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Abstract: This investigation aims to develop an angular stiffness sensor intended for measuring dental
implant stability in bone. The sensor hardware included a tiny eccentric motor and an accelerometer
to measure a flex constant of an implant with its abutment. The sensor software included a mechanics-
based model to convert the flex constant to angular stiffness at the implant/abutment junction to
indicate the stability. The sensor’s accuracy and effectiveness are demonstrated through use of
Sawbones slab models that mimic a mandibular premolar section. The models include a Branemark
Mk III implant inserted into Sawbones slabs of 5 different densities with a locator abutment. An
incremental insertion torque was first recorded while the implant was placed in the Sawbones models.
Then benchtop experiments were conducted to measure resonance frequencies and angular stiffness.
Results indicated that angular stiffness increased with Sawbones density, showing high correlation
with the measured resonance frequency (R = 0.977) and the incremental insertion torque (R = 0.959).
Finally, accuracy of the angular stiffness sensor is calibrated in light of the resonance frequency.
Angular stiffness scores 99% and 95% accuracy for Sawbones models mimicking medium cancellous
bones with and without a cortical layer, respectively.

Keywords: dental implants; stability; flex constants; angular stiffness; finite element analysis

1. Introduction

Dental implant stability refers to the immobility of a dental implant in its surrounding
alveolar bone [1,2]. A strong functional and structural connection between the implant and
the bone results in a high degree of immobility. Therefore, stability has become a notion to
indicate successful osseointegration [1,3]. High implant stability at different stages of an
implant treatment is a vital sign indicating well-being of the implant [1,4,5].

There are strong needs for objective and reliable implant stability measurements
because of their potential benefits. Once implant stability becomes a scientific and accurate
measurement, it will help dental professionals make a better assessment of an implant’s
health, minimize the risk of complications and failures, assure quality and smooth transition
to prosthodontists for crown placement, and identify appropriate timing to crown high-
risk patients (e.g., ones with diabetes or osteoporosis). For patients, accurate stability
measurements can reduce their anxiety and fears toward implant failures, provide peace
of mind, and enhance their experience. Despite the needs, accurate and objective implant
stability measurements are yet to be found.

Currently, there are two schools of thought behind stability measurements: impact
duration and resonance frequency analysis (RFA). Periotest is a representative product that
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measures impact duration to infer stability. Periotest operates by mechanically tapping
a small mass on an abutment or a crown. Then it measures the contact duration of the
tap between the mass and the abutment/crown. Periotest further hypothesizes that the
contact duration indicates implant stability. In view of known mechanics principles, contact
duration strongly depends on the restitution coefficients of the two tapping surfaces.
Contact duration is remotely related to implant stability, which is the bonding strength
between the implant and its surrounding bone [6]. Measurements from Periotest are often
very scattered, rending accurate measurements extremely difficult [6].

RFA is a well-known method to measure implant stability [1,3,5,7]. The mechanics
behind RFA are straightforward. The structural and functional connection resulting from
osseointegration changes stiffness at the bone–implant interface, thus affecting resonance
frequencies of the bone–implant system. By monitoring a resonance frequency, one can
deduce stability changes hoping to indicate the progress of osseointegration. Osstell and
Penguin are two RFA-based products available on the market for clinical use [8]. After
the resonance frequency is measured, it is converted to an implant stability quotient (ISQ)
to indicate stability through an undisclosed algorithm. The effectiveness and accuracy
of ISQ measurements are mixed in the literature [9,10]. Some researchers report that ISQ
successfully indicates implant stability [5,11–13] but others do not [14–20]. Clinically, RFA
is more successful in monitoring the stability change, instead of the stability itself, for a
singular implant on a single patient over time [21,22].

Recently, angular stiffness (unit: N·m) at the neck of an implant in bone has demon-
strated a high correlation to implant stability in benchtop lab tests [23–25]. Conceptually,
angular stiffness is the ability of the bone to hold the implant against bending at the im-
plant/abutment junction [23–25]. Higher bone–implant bonding strength implies higher
ability to withstand bending [1], thus resulting in higher angular stiffness. Since angular
stiffness is a real physical quantity, not an artificial index, it can be measured using a stan-
dardized specimen via a standardized operating procedure. Therefore, angular stiffness
measurements can be repeated and verified by anyone and anywhere. That means angular
stiffness measurements can be calibrated, traced, and verified scientifically, independently,
and objectively.

