring, stringent biosecurity measures, and integrated
pest management (IPM) approaches. Effective IPM strategies include the deployment of
pest-resistant cultivars, implementation of cultural control practices, utilization of biologi-
cal control agents, crop rotation, and sanitation measures (Figure 1C). These approaches
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aim to reduce reliance on chemical interventions and promote sustainable agricultural
systems [32].

3. Abiotic Stress in Soybean Cultivars

Abiotic stress poses a substantial threat to soybean productivity by affecting growth,
development, yield, and key physiological processes such as photosynthesis, water uptake,
and nutrient absorption [33]. Recent research has increasingly focused on elucidating the
complex responses of the soybean to abiotic stressors, including drought, salinity, extreme
temperatures, soil pH imbalances, and nutrient deficiencies [34]. Understanding these
dynamics is crucial for developing resilient cultivars and optimizing management practices
to mitigate the effects of these stressors on soybean production.

For example, drought stress leads to reduced water availability, triggering stomatal
closure and hampering carbon assimilation, thereby impeding overall plant growth [35].
Drought, particularly during seed germination and flowering, can reduce yields by over
50%, leading to substantial economic losses [36,37]. Drought-tolerant soybean cultivars
employ avoidance and tolerance mechanisms as well as structural and biochemical adap-
tations (such as wax and trichome production on leaves, stomatal opening regulation,
reduction of photosynthetic rate and the synthesis of osmoregulatory compounds) to miti-
gate water deficit [38–40]. The abscisic acid (ABA)-dependent and independent pathways
are crucial for controlling water allocation and photosynthesis during stress [41,42]. The
ABA is synthesized in roots and likely in the leaf vascular system; it has been postulated
that ABA is transported from the roots to leaves, and in general to aerial tissues, through
the xylem and translocated where it induces stomatal closure [43]. However, there is
evidence that ABA impacts more stomatal opening than the xylem, at least in tomatoes
(Solanum lycopersicum) [44]. Consistent with this, ABA in soybeans appears to accumulate
first in shoots where it is transported to roots, presumably through the phloem, where
adaptive responses to water deficit occur [45]. Recent work supports the notion that
ABA synthesized in guard cells has a short-term effect on stomatal regulation while ABA
originating from vasculature has a role in long-term responses in roots to water avail-
ability [46]. Additionally, responses to water deficits and flooding studied in soybeans
with contrasting phenotypes indicate that tolerant cultivars accumulate higher ABA con-
tent in leaves than susceptible ones, and show an increased number of plastoglobules,
which are lipoprotein bodies bound to thylakoids that accumulate antioxidants and other
molecules that may help to cope with reactive oxygen species produced during drought
stress [34,47,48]. Also, tolerant cultivars maintain high seed production as well as flower
number and pollen germination [35]. Additionally, oxidative stress resulting from water
scarcity is countered by the expression of osmoregulators and enzymes like catalase and
superoxide dismutase in tolerant cultivars [49–52]. Transcriptomic studies have identified
key drought-responsive genes, including GmNAC, MYB, WRKY, AREB, and DREB, over-
expressed in tolerant germplasm and suggesting a coordinated, supracellular response
that involves long-distance signaling [53–61]. For instance, the WRKY genes GmWRKY12
and GmWRKY54 mediate drought tolerance through ABA and Ca+2 signaling pathways,
enhancing proline accumulation and drought resilience [58,62]. Some mRNAs induced
by water deficit in a common bean (Phaseolus vulgaris) cultivar accumulate in the phloem,
suggesting that such tolerance involves long-distance signaling through the vasculature,
and may be a more general phenomenon [39].

The soybean is also sensitive to salinity, which affects seed quality, growth, and
nodulation due to oxidative stress, ionic toxicity, and osmotic imbalance [63,64]. However,
certain wild soybean accessions exhibit salinity tolerance [65]. Extreme temperatures
further challenge soybean cultivation, impairing reproductive development [66].

3.1. Molecular Mechanisms and Signaling Pathways to Cope with Abiotic Stress

Under abiotic stress, plants activate various molecular and biochemical responses,
including the expression of stress-responsive genes such as transcription factors (TFs),
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osmoprotectants, and antioxidant enzymes, which are crucial for enhancing stress toler-
ance [67]. Phytohormone signaling pathways, particularly those involving ABA, ethylene,
and jasmonic acid, orchestrate adaptive responses by regulating stomatal closure, osmotic
adjustments, and stress-related gene expression [68]. Understanding these intricate molec-
ular networks is critical for developing strategies to bolster soybean resilience (Figure 2).
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Figure 2. Response to drought stress in soybean germplasm. Signaling pathways to cope with
drought stress conditions at the molecular and biochemical levels. Limited water availability and
extreme temperatures induce ABA-dependent or independent pathways, including the synthesis
of water channels, the expression of signal transduction molecules, and transcription factors that
regulate such pathways. At the biochemical level, this type of stress activates the accumulation of
osmoprotectant sugars, modified amino acids, and anti-oxidative enzymes.

