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Abstract: Wearable devices have a significant impact on society, and recent advancements in modern
sensor technologies are opening up new possibilities for healthcare applications. Continuous vital
sign monitoring using Internet of Things solutions can be a crucial tool for emergency management,
reducing risks in rescue operations and ensuring the safety of workers. The massive amounts of data,
high network traffic, and computational demands of a typical monitoring application can be challeng-
ing to manage with traditional infrastructure. Cloud computing provides a solution with its built-in
resilience and elasticity capabilities. This study presents a Cloud-based monitoring architecture for
remote vital sign tracking of paramedics and medical workers through the use of a mobile wearable
device. The system monitors vital signs such as electrocardiograms and breathing patterns during
work sessions, and it is able to manage real-time alarm events to a personnel management center.
In this study, 900 paramedics and emergency workers were monitored using wearable devices over
a period of 12 months. Data from these devices were collected, processed via Cloud infrastructure,
and analyzed to assess the system’s reliability and scalability. The results showed a significant
improvement in worker safety and operational efficiency. This study demonstrates the potential of
Cloud-based systems and Internet of Things devices in enhancing emergency response efforts.

Keywords: occupational health monitoring; cloud computing; real-time emergency management;
wearable device; IoT; digital health

1. Introduction

The rapid development of advanced technologies, such as the Internet of Things
(IoT), Cloud computing, and fifth-generation broadband mobile networks (5G), has led
to innovations and new opportunities in many fields. In particular, the use of innovative
ways to address common medical healthcare challenges is now a reality: the acquisition
of a large volume of clinical data, the remote monitoring of a patient at their home or in
environments other than the hospital settings, the effective data sharing and collaboration
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amongst medical centers, the aggregation of (often incomplete and noisy) data and the
exploitation of such data in application with strict time and cost constraints, just to cite
a few.

Continuous monitoring of vital signs plays a crucial role in modern e-health sys-
tems [1], encompassing hospital settings, such as intensive care units [2,3], home care [4,5],
and emergency management [6–8]. In particular, in occupational settings [9,10], risk
reduction can be achieved through the continuous monitoring of stress levels using minia-
turized and wearable IoT devices integrated into operators’ clothing, which continuously
acquire bio-signals. By leveraging appropriate computing systems, these raw signals can
be processed in real time, enabling the development of comprehensive remote monitoring
solutions that enhance the safety and well-being of individuals in various environments.

In this context, the integration of IoT technology into emergency management, often
referred to as the Internet of Emergency Services (IoES) [8], is particularly significant. This
integration aims to enhance the speed and efficiency of responses through real-time data
sharing and improved coordination among agencies. Unlike traditional systems that often
rely on slow and error-prone manual processes, IoES provides adaptive solutions capable
of responding to the increasing frequency and complexity of emergencies, such as natural
disasters and pandemics, which demand quick and efficient actions to manage rapidly
changing conditions.

Cloud computing architectures, by offering resources as sets of virtualized functionali-
ties, provide the necessary storage and processing capabilities, allowing data gathered by
devices to be processed promptly. On the other hand, IoT architectures, typically composed
of sensors, edge devices, and actuators, are designed to capture and transmit environmental
or physiological data in real time. IoT components, while effective in collecting data from
the environment, often lack the computational power to process them independently and
could have energy limitations. However, in emergency management, where real-time re-
sponsiveness is paramount, relying solely on Cloud-based solutions may introduce latency
issues due to network delays. Therefore, a multi-tier architecture is required, where edge
computing nodes, fog computing layers, and the Cloud work in tandem [11–14]. Figure 1
illustrates the architecture of a Cloud-based IoT application.

Despite extensive research in the field of e-health monitoring, a lack of versatile
solutions or generic frameworks that can be easily adapted to meet specific requirements
currently remains. The challenges in developing a comprehensive healthcare monitoring
system include time and budget constraints, difficulties in integrating various hardware
and software technologies, and the need to integrate solutions with existing ICT systems,
such as authentication and role management systems, as well as databases containing
clinical data. This ensures seamless data flow and coherent user and access management,
ultimately enhancing the system’s overall effectiveness. Where the use of wearable devices
is a crucial factor, the availability of truly comfortable and functional solutions remains
very limited.

The integration of wearable IoT technology into healthcare services that use digital
and information technologies to improve health management and patient care (e-healthcare
services) has gained increasing attention, as demonstrated by constant growth in world-
wide revenue for the IoT market [15] and the extensive scientific literature [16–20]. The
general architecture of IoT in e-healthcare comprises five connected components: (1) sensor
devices that gather data from the environment or patient; (2) networking for transmit-
ting data via networks such as Wi-Fi or cellular; (3) edge devices that perform local data
processing; (4) ICT platform for collecting, storing, and processing data from multiple
sources (including relational and non-relational databases); and (5) application interfaces
for healthcare providers and patients to access data and make informed decisions.
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electrocardiogram (ECG), and for alerting in the waiting area of an emergency room, was 
proposed in [22]. It was specifically developed to manage overcrowded emergency 
departments where large numbers of unattended patients need to be remotely monitored 
to assess the progression of health conditions. The work presented in [23] aims at 
implementing an infrastructure for patient localization and tracking, based on a Received 
Signal Strength (RSS) method, with the goal of classifying movements and detecting 
hazardous situations. Other studies, such as [24,25], explore the usability and feasibility 
of a system that combines Bluetooth (BT) and Near-Field Communication (NFC) 
technologies to measure parameters, such as blood pressure, body weight, glucose, 
oxygen saturation, and ECG signals, whereas ref. [26] focuses on the remote monitoring 
of elderly patients (temperature, heart beat, muscle activity, and ECG) using ZigBee-
enabled devices. 