Despite these promising results, a rigorous angular stiffness sensor is not yet available
to measure stability of dental implants. Although an angular stiffness sensor was shown
feasible in [25], there was no scientific procedure to calibrate such a sensor to ensure its
accuracy. Moreover, effectiveness of the angular stiffness sensor must be (but not yet)
proven in a manner acceptable to dental professionals. Motivated by these needs, this
investigation aims to develop one such sensor with the needed accuracy and effectiveness
by addressing the following challenges. First of all, this paper discloses a rigorous and
systematic way to calibrate the angular stiffness sensor by using a resonance frequency
that is independently measured to establish accuracy. Next, this paper demonstrates the
effectiveness of the angular stiffness sensor by using generally accepted principles in
implant dentistry, such as higher bone density or a higher insertion torque that implies
higher stability [26,27]. Experimental results in this paper indicate that higher bone density
and higher insertion torque do lead to higher angular stiffness measured, thus proving the
effectiveness of the angular stiffness sensor to indicate implant stability.

2. Materials and Methods

Direct measurements of angular stiffness are challenging for several reasons. First,
the definition of angular stiffness requires a moment divided by an angle, both of which
are difficult to measure directly. Second, angular stiffness is a static property, whereas
a static load and a small static displacement are difficult to apply and measure in the
limited space of an oral cavity with a lot of rigid-body motion (e.g., movement of mandible).
Therefore, an indirect measurement is used in this study to obtain angular stiffness instead.
First, a low-frequency sinusoidal force is applied, and a corresponding sinusoidal accel-
eration is measured to form a displacement-to-force ratio (aka “flex constant”). The flex
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constant is then converted to angular stiffness using a mechanics-based model. When the
frequency is low enough (sufficiently below the resonance frequency), the angular stiffness
measured via this “dynamic” setting will resemble the measurements in a “static” environ-
ment [25]. Implementation of the indirect angular stiffness measurements is explained in
detail as follows.

2.1. Test Models

The test models consisted of five synthetic bone blocks (Sawbones (Vashon Island, WA,
USA)) with densities of 40-PCF (0.64 g/cm3), 30-PCF (0.48 g/cm3), 20-PCF (0.32 g/cm3),
15-PCF (0.24 g/cm3), and 40/20-PCF, respectively. All the test models, except the 40/20-
PCF model, had dimensions 34 × 10 × 40 mm3; see Figure 1b. The 40/20-PCF model had
dimensions 34 × 10 × 42 mm3 because it had a 2 mm 40-PCF laminate on top of a 40 mm
20-PCF block. The dimensions of the Sawbones were chosen to mimic a premolar section
of a mandible (Figure 1a). The longitudinal side with 34 mm mimicked the mesial-distal
direction, while the thickness side with 10 mm mimicked the buccal-lingual direction.
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Figure 1. Sawbones test models. (a) The test models are designed to mimic a premolar section of
a mandible model. (b) The test model has dimensions 34 × 10 × 40 mm3. The longitudinal side
with 34 mm mimics the mesial-distal direction, while the thickness side with 10 mm mimics the
buccal-lingual direction. The model is clamped such that only 20 mm height is above the clamp.
(c) In angular stiffness tests, the test model is clamped in a vise and an angular stiffness sensor set is
press-fit onto a locator abutment.

Branemark Mk III implants (Nobel Biocare, Switzerland), regular platform, 4 mm in
diameter and 11.5 mm in length, were placed at the center of the 34 × 10 mm2 surface for
each test model; see Figure 1b. The following implantation protocol was adopted in placing
all the implants.
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Step 1. Used a ∅ 2.3 mm round bur at 800 rpm to create a small spherical cavity at the
center of the 34 × 10 mm2 surface to mark the implantation site.

Step 2. Used a ∅ 3.2 mm pilot drill at 500 rpm to create a preparation depth of 11.5 mm.
Step 3. Placed the implant by applying a medium pressure. Started the implant

placement with a torque of 5 N·cm. If the torque was not enough to advance the implant,
increase the torque by an increment of 5 N·cm until the threaded portion of the implant
went into the Sawbones test model completely. Recorded the final torque needed. The final
torque recorded is defined as the “incremental insertion torque” for the rest of the paper. It
is the minimal insertion torque needed for an implant to seat in a test model.

After the implant was placed, a locator abutment with a 4.0 mm platform diameter
and 6.0 mm cuff height (Zest, Burbank, CA, USA) was tightly attached onto the implant by
a hand torque. Then the test models were clamped partially in vise (unclamped volume
10 × 20 × 34 mm3) for subsequent tests; see Figure 1b for schematics and Figure 1c for
angular stiffness measurements.

2.2. Resonance Frequency Measurements

As a reference, resonance frequencies of each Sawbones test model (i.e., Sawbones–
implant–abutment assembly) were first measured using the following 3-step protocol [28].
This is a well-established procedure in modal testing. First, an impact hammer applied an
impulsive force laterally (7–10 N) to the locator abutment. Next, a laser Doppler vibrometer
(LDV) measured the velocity of the locator abutment. Finally, the force and velocity
were processed by a spectrum analyzer to obtain a frequency response function (FRF).
The frequency at which a sharp peak appeared in the FRF was recorded as a resonance
frequency. Since the Sawbones test models presented multiple resonance frequencies, the
lowest one was defined as “the resonance frequency” for the rest of the paper. This vibration
mode corresponds to the bending of the test model in the buccal-lingual direction (along
the 10 mm side). Since this resonance frequency is measured entirely from experiments, it
is denoted as ωExp. It also serves as an independent reference for calibration of the angular
stiffness sensor.