3.2. Impact of Abiotic Stress on Crop Productivity and Sustainability

Abiotic stress represents a significant challenge to global soybean cultivation, where
climate exacerbates threats such as temperature fluctuations, heatwaves, droughts, floods,
and UV radiation [25]. These stressors currently contribute to yield losses exceeding 40%,
and in some cases reaching 80% depending on crop stage and environmental intensity [69].
Under optimal conditions, soybean yields range from 7.2 to 11 tons per hectare, but the
global field average is significantly lower (2.3 to 3.4 tons), and stress conditions can reduce
yields to less than 2 tons per hectare [70,71].

Additionally, abiotic stress accelerates disease development and the emergence of
new pathogens, as evidenced by the 2012 drought in major soybean-producing countries,
which increased Macrophomina phaseolina outbreaks, leading to unprecedented economic
losses [72,73]. Addressing these challenges requires a comprehensive approach, integrating
advanced molecular techniques, breeding strategies, and sustainable agronomic practices
to enhance soybean resilience, sustain crop productivity, and support global food secu-
rity [74]. Continued collaboration among researchers, agronomists, and policymakers
will be essential in developing stress-resistant soybean cultivars capable of withstanding
evolving environmental conditions.

4. Genetic Improvement of Soybeans

Efforts to improve soybean resilience to abiotic stress involve a multifaceted approach
that integrates both conventional breeding and biotechnological interventions. Key strate-
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gies focus on breeding for traits such as improved water use efficiency, salt tolerance, and
heat stress resilience [75]. Additionally, implementing agronomic practices, including preci-
sion farming, optimized irrigation management, and soil nutrient enhancement, further
mitigates the adverse effects of stress on soybean productivity [76].

The development of soybean varieties with enhanced resistance to biotic and abiotic
stresses offers substantial advantages to producers, reducing reliance on chemical inputs
such as pesticides and fertilizers [67]. By incorporating traits such as drought tolerance, pest
resistance, and herbicide tolerance, soybean producers can significantly reduce production
costs and environmental impacts, supporting sustainable agricultural practices [77–79].

On the other hand, the presence of bioactive compounds such as isoflavones, toco-
pherols, and phytosterols provides natural antioxidant properties and potential health
benefits, including cholesterol reduction, blood sugar regulation, and mitigation of cardio-
vascular diseases [80]. The high fiber content in soybeans further supports digestive health
by promoting a balanced gut microbiota and preventing gastrointestinal disorders [81].
These improvements not only make soybeans a more valuable source of plant-based pro-
tein but also increase digestibility and reduce allergenic potential, thereby expanding their
market acceptance and contributing to global food security. In that sense, improving the
nutritional quality of soybean seeds by enhancing protein content, altering fatty acid pro-
files, and reducing anti-nutritional factors like phytic acid and protease inhibitors has direct
implications for human health.

To achieve these advancements in soybean resilience and nutritional quality, a range
of genetic improvement techniques have been employed, combining both traditional and
modern biotechnological approaches. In the following sections, we explore key method-
ologies such as conventional breeding, marker-assisted selection, genetic engineering, and
genome editing, all of which play a critical role in enhancing soybean traits and meeting
the growing demands for sustainable agriculture.

4.1. Conventional Breeding

This approach employs diverse germplasms to incorporate desirable traits into progeny.
The global soybean germplasm collection, comprising approximately 200,000 accessions
conserved in over 70 countries—of which 30% are unique—serves as an important resource
for breeding [82,83]. The soybean germplasm can be classified into the following three evo-
lutionary types: wild relatives, local domesticates (landraces), and modern commercial cul-
tivars. Despite the extensive diversity within this collection, only a small fraction has been
used in breeding programs, resulting in elite cultivars with limited genetic diversity [83].

Incorporating wild soybean germplasm for the improvement of commercial cultivars
presents an opportunity to enhance the genetic diversity that was reduced during domes-
tication approximately 5000 years ago. This strategy would enable the development of
soybean cultivars with resistance to the soybean cyst nematode (H. glycines), soybean aphid
(Aphis glycines), and foxglove aphid (Aulacorthum solani), as well as for introducing traits like
flowering regulation, photoperiod sensitivity, and drought and salinity tolerance. These
traits are found in wild relatives and plant introductions of the Glycine species, including
G. soja, G. tomentella, G. tabacina, and G. latifolia [84].