Figure 1. This diagram illustrates the typical Cloud (A) and IoT (B) architectures along with their
respective ecosystems. It depicts the data flow and interactions among various components, including
mobile devices, terminals, and containerized services. The diagram highlights the integration
of IoT devices and communication protocols, such as MQTT, with Cloud-based infrastructure,
emphasizing how these elements collaborate to enhance operational efficiency and responsiveness in
data processing and analysis.

In the context of this study, the infrastructure proposed in [21] aims to optimize large-
scale data acquisition from a heterogeneous set of IoT medical sensors (including activity,
blood pressure, temperature, heart and breath rate), with a primary focus on real-time
emergency response. A prototype system for monitoring oxygen saturation (SpO2) and
electrocardiogram (ECG), and for alerting in the waiting area of an emergency room, was
proposed in [22]. It was specifically developed to manage overcrowded emergency depart-
ments where large numbers of unattended patients need to be remotely monitored to assess
the progression of health conditions. The work presented in [23] aims at implementing an
infrastructure for patient localization and tracking, based on a Received Signal Strength
(RSS) method, with the goal of classifying movements and detecting hazardous situations.
Other studies, such as [24,25], explore the usability and feasibility of a system that combines
Bluetooth (BT) and Near-Field Communication (NFC) technologies to measure parameters,
such as blood pressure, body weight, glucose, oxygen saturation, and ECG signals, whereas
ref. [26] focuses on the remote monitoring of elderly patients (temperature, heart beat,
muscle activity, and ECG) using ZigBee-enabled devices.



Sensors 2024, 24, 6992 4 of 22

On the other hand, a significant part of the literature has focused on architecture
solutions. In particular, ref. [27] highlights the importance of the message-broker pattern
for decoupling data producers and consumers, thereby enabling the use of distributed
computing. Additionally, ref. [28] demonstrates how an IoT system can be constructed
using cost-effective devices and incorporating teleconsulting services in the pipeline to
facilitate doctor collaboration. Furthermore, ref. [29] proposes a solution in which data
are collected by a gateway through a low-power Wide-Area Network (WAN) that also
incorporates alarming functionality on the edge devices. In ref. [30], the IoT devices are
equipped with Wi-Fi connectivity so they can work independently on a mobile gateway.
An important class of proposed solutions focuses on architectural aspects [31,32] and, in
particular, Cloud computing [33,34]. For instance, ref. [35] focuses on monitoring Mild
Cognitive Impairments (MCIs) and Chronic Obstructive Pulmonary Disease (COPD),
while ref. [36] addresses the monitoring of vital signs obtained from printed wearable
devices and remote data processing. Additionally, ref. [37] proposes a Cloud solution for
fall detection.

The cited references generally offer effective solutions for the specific problems de-
scribed and suggest architectural patterns for developing new ones. However, neither the
solutions cited nor those available on the market appear to be generic enough or readily
available as open-source options that can be utilized in other applications with minimal
customization. Furthermore, to the best of our knowledge, no solutions currently exist that
integrate wearable devices with robust Cloud infrastructure while ensuring data reliability
and maintaining the same satisfactory characteristics

In this study, we describe a project developed in collaboration with the Italian National
Red Cross Society (Croce Rossa Italiana, CRI), aimed at monitoring the health status of
personnel involved in rescue operations. As part of this project, a large-scale Cloud
application has been developed to enable real-time monitoring of vital signs using Internet
of Things (IoT) technologies. The focus of this study is to explore the potential of IoT
technologies for monitoring vital signs in a large-scale setting, as well as the role of Cloud
technologies in managing large-scale monitoring applications. Moreover, an innovative,
high-comfort smart shirt equipped with medical device-level sensors will be introduced,
serving as the primary IoT component of the Cloud application. This shirt will enable
the application to continuously monitor the vital signs of rescue personnel, including
temperature, BPM, ECG, respiratory traces, and fall detection, providing alerts if any
deviations from normal values are detected. This can help ensure safety and well-being
while enhancing the overall efficiency of rescue operations.