2.3. Angular Stiffness Sensor via Accelerometer

The angular stiffness sensor is a model-based measurement tool supported by rigorous
mechanics principles. Angular stiffness sensing is a two-step process: measurement (via
hardware) and extraction (via software). In the hardware measurement step, a known
force is first applied to an implant via its abutment. Then the motion of the abutment is
measured to obtain a displacement–force ratio, also known as a “flex constant” [29]. In
the software extraction step, a finite element model is created to process the measured flex
constant so as to extract angular stiffness of the bone–implant–abutment system. Setups of
the hardware measurement and software extraction for the five Sawbones test models are
explained in detail as follows.

Step 1. Measuring Flex Constants. Figure 2 shows the angular stiffness sensor assembly
that was built to measure the flex constants. The sensor assembly included a motor, an
accelerometer (aka g-sensor), a sensor housing, a set of flying wires, and a connector to
a controller with a power source. The sensor housing was made of plastics and was 3-D
printed. The motor and the accelerometer were assembled and snugly seated in the sensor
housing. The housing also had a central hole, through which the sensor assembly was
pressed-fit onto the locator abutment; see Figure 1c. Also, the axial location of the sensor
assembly was measured and recorded for later use; see Table 1. The axial location is defined
as the axial distance from the top surface of the Sawbones model to the center of the motor
and accelerometer, respectively.
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Figure 2. The sensor assembly built to measure the flex constants comprised a brushless DC motor, a
MEMS-based accelerometer (aka g-sensor), a sensor housing, a set of flying wires, and a connector to
a controller and a power source. The motor and the accelerometer were seated snugly in the housing.
Through a central hole of the housing, the angular stiffness sensor set was press-fit onto the locator
abutment. The motor generated a known eccentric force, gently wiggling the locator abutment. The
accelerometer measured the acceleration of the locator abutment. The measured acceleration was
forwarded to the controller for post-processing to extract angular stiffness.

Table 1. Axial locations of the sensor assembly and LDV are slightly different for each test model.
Also, the motor and the accelerometer are not at the same level. The axial location is defined as the
axial distance from the top surface of the Sawbones model to the center of motor, accelerometer, and
LDV spot, respectively.

Sawbones Density
(PCF) Motor Location (mm) Accelerometer

Location (mm) LDV Location (mm)

15 8.92 9.62 2.78

20 8.75 9.45 2.87

40/20 8.42 9.12 2.55

30 8.60 9.30 2.85

40 9.02 9.72 3.60

The motor was a brushless DC coin vibrator motor (Vybronics, VW0825AB001G,
∅ 8 mm × 2.5 mm). The motor generated an eccentric force (typically in the frequency
range of 250–350 Hz depending on the voltage and test models used) given by

F = mrω2 (1)

where m was the eccentric mass of the motor, r was the eccentricity of the mass, and
ω was the motor speed. In particular, m and r were measured from the motor, and ω
was measured through the acceleration. Therefore, the exact force acting on the locator
abutment was identified. The unbalance of the motor used was mr = 8.5 × 10−8 kg·m. The
unbalance was reverse-engineered and also calibrated using a proof mass.

The accelerometer was a MEMS-based accelerometer (Bosch Sensortec, Digital triaxial
acceleration sensor BMA456). It was surface-mounted onto a rigid printed circuit board
(PCB), with an overall footprint roughly 3.0 mm × 3.0 mm. As the eccentric motor rotated,
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the measured acceleration was sinusoidal with an amplitude a and a frequency ω. Therefore,
the displacement δ at the locator abutment was found as

δ = a/ω2 (2)

Figure 3a shows the controller that powered the motor and the accelerometer. The
controller was battery-powered and had a voltage adjustment knob to control the motor
speed. A flex cable connected the controller and the sensor assembly to power the motor
and accelerometer. Inside the controller (Figure 3b), an Arduino micro-processor (Arduino
Nano 33 BLE) was programmed to read the measured acceleration digitally via the flex
cable. The Arduino micro-processor then transferred the measured acceleration to a mobile
app via Bluetooth or to a computer via a USB for data processing.
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Figure 3. The controller setup. (a) The controller was battery-powered and had a voltage adjustment
knob to control the motor speed. A flex cable connected the controller and the sensor assembly to
power the motor and accelerometer. (b) Inside the controller, an Arduino micro-processor was pro-
grammed to read the measured acceleration digitally via the flex cable. The Arduino micro-processor
then transferred the measured acceleration via Bluetooth or a USB for subsequent data processing.