In conventional breeding, the utilization of male sterility systems can facilitate the de-
velopment of hybrid soybean cultivars. Plant male sterility refers to the condition where the
stamen develops abnormally, resulting in the inability to produce functional male gametes.
Hybrid breeding, although traditionally challenging owing to its self-pollinating nature,
can exploit heterosis (hybrid vigor), potentially leading to yield improvements. Male steril-
ity systems, such as genic and cytoplasmic male sterility, enable the production of hybrids
by ensuring cross-pollination [85,86]. Male sterility systems, such as genic and cytoplasmic
male sterility, enable the production of hybrids ensuring cross-pollination [85,86]. Recent
advances have focused on the identification of genes and molecular pathways governing
male sterility, offering novel tools for hybrid soybean breeding.
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4.2. Marker-Assisted Selection (MAS)

The association of desirable genotypes with specific genetic markers can accelerate the
development of high-performance soybean cultivars. Initially, quantitative trait loci (QTL)
linked to important traits such as protein and oil content were identified. This led to the
discovery of 25 single nucleotide polymorphism (SNPs) associated with seed oil content
and seven SNPs linked to both protein and oil content [87,88]. The advent of genome
sequencing and annotation in various soybean genotypes has further accelerated genetic
improvement through the identification of numerous SNPs. Earlier molecular techniques,
such as restriction fragment length polymorphism (RFLP), enabled the construction of
the first genetic map of the soybean genome [89]. Additionally, randomly amplified
polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and simple
sequence repeats (SSRs) have provided critical insights into the genetic diversity of the
soybean [90–92]. Comprehensive analysis of commercial soybean plant introductions has
identified SNPs as key elements for improving traits such as protein and oil content, as well
as enhancing tolerance to biotic and abiotic stress [93]. This approach has been instrumental
in identifying genetic variation in coding and non-coding regions, thereby facilitating the
development of elite soybean cultivars.

Additional tools such as genomic selection (GS) represent an emerging alternative to
traditional MAS, demonstrating enhanced efficiency in improving complex quantitative
traits in soybeans. Whereas MAS focuses on identifying and selecting QTL, GS employs
genome-wide marker data to predict the performance of individuals based on their genetic
composition [94]. This approach proves advantageous for traits controlled by numerous
genes with small effects, which are challenging to improve using MAS alone. The GS
analyses genetic and phenotypic data from a training set (TS) to estimate the genomic
estimated breeding values of individuals in a prediction set (PS). This methodology allows
breeders to make selection decisions earlier in the breeding cycle, without full phenotypic
data. Studies have demonstrated that GS can achieve high predictive accuracy, particularly
when the TS is large and genetically related to the PS, leveraging similarities in linkage
disequilibrium [95]. In soybeans, GS has achieved prediction accuracies of 0.5 to 0.7 for
yield when utilizing a TS composed of full siblings [96]. By integrating GS into breeding
programs, the selection of complex traits can be expedited, thereby increasing genetic
gain and enhancing the efficiency of breeding programs. This program renders GS a
potent complement to MAS, enabling breeders to address the limitations of traditional
marker-assisted approaches to traits with polygenic inheritance.

4.3. Genetic Engineering

Recombinant DNA technologies have enabled the rapid and precise development of
new soybean cultivars, surpassing traditional breeding methods. The main advantage of
genetic engineering is the possibility to introduce foreign genes to confer novel traits on
crops in a very specific manner. The methods used are through the insertion of the foreign
gene through Agrobacterium-mediated transformation, and by biolistic delivery of metal
microparticles coated with the foreign DNA to be introduced [97]. The first genetically
modified soybean cultivars were generated for tolerance to the herbicide glyphosate and in-
sect pests by introducing genes for proteins from Agrobacterium spp. strain CP4 and Bacillus
thuringiensis, respectively [98]. In addition, herbicide resistance remains the primary focus
of genetic engineering in soybeans for commercialization purposes, given its significant role
in facilitating large-scale agricultural practices. These cultivars allowed the expansion of
soybean cultivation areas in the late 1990s, and, by 2017, transgenic cultivars accounted for
80% of global soybean production [99]. Current genetic engineering efforts are focused on
the following three main goals: (1) enhancing crop traits like protein and oleic acid content,
(2) increasing yield, and (3) improving resistance to biotic and abiotic stresses [78]. Despite
the potential benefits, the widespread adoption of genetically modified soybean cultivars is
constrained by limited public acceptance and stringent regulatory frameworks. There are
also technical hurdles that need to be solved for the efficient genetic transformation of the
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most relevant crops, including soybeans, one of them being the recalcitrance of this and
other species to in vitro plant regeneration. This issue limits the use of this technique to
certain genotypes which may not necessarily be optimal in terms of desired traits such as
protein and oil content as well as tolerance to biotic and abiotic stress. Transformation of
hairy roots as well as introducing enhancers of regeneration such as the WUS gene may
help to solve this issue [97,100].

4.4. Genome Editing

This strategy has revolutionized crop improvement by enabling precise modifications
at specific loci within the plant genome. Techniques such as CRISPR/Cas9 are noteworthy
for the ability to introduce targeted changes, including insertions/deletions (indels) or
replacements, enhancing desirable traits in crops like soybeans. Genome editing allows for
the rapid development of new soybean cultivars by directly targeting genes responsible
for critical agricultural traits. Other technologies have been applied to soybean, including
CRISPR/Cpf1, CRISPR/LbCpf1, CRISPR/Lbcas12-a, CRISPR/Cas12a, and cytosine base
editors, among others [101–104]. Particularly in soybeans, genome editing tools have been
used to confer disease resistance, enhance drought and salinity tolerance, reduce phytic acid
content, modify flowering time, improve yield, facilitate functional genomic studies, and
enhance herbicide tolerance, plant architecture, oil composition, and palatability (Table 1).
Unlike traditional genetic engineering, genome editing does not necessarily involve the
introduction of foreign DNA, which can increase its acceptance among consumers and
regulatory bodies due to fewer concerns about the introduction of transgenic elements [78].
However, similar barriers exist with this technique, as plant regeneration is a limiting
step [97,100].

Table 1. Examples of gene editing in soybean and associated phenotypes.

Category Gene Name Gene Function Phenotype Reference

Abiotic stress

GmHdz4 Homeodomain-leucine
zipper TF

Enhanced drought tolerance,
increased root length, area,

and number of root tips
[105]

GmAITR ABA-induced
transcription repressor Enhanced salinity tolerance [106]

GmPLA Phospholipase A

Flooding and drought
tolerance. Modified response

in iron and
phosphorus deficiency.

[107]

GmWRKY46
WRKY TF family induced

by phosphorous
deprivation in roots.

Enhanced tolerance in
phosphorous deficiency [108]

GmPYL Receptor involved in ABA
signal transduction.

Reduction in ABA sensitivity.
Higher seed germination rate,

plant height and
branch number.

[109]

GmLHY TF that regulates the ABA
signaling pathway Improved drought tolerance [110]

Architecture, plant
morphology, and

production

GmDWF1 Synthesis of
brassinosteroids Increase in pod production [111]

GmPDH1
Synthesis and distribution

of lignin in the pod
internal sclerenchyma.

Pod shattering resistance [112]

GmLHY MYB TF involved in the
gibberellic acid pathway

Reduction in plant height and
shortened internodes [113]
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Table 1. Cont.

Category Gene Name Gene Function Phenotype Reference

Architecture, plant
morphology, and

production

GmSPL9 TF involved in regulating
plant architecture

Shorter plastochron length and
increased node number [114]

GmJAG Homolog of JAGGED TF
in Arabidopsis

Increase in number of seeds
per pot and higher yield [115]

GmE4 Homolog of phytochrome
A in Arabidopsis Earlier maturation time [116]

GmCPR5
Regulation of the plant
immune response, cell

cycle, and development

Short trichomes with
smaller nuclei [117]

GmEOD and
GmAIP2 E3 ubiquitin ligases Larger seed size with higher

protein and oil content [118,119]

GmmiR396 Negative regulator
of grain size

Enlarged seed size and
increased yield [120]

GmKIX8
Negatively transcriptional

regulator of
cell proliferation

Increased seeds and leaves size [121]

Biotic stress

GmF3H and
GmFNSII-1

Flavanone-3-hydroxylase
and flavone synthase II

Increase in isoflavone content
and resistance to SMV [122]

GmUGT UDP-glycosyltransferase Resistance to
leaf-chewing insects [123]

GmCDPK38 Calcium-dependent
protein kinase

Increased resistance to
Spodoptera litura and

late flowering
[124]

GmTAP1 Histone acetyltransferase Enhanced resistance to
Phytophthora sojae [125]

GmARM ABA-related signaling
pathway protein

Salt tolerance, alkali and
Phytophthora sojae resistance [126]

GmSNAP02 Vesicle fusion in
intracellular trafficking

Resistance to soybean
cyst nematode [127]

Flowering time

GmEIL and
GmEIN

Ethylene signal perception
and transduction

Early flowering and
increased yield [128]

GmE1, GmFKF,
GmTOE4b, and

GmLNK

TF and regulators of
GmFT2a y GmFT5a Early flowering [129–134]

GmFT, GmAP1,
GmNMHC5,

and GmSOC1

Florigen protein and
proteins related to identity

of floral organs

Adaptation for planting in low
latitudes (late flowering) [135–139]

Herbicide resistance GmAHAS
Biosynthesis of
branched-chain

amino acids

Resistance to five
AHAS-inhibiting herbicides [140]

Male sterility
GmMS1

Sporophytic controlling
factor for anther and pollen

development Male sterility (useful trait for
breeding applications)

[141,142]

GmAMS bHLH TF that affects
tapetal development [143]

Nodulation GmRIC Nodule-enhanced
CLE peptide

Increase in nodule number
per plant [144,145]
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Table 1. Cont.