The operating procedure to measure the flex constants was straightforward. First, the
motor generated a known eccentric force F (cf. Equation (1)), gently wiggling the locator
abutment whose acceleration a was measured by the accelerometer. For the data processing
afterwards, a nonlinear regression algorithm [25] was used to extract the frequency ω
from the measured acceleration a. According to Equations (1) and (2), an experimentally
measured displacement–force ratio (δ/F)Exp was calculated via

(δ/F)Exp =
a

mrω4 (3)

Since the motor spins at a frequency much lower than the resonance frequency of the
test model, the measured displacement–force ratio is almost the same as the flex constant
found in [29] under a static load. For the rest of the paper, “displacement–force ratio”
and “flex constant” will be used interchangeably to denote δ/F, which could be measured
experimentally or predicted via a finite element model in Step 2 below.

Step 2. Extracting Angular Stiffness. A finite element model simulating the test models
is created to convert the measured flex constant (δ/F)Exp to angular stiffness. This is the
software extraction step of the angular stiffness sensing. The detailed process is explained
as follows.

Step 2.1: The Finite Element Model. Figure 4 shows the structure of the finite element
model. The finite element model comprised a Sawbones portion, an implant portion, and a
locator abutment portion, reflecting the test model, implant, and locator abutment used in
the experiments, respectively. To form the complete finite element model, the three portions
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were assembled together. Moreover, the lower 20 mm region was fixed to reflect the clamp
from the vise (cf. Figure 1c).
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abutment portion. The three portions were assembled together and the lower 20 mm region was
fixed to form the finite element model. The experimentally measured displacement–force ratio
(δ/F)Exp at the abutment was then fed into the finite element model to estimate local stiffness of the
Sawbones, which, in turn, generated the angular stiffness of the bone–implant–abutment system at
the implant–abutment junction.

Figure 5 shows how the finite element model was used to generate a theoretical flex
constant (δ/F)FEA via a static analysis. First, a force F was applied to the locator abutment
at the location of the motor, whereas the displacement δ was calculated at the location
of the accelerometer (cf. Table 1). The ratio of the displacement δ to the force F was the
flex constant (δ/F)FEA, which depended on Young’s modulus E of the Sawbones portion.
Further, the Young’s modulus E was determined by adjusting the value of E such that
the calculated flex constant (δ/F)FEA matched the measured flex constant (δ/F)Exp. In this
regard, the Young’s modulus E obtained was an equivalent modulus that incorporated
(and homogenized) all stiffness effects, such as Sawbones’ elasticity, clamping interfaces at
the vise, interference between the implant and the Sawbones slab, and internal stresses of
the Sawbones slab [25].
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Figure 5. Figure 5 shows how the finite element model was used to generate the flex constant via
a static analysis. First, a force F was applied to the locator abutment at the location of the motor,
whereas the displacement δ was calculated at the location of the accelerometer. Then the ratio of the
displacement δ to the force F gave the calculated flex constant (δ/F)FEA, which depended on Young’s
modulus E of the slab.

Step 2.2: Conversion to Angular Stiffness. With the Young’s modulus E found in
Step 2.1, a moment M was applied instead at the implant–abutment junction as shown in
Figure 6a to calculate the corresponding angular stiffness. As a result of the moment M,
the implant and the Sawbones slab deformed and rotated; see Figure 7. Every point in the
implant and the surrounding slab, however, rotated differently. As shown in Figure 7, let
θtop be the angle of rotation at the top of the implant (i.e., implant–abutment junction) where
the moment M was applied. To determine θtop, let V1–V2 be a segment of the implant
center. The rotation of segment V1–V2 was θtop. Similarly, let θbottom be the angle of rotation
at the bottom region of the implant. Also, let H1–H2 be a segment of the Sawbones slab in
the bottom region of implant. The rotation of segment H1–H2 defines θbottom.
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Figure 6. Determining angular stiffness kθ . (a) A moment M was applied at the implant–abutment
junction. The implant and the Sawbones slab deformed and rotated accordingly. Let θtop be the
angle of rotation at the top of the implant (i.e., implant–abutment junction). (b) Let θbottom be
the angle of rotation at the bottom region of the implant. The angular stiffness was defined as
kθ = M/

(
θtop − θbottom

)
. To better represent θbottom, four planes at the bottom region were chosen.

Their averaged angle of rotation produced kθ .



Sensors 2024, 24, 6959 9 of 18

Sensors 2024, 24, x FOR PEER REVIEW 9 of 18 
 

 

angle of rotation at the top of the implant (i.e., implant–abutment junction). (b) Let 𝜃bottom be the 

angle of rotation at the bottom region of the implant. The angular stiffness was defined as 𝑘𝜃 =

𝑀/(𝜃top − 𝜃bottom). To better represent 𝜃bottom, four planes at the bottom region were chosen. Their 

averaged angle of rotation produced 𝑘𝜃. 