Category Gene Name Gene Function Phenotype Reference

Nutritional and
organoleptic value

β-conglycinin
(7S) and

glycinin (11S)
Storage proteins

Changes in emulsion stability
and gelling ability in

soy protein
[146]

GmlincCG1

Long noncoding RNA
mapped to the intergenic

region of the 7S
α-subunit locus

Deficiency of the allergenic α’,
α, and β subunits of 7S [147]

GmRS, GmSTS,
and GmGOLS

Raffinose and stachyose
biosynthesis

Reduction in anti-nutritive
oligosaccharides [80,148]

GmIPK1 and
GmMRP5

Synthesis and transport of
phytic acid

Reduced phytic acid content
in seeds [149,150]

GmLOX Lipoxygenases related with
“beany” flavor Beany flavor reduction [151]

GmKTI and
GmBBi

Kunitz and Bowman–Birk
protease inhibitors

Low trypsin and chemotrypsin
inhibitor content [152,153]

GmBADH2
Aminoaldehyde

dehydrogenase, involved
in the formation of 2-AP

Confers a “pandan-like” (high
value quality trait) aroma [154]

Oil profile

GmFAD2 Conversion of oleic acid to
linoleic acid

High oleic, low linoleic, and
alfa-linoleic phenotype

[155–159]

GmPDCT
Phosphatidylcholine:

diacylglycerol
cholinephosphotransferase

[160]

5. Overview of Soybean Genetic Transformation

Genetic transformation is a biotechnological approach enabling modification of the
plant genome to incorporate desirable traits [75,161]. This technology has revolutionized
soybean crop improvement by reducing reliance on chemical inputs and promoting sus-
tainable agricultural practices. It holds significant potential for enhancing agricultural
productivity, food security, and environmental sustainability. Soybean genetic transforma-
tion begins with the identification and selection of target traits for enhancement, such as
herbicide tolerance, insect resistance, or improved nutritional quality (Figure 3A). This is
followed by the isolation and manipulation of specific genes or genomic regions related
to the desired traits [162]. The selected DNA sequences are introduced into the soybean
genome using methods such as Agrobacterium-mediated transformation (Figure 3B) or bi-
olistic particle delivery systems (Figure 3C) [163]. Successful integration of the recombinant
DNA results in transgenic soybean plants exhibiting the desired traits (Figure 3D).

5.1. Agrobacterium-Mediated Transformation

Agrobacterium tumefaciens is a plant pathogenic bacterium widely used in genetic
engineering due to its ability to transfer a segment of its DNA, known as T-DNA, into
plant genomes, resulting in the formation of galls or tumors [164]. This capability has
been harnessed for the development of transgenic plants by replacing the tumor-inducing
genes within the bacterial T-DNA with genes of interest. The transformation process
generally involves the following three stages: cloning the gene of interest into a binary
vector, co-culturing the genetically engineered Agrobacterium with plant tissues to facilitate
the infection and subsequent T-DNA transfer, and selecting and regenerating transformed
explants using plant tissue culture techniques [162]. Although Agrobacterium-mediated
transformation can be relatively slow and genotype-dependent, it is a cost-effective method
that enables stable transgene integration [165,166].
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Recently, Ochrobactrum haywardense H1-8 has been identified as an alternative for soy-
bean transformation, providing higher efficiency and marker-free transformation compared
to Agrobacterium strains [167].

Genetic transformation of the soybean, a recalcitrant species, remains challenging due
to low transformation and regeneration efficiencies [168]. Recent efforts have focused on
optimizing protocols across various cultivars through different techniques, explants, and
culture conditions. For instance, in Agrobacterium-mediated transformation, the selection
of the explant is critical as it directly influences plant–Agrobacterium interaction and the
overall transformation success. Two primary methods are employed, the cotyledonary
node and the half-seed methods, the latter using the embryonic axis attached to one
cotyledon [169,170]. Optimization strategies have included the selection of A. tumefaciens
strains, adjustments in co-culture conditions, and the development of methods to reduce
tissue oxidation (Table 2). Antioxidants and other chemical components have been tested
to reduce oxidative stress and enhance the virulence of the bacterial strain [171].

Despite significant advancements, challenges remain in regulatory frameworks, public
acceptance, and ecological considerations. Effective collaboration between researchers
and policymakers is essential to develop comprehensive regulations and foster public
understanding of genetically modified soybeans [172]. Ongoing refinement of genetic
modification techniques and in-depth exploration of the soybean genome using advanced
molecular tools are essential for future improvements.
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Table 2. Protocols for soybean Agrobacterium-mediated transformation.

Soybean Cultivar Method A. tumefaciens Strain
Co-Culture

Remarks TrF (%) Ref.
T (◦C) Pp Time (days)

A3237 CN EHA101 and EHA105 24 18:6 3 Selection with ammonium
glufosinate 3.0%. [173]

Bert CN
5–7 d LBA4404 and EHA105 25 0:24 5

Addition of sodium thiosulfate,
cysteine and DTT to the

co-culture media
16.4% [174]

Bert, Harosoy, Jack, Peking,
Thorne, Williams 79 and 82,

Clark, Essex and Ogden

CN
5–6 d EHA101 24 24:0

0:24 3 or 5
Including cysteine and DTT during

cocultivation increased the
transformation efficiency.

8.3% [168]

Thorne, Williams 79 and 82 HS EHA101 24 16:8 5
Injured explants in the CN may

present oxidative stress
reducing TF

3.8% [169]

Hefeng 25, Dongnong 42,
Heinong 37, Jilin 39, and

Jiyu 58
CN EHA105 19–28 0:24 5

Silwet L-77 (0.02%), cysteine
(600 mg/L) and low temperature

during the co-culture increased TF
11% [175]

Tianlong 1, Yuechun 03–3
and 04–5 HS EHA101 23 0:24 3–5 Similar TF among cultivars 4.5% [176]

Thorne, Williams 79 and 82 HS EHA101 24 16:8 3–5

Low TF but reproducible, it does
not require specific technical

manipulation. The use of bar gene
decreased the number of

chimeric plants.

5.0% [177]

Pk 416, Js 90–41, Hara-soy,
Co1 and Co 2

CN
7 d

LBA4404, EHA101,
and EHA105 27 0:24 5

Explants micro-wounded by
sonication and vacuum application

of vacuum
18.6% [178]

Kwangan HS EHA105
OD: 0.6–0.8 24 18:6 5

Explants wounded with a scalpel
and then sonicated for 20 s,

additionally a vacuum was applied
for 30 s

3.0% [179]
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Table 2. Cont.

Soybean Cultivar Method A. tumefaciens Strain
Co-Culture

Remarks TrF (%) Ref.
T (◦C) Pp Time (days)

Heihe 19 and 25, Heinong 37,
Ha 03–3, YC-1, YC-2,

Zhonghuang 39
HS EHA101

OD: 0.8–1.0 23 16:8 4

Cocultivation at 233 ◦C ◦C for
4 days shows better TF with the

addition of silver nitrate and
lipoic acid

14.7% [180]

Tianlong 1, Jack, Purple, DLH,
NN419, Williams 82, HZM,

NN34, and NN88–1
HS EHA101

OD: 0.6- 1 23 18:6 3–5 Addition of cysteine to de co
culture media increased TF to 36% 7–10% [181]

Maverick HS EHA101 and EHA105 24 16:8 5
Explants exposed to dehydration
show better TF. Strain EHA105

shows higher TF
18.7% [182]

Jack HS EHA105
O.D: 0.6 22 0:24 3–5

Co-culture under dehydrating
conditions can increase the

acceptance of Agrobacterium T-DNA
22.9% [163]

JS335 HS EHA105
OD: 0.6- 1.0 27 0:24 3

Application of sonication and
vacuum for 10 min results in

higher TF
38.0% [183]

CN: Cotyledonary node, HS: Half-seed; Tm: Temperature, Pp: Photoperiod (light: darkness), TF: Transformation frequency, DTT: Dithiotreitol.
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5.2. Biolistic-Mediated Transformation

Biolistic delivery is a direct genetic transformation technique that uses physical meth-
ods to introduce genetic material into plant tissues. The process involves coating gold or
tungsten particles with the DNA of interest, preparing the target plant tissues, loading
the particles into a gene gun, and subsequently propel them into the explants using high-
pressure gas in a biolistic chamber [184]. The impact of these particles on the cell membrane
causes temporary rupture, facilitating the entry of DNA into the cell. After bombardment,
the explants are placed in culture media to allow recovery and development of the explant.
One of the main advantages of biolistic transformation is its applicability across a broad
range of plant species, including those that are recalcitrant to Agrobacterium-mediated
transformation, which often relies on specific plant–pathogen interactions for success [185].