 

Figure 7. The moment 𝑀 causes the implant and the Sawbones slab to deform and rotate. Every 

point in the implant and the surrounding slab rotates differently. 𝜃top and 𝜃bottom are the angle of 

rotation at the top of the implant (i.e., implant–abutment junction) and the bottom region of the 

implant. V1-V2 and H1-H2 are segments of the implant centerline and Sawbones slab. The rotation 

of segment V1-V2 defines 𝜃top, while the rotation of segment H1-H2 defines 𝜃bottom. 

After the deformed coordinates of segments V1-V2 and H1-H2 were obtained from 

the finite element analysis of Figure 6a, Equation (4) was used to determine angular dis-

placement 𝜃. Lastly, the angular stiffness 𝑘𝜃 at the implant–abutment junction was de-

fined as 

𝑘𝜃 ≡
𝑀

𝜃
=

𝑀

𝜃top − 𝜃bottom

 (5) 

In the bottom region of the implant, the angle of rotation of segment H1-H2 varied 

considerably point by point thus making angular stiffness 𝑘𝜃 unnecessarily sensitive via 

Equation (5). To better represent 𝜃bottom, an averaged angle of rotation from four sections 

was used; see Figure 6b. The four sections A1-A2 to D1-D2 corresponded to 90%, 80%, 

70%, and 60% of the implant length. The angle of rotations of these four planes were av-

eraged to obtain 𝜃bottom. 

2.4. Confirming Angular Stiffness Measurements via LDV 

To confirm the accuracy of the acceleration measurements, an LDV was also used to 

measure the velocity 𝑣 of the abutment as a reference in conjunction with the sensor as-

sembly. Specifically, a laser beam from the LDV was projected laterally onto the locator 

abutment between the sensor assembly and the Sawbones model as shown in Figure 1c. 

The laser beam was oriented such that it was parallel to the sensor assembly to give con-

sistent measurements thereof. The axial location of the LDV measurements (i.e., axial dis-

tance from the laser spot and the top surface of the Sawbones model) was also shown in 

Table 1. Once the motor frequency 𝜔 was found, the velocity 𝑣 was converted to dis-

placement 𝛿 via 

Abutment

Implant

Sawbones

Slab

q top

q bottom

Figure 7. The moment M causes the implant and the Sawbones slab to deform and rotate. Every
point in the implant and the surrounding slab rotates differently. θtop and θbottom are the angle of
rotation at the top of the implant (i.e., implant–abutment junction) and the bottom region of the
implant. V1–V2 and H1–H2 are segments of the implant centerline and Sawbones slab. The rotation
of segment V1–V2 defines θtop, while the rotation of segment H1–H2 defines θbottom.

Then, an implant angular displacement was defined as

θ = θtop − θbottom =
π

2
− cos−1

 →
V1V2·

→
H1H2

|V1V2||H1H2|

 (4)

After the deformed coordinates of segments V1–V2 and H1–H2 were obtained from
the finite element analysis of Figure 6a, Equation (4) was used to determine angular
displacement θ. Lastly, the angular stiffness kθ at the implant–abutment junction was
defined as

kθ ≡ M
θ

=
M

θtop − θbottom
(5)

In the bottom region of the implant, the angle of rotation of segment H1–H2 varied
considerably point by point thus making angular stiffness kθ unnecessarily sensitive via
Equation (5). To better represent θbottom, an averaged angle of rotation from four sections
was used; see Figure 6b. The four sections A1-A2 to D1-D2 corresponded to 90%, 80%, 70%,
and 60% of the implant length. The angle of rotations of these four planes were averaged
to obtain θbottom.

2.4. Confirming Angular Stiffness Measurements via LDV

To confirm the accuracy of the acceleration measurements, an LDV was also used
to measure the velocity v of the abutment as a reference in conjunction with the sensor
assembly. Specifically, a laser beam from the LDV was projected laterally onto the locator
abutment between the sensor assembly and the Sawbones model as shown in Figure 1c. The
laser beam was oriented such that it was parallel to the sensor assembly to give consistent
measurements thereof. The axial location of the LDV measurements (i.e., axial distance
from the laser spot and the top surface of the Sawbones model) was also shown in Table 1.
Once the motor frequency ω was found, the velocity v was converted to displacement δ via

δ = v/ω (6)
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The displacement δ from the LDV was then used to obtain an experimentally measured
flex constant (δ/F)Exp, from which a Young’s modulus E was extracted. Based on the
extracted Young’s modulus E, an angular stiffness kθ was obtained using the same Step 2.1
and Step 2.2 above.