5.3. Alternative Transformation Techniques

Although Agrobacterium- and biolistic-mediated transformation are the predominant
methods for generating transgenic soybean plants, further strategies have been evalu-
ated [75]. These include techniques such as electroporation, where electrical pulses are
used to introduce DNA into protoplasts or calli, and polyethylene glycol (PEG)-mediated
transformation, which facilitates DNA uptake in protoplast, although the limiting factor
is whether the species could regenerate from these cells. Another method, silicon carbide
whisker-mediated transformation, uses DNA-coated whiskers (microfibers or microscopic
needle-like particles) to penetrate cell walls and deliver genetic material [186–188].

In addition, in planta transformation techniques have been also reported, offering a
promising alternative for the generation of genetically modified soybean plants. These in
planta methods bypass the need for in vitro culture and regeneration stages, although their
widespread use remains limited [189–192].

Additionally, methods such as liposome-mediated transfection, fiber-mediated DNA
delivery, laser-induced DNA delivery, and pollen transformation, have not yet been imple-
mented in soybeans, but represent an underexplored toolbox for the genetic improvement
of the crop [193].

6. Challenges and Perspectives in Developing Stress-Resistant Soybean Cultivars

The current impact of biotic stress on soybean production necessitates further research
to elucidate pest and disease interactions. Advanced molecular techniques, such as next
generation sequencing, marker-assisted selection, and gene editing, show promise in de-
veloping disease-resistant and pest-tolerant soybean varieties. Integrating data-driven
approaches and predictive modeling can contribute to forecast disease outbreaks and pest
infestations, facilitating timely and effective interventions. Despite these advancements,
several challenges remain in regulatory compliance, consumer acceptance, and the need
for ongoing research to enhance stress-resistant traits. Public communication and aware-
ness are essential for building trust and integrating genetically modified soybeans into
mainstream agriculture practices [194]. In this section, we describe several underexplored
elements that we believe hold great potential for improving soybean crop productivity,
including microbiome, polyploidy, and epigenetic memory.

6.1. Microbiome

The plant microbiome, particularly the rhizosphere microbial communities, plays
a crucial role in soybean growth and health by enhancing nutrient uptake, suppressing
diseases, and increasing resistance to stresses [195]. The diversity and composition of
these microbial communities are influenced by factors such as climate, soil type, plant
species, genotype, and growth stage. In soybeans, the rhizosphere is notably enriched with
arbuscular mycorrhizal fungi and symbiotic rhizobia, such as Bradyrhizobium spp., and
Bacillus spp. [196]. The symbiotic relationship between Bradyrhizobium spp. and the soybean
is essential for nitrogen fixation, a critical process for plant development. These symbiotic
interactions trigger the differentiation of the plant root and the bacteria into nodules where
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this process takes place; this process, in turn, results in the synthesis of metabolites beneficial
to the plant and the microorganisms [196,197]. The root secretes flavonoids that attract
rhizobacteria, which respond by migrating to the root through an infection thread and
secreting lipochitooligosaccharides that trigger the formation of structures that facilitate
entry of the bacteria into the plant cortex. Upon differentiation of rhizobia into specialized
bacteroid cells, activation of genes involved in nodulation occurs where atmospheric
nitrogen is fixed into ammonium, which plants can assimilate as glutamate. In return,
bacteria receive carbohydrates like malate as an energy source [198–200]. This interaction
improves plant yield and soil fertility, reducing the need for synthetic fertilizers [201].

Fungal communities in the rhizosphere, primarily from the phyla Ascomycota and
Basidiomycota, are relatively stable but are influenced by agricultural practices such as
fertilizer application and rhizobium inoculation. For instance, high-yield field soils are rich
in beneficial fungi like Trichoderma and Metarhizium—which play roles as mycoparasites
and entomopathogens—along with Bradyrhizobium elkanii and Flavobacterium, symbiotic
nitrogen fixers and plant-growth promoters. Furthermore, Corynespora cassiicola, commonly
found in roots from high-yield fields, may have a dual role as a pathogen and a fungal en-
dophyte. In contrast, low-yield fields are dominated by pathogenic fungi such as Fusarium,
Macrophomina, and free-living nitrogen-fixing bacteria like Klebsiella and Kosakonia, indicat-
ing less efficient symbiotic nitrogen fixation. Low-yield soils also show higher abundances
of potentially parasitic Allorhizobium strains and Pseudomonas species (e.g., P. chlororaphis
and P. frederiksbergensis), which exhibit both pathogenic and beneficial properties [202].

The biological processes associated with the soybean microbiome have garnered
interest due to their potential to enhance crop yield, thereby reducing the reliance on
agrochemicals and synthetic fertilizers. Inoculating soybean crops with nitrogen-fixing
bacteria not only improves yield but also helps restore soil fertility by increasing the
availability of nitrogen. Integrating the use of endophytic organisms like Bradyrhizobium
spp. into soybean cultivation strategies is crucial for boosting production and enhancing
plant defense against stress conditions [196].

6.2. Polyploidy

Polyploidy, characterized by the presence of multiple sets of chromosomes in an
organism, is a prevalent evolutionary trait in plants, especially in angiosperms. The
soybean has undergone lineage-specific whole-genome duplication events, before and after
its divergence from the common bean ancestor, maintaining subgenomic stability during
polyploidization and subsequent slow diploidization. As a result of this slow diploidization
process, which occurred more than 10 million years ago, approximately 75% of the genes in
the soybean genome are present in multiple copies [203].

Ancient and recent polyploidization events have contributed to the enhancement
of agronomic traits, such as seed size, pod number, and oil content [204]. Polyploidy in
the soybean is associated with increased yield potential, improved stress tolerance, and
diversification of metabolic pathways, which collectively bolster the crop adaptability to
environmental stresses like salinity and drought [205]. Harnessing polyploidy in soybean
breeding offers significant potential for developing high-yielding cultivars with enhanced
resilience to biotic and abiotic stresses. Advanced genomic tools, such as high-throughput
sequencing and genome-wide association studies, are accelerating the identification of key
genes associated with desirable traits in polyploid soybeans [206]. However, challenges
remain in fully exploiting the polyploidy potential due to the complexity of its genetic
and epigenetic regulation. Understanding the interactions between polyploidy and envi-
ronmental factors is essential for developing soybean cultivars that can thrive in diverse
agroecological settings. The continued integration of polyploidy into breeding programs
promises the development of superior soybean cultivars with improved adaptability, nutri-
tional quality, and sustainability meeting the demands of future agricultural production.
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6.3. Epigenetics and Memory

Epigenetic modifications, such as DNA methylation and histone modifications play
a crucial role in regulating stress memory in plants. These modifications enable plants
to enhance their adaptative response to recurrent stress by inducing physiological and
morphological changes that can persist for several generations (although how many are still
debated) contributing to phenotypic plasticity [83]. This plasticity has been taken advantage
of for crop improvement, including soybean cultivation. Recent advances in sequencing and
genomic technologies have facilitated the identification and characterization of epigenetic
changes that occur in response to environmental changes, providing insights into their
regulatory mechanisms and impact on plant development [207]. Current methods to induce
beneficial epigenetic variations (histone modifications, DNA methylation, and production
of small-interfering RNAs) include RNA interference, CRISPR/Cas systems, transcription
activation-like effectors (TALEs), and chemical treatments with compounds like azacytidine
or zebularine [207–209]. These epigenetically modified lines may provide advantages in
terms of productivity or increased response to biotic and abiotic stress for some generations,
particularly in contexts where the use of transgenic organisms is restricted and can be
integrated into traditional breeding programs to enhance genetic diversity and improve
crop resilience.

7. Concluding Remarks

The economic significance of soybeans remains unparalleled, given their pivotal role
in global trade, industrial applications, and human nutrition. As the global demand for
sustainable and plant-based alternatives continues to rise, the strategic harnessing of soy-
bean potential is crucial for fostering economic prosperity, environmental sustainability,
and societal well-being. Continuous investment in research, technology, and market di-
versification is imperative to fully unlock the economic potential of soybean cultivation,
ensuring its ongoing contribution to global economic development and human welfare.
Soybean genetic transformation exemplifies the transformative potential of biotechnology
in revolutionizing agriculture. This innovation addresses key challenges in food security
and sustainability while offering a promising future for global agriculture. As research
and development in this field progress, continued collaboration between scientists, pol-
icymakers, and stakeholders is critical to harness the full potential of soybean genetic
transformation for the benefit of society and the environment.

Genetic transformation has enabled the development of soybean cultivars with en-
hanced resistance to pests and diseases, thereby reducing the reliance on chemical pesticides.
The incorporation of genes conferring tolerance to specific herbicides has facilitated effec-
tive weed management, leading to improved crop yields and reduced production costs.
Furthermore, genetic modifications to enhance nutritional quality have resulted in soybean
cultivars with higher protein content, altered fatty acid profiles, and reduced levels of
antinutritional factors, thereby improving human and animal nutrition. Despite the remark-
able advancements, challenges remain such as regulatory constraints, public acceptance,
and potential environmental impacts. Balancing innovation and biosafety are critical for
the widespread adoption of genetically modified soybean cultivars. Further research is
required to enhance the efficiency of genetic transformation techniques and to explore the
full potential of the soybean genome to address evolving agricultural and nutritional needs.

The future of soybean agriculture hinges on ongoing research and development to
improve important traits such as drought tolerance, pest and disease resistance, as well
as better seed quality. Efforts to combine these traits into a single cultivar are expected
to produce more resilient and productive soybean cultivars. Additionally, as climate
change continues to impact agriculture, developing new soybean cultivars that can thrive
in shifting environmental conditions is imperative.
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