2.5. Sensitivity Study

To study how sensitive the finite element model would affect the extracted angular
stiffness, a second finite element model was introduced; see Figure 8. It included detailed
modeling of the threads, whereas the first one did not (cf. Figure 4). In particular, the
outside diameter of the threads was 4 mm (same as the cylinder diameter). As a result,
the threaded implant had a smaller volume than the cylindrical implant. To investigate
the effects of the volume reduction, two versions of the threaded model were considered.
In the first version, the threaded implant had the same mass as the cylindrical implant
in Figure 4. In the second version, the threaded implant had the same density as the
cylindrical implant in Figure 4. In the first version, the transition from the cylindrical
implant to the threaded implant only affected the stiffness of the implant. In the second
version, the transition affected both the stiffness and inertia of the implant. Both versions
of the second finite element model were then used to convert the experimentally measured
flex constant (δ/F)Exp into angular stiffness kθ using the procedures explained in Steps 2.1
and 2.2.
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Figure 8. Effect of the finite element model on angular stiffness kθ . A second finite element model
was created with detailed modeling of the threads. The rest was identical to the first finite element
model. The second model then converted the experimentally measured flex constant (δ/F)Exp into
angular stiffness kθ using the procedures explained in Steps 2.1 and 2.2.

3. Results
3.1. Angular Stiffness Measurements via Accelerometer

Figure 9 presents the measured angular stiffness of the five test models versus the
measured resonance frequency. The bottom abscissa is the resonance frequency ωExp of
the test models (i.e., the resonance frequency measured by the hammer and LDV without
the angular stiffness sensor seated on the locator abutment as a reference). Also labeled
in Figure 9 is the Sawbones density associated with each resonance frequency (see the top
abscissa). According to Figure 9, the measured angular stiffness values increase as the
resonance frequency (and also the bone density) increase, with a high linear correlation
coefficient (RACC = 0.977).
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Figure 9. The measured angular stiffness of the test models versus the resonance frequency. The
bottom abscissa is the resonance frequency of the test models, which increases as the bone density
increases (as shown in the top abscissa). The measured angular stiffness values have high correlation
with the resonance frequency (R = 0.977).

Figure 10 shows the angular stiffness (converted from the measured flex constant) of
the test models versus the incremental insertion torque measured from each test model.
The indirectly measured angular stiffness values have high correlation with the incremental
insertion torque (RACC = 0.959). Note that the incremental insertion torque measurements
had a coarse resolution and therefore less accuracy than the resonance frequency measure-
ments. It is natural that the correlation coefficient is slightly smaller for the incremental
insertion torque.
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Figure 10. The measured angular stiffness of the test models versus the incremental insertion torque.
The abscissa is the incremental insertion torque of the test model, which increases as the bone density
increases. The measured angular stiffness values have high correlation with the incremental insertion
torque (R = 0.959).
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Table 2 compares the measured angular stiffness (in N·m), displacement–force ratio (in
µm/N), and resonance frequencies (in Hz) for various Sawbones models under the same
clamping force (These are the data supporting Figures 9 and 10). The incremental insertion
torque (in N·cm) is also listed for reference. The angular stiffness and displacement–force
ratio appear as an average plus and minus a half-range. The small range values indicate
that the data are not scattered.

Table 2. Comparison of the measured angular stiffness (N·m), displacement–force ratio (µm/N),
and resonance frequencies (in Hz) for various Sawbones materials under the same clamping force.
The incremental insertion torque (in N·cm) is also listed for reference. The angular stiffness and
displacement–force ratio appear in the form of an average plus and minus a half-range (out of
5–10 measurements). The small range values indicate that the data are not scattered.

Sawbones Density
(PCF)

Incremental
Insertion Torque

(N·cm)

Resonance
Frequency (Hz)

Angular Stiffness
(N·m)

Displacement-
Force Ratio

(µm/N)

15 5 1664 62.47 ± 0.59 25.43 ± 0.44

20 10 1860 88.36 ± 0.40 15.80 ± 0.05

40/20 15 1870 113.38 ± 0.56 11.93 ± 0.16

30 45 2572 166.08 ± 1.10 5.62 ± 0.09

40 70 2748 186.28 ± 0.60 4.69 ± 0.04

3.2. Angular Stiffness Measurements via LDV

Figure 11 compares angular stiffness values measured from the accelerometer and
from the LDV. The abscissa is the insertion torque. The two measured angular stiffness
values are very close. The angular stiffness values measured from the LDV also have
high correlation with the incremental insertion torque (R = 0.967). The high R values and
close agreement of the accelerometer and the LDV measurements prove the accuracy of
the accelerometer in measuring angular stiffness. The close agreement of the LDV and
accelerometer measurements also imply that PCB’s inertia and stiffness have negligible
effects on the measurement accuracy.
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Figure 11. The angular stiffness measured from the accelerometer and the LDV. The abscissa is the
insertion torque. The angular stiffness values measured from the LDV have slightly higher correlation
with the incremental insertion torque (RLDV = 0.967). The high R values from the accelerometer and
the LDV prove the accuracy of the accelerometer.



Sensors 2024, 24, 6959 13 of 18

3.3. Sensitivity Study Results

Table 3 compares angular stiffness kθ extracted via the two finite element models (cf.
Figures 4 and 8) using the same set of measured flex constants (δ/F)Exp. Table 3 compares
angular stiffnesses extracted through the cylindrical and threaded implant models. There
are several things worth mentioning. First of all, the threaded implant models have a
smaller implant volume, thus a smaller angular stiffness (about 20–30% less) than that
obtained from the cylindrical implant model. Note that the difference does not mean that
one model gives better results than the other. It only means that two models give two
different readings, just like a temperature can be read in Celsius or in Fahrenheit. Second,
when a threaded model is used, the same-mass version and the same-density version result
in the same angular stiffness. This is not surprising, because angular stiffness is a static
property determined entirely by the geometry and elasticity and not by the inertia. Lastly,
the results indicate that diameter of the implant affects the angular stiffness significantly.
Note that the angular stiffness is an overall representation of the elasticity of the implant,
the surrounding Sawbones, and the interface thereof. Any reduction in the elasticity of the
implant, the surrounding Sawbones, or the interface will decrease the angular stiffness.

Table 3. Comparison of angular stiffness and resonance frequency obtained by two finite element
models. The first model simulates the implant as a cylinder, while the second model simulates the
implant with threads. Moreover, the threaded model has two versions. One has the same implant
mass, but the other has same implant density.

Sawbones
Density

(PCF)

Resonance Frequency ωFEA (Hz) Angular Stiffness (N·m)

Cylinder
Model

Thread Model
Cylinder

Model

Thread Model

Same Mass Same
Density Same Mass Same

Density

15 1451 1467 1506 62.47 49.34 49.34

20 1762 1789 1831 88.36 68.15 68.15

40/20 1862 1889 1929 113.38 87.09 87.09

30 2807 2886 2944 166.08 123.09 123.09

40 2971 3075 3128 186.28 138.12 138.12

4. Discussion

The rigor and accuracy of the measured angular stiffness are discussed in depth
as follows.

4.1. Rigor of Angular Stiffness Measurements

Pagliani et al. have shown that a flex constant has a significant inverse correlation to
ISQ [29]. In their study, a lateral force of 25 N was applied on a custom-made abutment at
10 mm above the abutment–implant junction, and the displacement of the abutment in the
lateral direction was measured at the same height. Then a flex constant was obtained by
calculating the ratio of the measured displacement to the known applied force. When the
measured flex constant was 25µm/N, the corresponding ISQ was roughly 55. When the
flex constant was about 4 µm/N, the corresponding ISQ was roughly 60–65 [29].

In the current study, the motor and accelerometer were 8.92 mm and 9.62 mm above
the abutment–implant junction, respectively, for the 15-PCF test model (cf. Table 1). The
corresponding displacement–force ratio was 25.43 ± 0.44 µm/N (cf. Table 2). For the
30-PCF test model, the motor and the accelerometer were 8.60 mm and 9.30 mm above the
abutment–implant junction, respectively (cf. Table 1). The corresponding displacement–
force ratio was 5.62 ± 0.09 µm/N (cf. Table 2). The displacement–force ratios measured in
the current study are totally comparable with the flex constants measured in [29].

There are two major issues of using a flex constant to indicate stability. First, the flex
constant changes when the loading point and measuring point are changed. For example,
an implant in a Sawbones premolar model (cf. Figure 1c) has a fixed level of stability, but
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the implant can present different flex constants if the loading point or the measuring point
varies. Second, even if the loading point and the measuring point are fixed, the flex constant
implies different levels of stability when the model geometry changes, for example, from
a Sawbones premolar model (cf. Figure 1c) to a real mandible or a bovine bone. In other
words, there is a missing link between the flex constants and the implant stability.

The missing link is the mechanics-based model introduced in the current study to
extract the angular stiffness at the implant–abutment junction. There are two unique
features here to make this approach rigorous and powerful. First, the mechanics-based
model accommodates the changes in the loading point, the measuring point, and the model
geometry used. When the ratio (δ/F)Exp is measured from a Sawbones premolar model
(cf. Figure 1c), the mechanics model should replicate the Sawbones premolar model (cf.
Figure 4). When the ratio (δ/F)Exp is measured from a mandible, the mechanics model
should replicate the mandible [24]. With the mechanics-based model, one can then convert
a flex constant to indicate stability of a dental implant in any use case.

The second unique feature is the use of angular stiffness. With angular stiffness, all
flex constants converge to a single physical quantity—through use of the mechanics-based
model—to indicate implant stability. This is rather significant, because it has long been
an unsolved issue that “implant stability per se has not been defined using any other
quantity” [30]. As a result, implant stability is not indicated by a physical quantity that can
be calibrated and traced to serve as a reference.

With the mechanics-based model, implant stability is now defined through use of
angular stiffness. Since angular stiffness is a physical quantity, it can be measured using a
standardized specimen and a standardized operating procedure once a rigorous mechanics
model is established. Therefore, angular stiffness measurements can be repeated and
verified by anyone and anywhere. That means angular stiffness measurements can be
calibrated, traced, and verified scientifically, independently, and objectively across various
models and users. It is not an artificial nor an empirical index. Once angular stiffness
measurements are calibrated on a standardized model, they can be transferred to any other
models (e.g., mandible and maxilla) by using corresponding mechanics models to extract
the angular stiffness.

4.2. Calibration of Angular Stiffness Sensor

The close agreement between the accelerometer and LDV shown in Figure 11 only
proves that the acceleration measurements are accurate. If the finite element models are
not accurate, the extracted angular stiffness will not be accurate either. But, what is the
accuracy of the finite element models? How can the accuracy of different finite element
models be evaluated?

One way to evaluate the accuracy is to use resonance frequencies as follows. In Step
2.1, the Young’s modulus E of the Sawbones model was obtained from the measured flex
constants (δ/F)Exp through the use of a finite element model. This Young’s modulus E
together with the finite element model could further generate the lowest resonance fre-
quency ωFEA. The resonance frequency ωFEA was then compared with the experimentally
measured resonance frequency ωExp. Since ωFEA involves the finite element model whereas
ωExp is entirely from the experiments, the comparison of these two resonance frequencies
represents a measure of the accuracy of the finite element model. If a finite element model
was accurate, ωFEA and ωExp would agree well with each other.

Table 3 lists the values of ωFEA from the finite element models with cylindrical and
threaded implants (cf. Table 2 for ωExp

)
. Figure 12 further plots ωFEA vs. ωExp based on

the values in Tables 2 and 3. When ωFEA is closer to the main diagonal, it means that
the model is more accurate because ωFEA is closer to ωExp. There are several results from
Figure 12 worth mentioning. First of all, the accuracy depends on the bone density. For the
median bone densities 40/20-PCF and 20-PCF, which were intended to model cancellous
bones with and without a layer of cortical bone, ωFEA and ωExp agree very well indicating
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a good accuracy from the finite element models. In contrast, ωFEA and ωExp show a 10–15%
difference when the bone is extremely soft (PCF-15) or extremely hard (PCF-40).
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Figure 12. Calibration through use of resonance frequency. When converting the measured flex
constants (δ/F)Exp to angular stiffness using a finite element model, two byproducts are the equivalent
Young’s modulus E of the slab and a resonance frequency ωFEA derived thereof. Since ωFEA involves
the use of the finite element model whereas ωExp is purely experimental, comparison of ωFEA and
ωExp gives a measure of how accurate the finite element is in capturing the complex mechanics
behavior inside the Sawbones model.

Another interesting finding is that the cylindrical implant model has higher accuracy
than the threaded implant models for PCF40/20, PCF-30, and PCF-40 models. For the
threaded models, the same-mass version is slightly more accurate than the same-density
version also for PCF40/20, PCF-30, and PCF-40 models. It may seem contra-intuitive why
a more detailed and legitimate implant geometry turns out to have a lower accuracy. One
possible explanation is that the mechanics inside the tested Sawbones model is far more
complicated than the finite element model assumed in this study. In a tested Sawbones
model, there is significant interference between the threads and the neighboring Sawbones
materials, which can become very nonlinear under the high-strain condition. The clamped
boundary condition may also cause significant internal stresses. Sawbones materials are
highly nonlinear, with different tensile and compressive Young’s modulus. All these com-
plex mechanics features inside the tested Sawbones model may not be modeled effectively
by using an equivalent Young’s modulus E throughout the entire Sawbones slab. After
all, the finite element models are, in a way, a sophisticated curve-fitting tool to convert the
measured flex constants to angular stiffness by homogenizing the complex internal stress
field into an equivalent Young’s modulus E.
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As discovered in [23], resonance frequency is not an accurate indicator of dental
implant stability. It does not mean resonance frequency measurements in and of itself are
totally useless. In fact, resonance frequency is easy to measure, and its measurements are
fairly accurate. Therefore, resonance frequency is widely accepted as a reliable physical
quantity to validate mechanics models. For example, the authors of [23] used resonance
frequency to validate their finite element model. In a much broader context, measuring
resonance frequencies is one of the fundamental procedures used in experimental model
testing. The fact that resonance frequency does not correlate well to implant stability is
irrelevant to using resonance frequency to validate mechanics models.

5. Conclusions

In this investigation, an angular stiffness sensor was developed and the following
conclusions could be drawn. An experimental measurement of flex constants together
with a mechanics-based model can successfully extract a physical quantity of “angular
stiffness” to indicate the stability of a dental implant. Measured angular stiffness values
have a high correlation to the resonance frequency and the incremental insertion torque
of the Sawbones models tested. The angular stiffness sensor can be effectively calibrated
through the use of resonance frequencies. Angular stiffness scores 99% and 95% accuracy
for Sawbones models mimicking medium cancellous bones with and without a cortical
layer, respectively.
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