2. Materials and Methods
2.1. Research Methodology

The research methodology for this study is outlined in Figure 2 and includes two initial
parallel steps: (1) developing the first beta version of the platform based on preliminary
requirements, and (2) conducting the enrolment process, which begins with defining eligi-
bility criteria, followed by dissemination through the central and local channels of the CRI
to attract potential participants, and setting up the experimentation. The experimentation
followed an iterative process, where the outcomes of monitoring and user experience were
used to generate new requirements and incrementally improve the platform in terms of
efficiency and reliability, user experience of the web interface and smartphone application,
and accuracy of alert generation by enhancing artifact and false-positive detection.
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Figure 2. This diagram outlines the step-by-step process followed in the study, starting from the
release of the first beta version of the platform and the collection and evaluation of questionnaires for
participants’ enrolment. It includes key phases such as participant eligibility screening, monitoring
sessions, data collection, and artifact analysis. The workflow also highlights the data validation,
analysis, and assessment of the system’s performance and reliability under real-world conditions.
For each step, the main categories of roles involved are highlighted: CRI personnel (control center
operators, medical doctors and participants) and ICT team.

In particular, initial requirement analysis allowed us to identify several application-
specific requirements, including the following: (1) a website that allows all personnel
involved to access data within a security schema (ACL-like) that specifies which users are
granted access to each type of information; (2) integration with the existing authentication
system via OpenID; (3) an onboarding tool for the rapid registration of volunteers interested
in the study, including the acquisition of necessary information such as GDPR consent;
(4) management of clinical and anamnesis information and to automatically evaluate
general eligibility over time; (5) IoT wearable devices for monitoring vital signs along with
related ICT components for online and offline use of acquired data; (6) real-time analysis
of vital signs to identify changes in health conditions that may lead to potential risks and
the generation of suitable alert events; (7) management of the alarm workflow, including
involvement of medical staff, assignment alarms to appropriate specialists, and closing of
resolved or false-positive alarms.
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These requirements are well suited to be addressed with a Microservice Cloud com-
puting Architecture. The Cloud is a new way of delivering computing resources, such
as storage and processing power, over the internet in a distributed way. The architecture
of Cloud-based systems is constantly evolving to meet the needs of these systems, and
one popular approach is the use of microservices. A microservices architecture involves
breaking down a large, complex system into smaller, independent components that can be
developed, tested, and deployed separately. This can make it easier to scale and update the
system, as well as make it more resilient to failure [38,39].

2.2. Cloud Architecture

In this paragraph, we describe the general Cloud architecture of the proposed solution,
with subsequent paragraphs delving deeper into each component. The architecture schema
(Figure 3) illustrates the main components of the system, their interactions, and the data
flow generated by IoT devices. These components are divided into four main layers: (1) The
IoT layer, which includes the hardware components (the device sensor printed onto a t-shirt)
and the software components that directly interact with them. This primarily consists of a
Message Queuing Telemetry Transport (MQTT) microservice that receives IoT measures
generated from the devices. (2) The persistence layer, which consists of a Structured Query
Language (SQL) database for managing the web application, alongside several NoSQL
databases that store IoT measures and alarms. (3) The web frontend and backend layer,
which exposes a website for end users to access the application and includes a set of
Application Programming Interfaces (APIs) for automating specific procedures (such as
onboarding, device assignment to users, and data export), as explained later. (4) The
analytics layer, which is responsible for filtering incoming data streams, ensuring data
quality, processing raw data, and generating real-time alarms based on predefined criteria.
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Figure 3. Architecture and main components of the proposed solution: real-time data are collected
from the wearable device, which communicates with a smartphone to provide immediate alerts
regarding health parameters such as heart rate, respiratory rate, temperature, and fall detection. The
data flows into a robust Data Persistence Layer that employs both Redis for fast data caching and a
main database for long-term storage. The backend system utilizes the MQTT protocol to effectively
manage alarm notifications, ensuring timely responses to critical health events. Finally, the analytics
component processes the collected data, enabling comprehensive data analysis.
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Each layer comprises several interacting services, all secured with authentication and
SSL communication. Additionally, all services are deployed in an elastic environment,
referring to the system’s ability for the automatic provision or deprovision of resources in
response to workload changes throughout its lifecycle. This feature is crucial for achieving
cost reduction, reliability, and prompting response times. Table 1 displays implementation
details for each service in the platform.

Table 1. List and description of the components of the Cloud platform.

Component Description

Web Worker A stateless virtual node that manages http requests coming from the web clients.

Load Balancer A component that distributes the http request over a set of web workers and manages the
number of active nodes based on the overall load

Relational Database The main database for operational activities including individual registry, device
management and alert management.

TimeStream Database NoSQL database for time stream data such as ECG, Respiratory Trace and heart Beats per
minute (BPM).

Simple Queue Service (SQS)
A component that uses using message queue to handle asynchronous communication
between microservices (Lambda functions, web workers and edge devices) ensuring
decoupling of components

Lambda Function A serverless and event-driven computing service used to manage asynchronous tasks
such as the generation of alarms

IoT Core
The component that handles the connectivity between the Internet of Things (IoT) devices
and the backend Cloud platform using a publish/subscribe communication based on
(MQTT) protocol

Data generated by the sensor worn by the participant (IoT layer) are initially sent to
the smartphone, from where they are transmitted to the Cloud platform (backend layer)
via the MQTT protocol. The message is then permanently stored in the central database
(persistence layer) and simultaneously sent through a Lambda function that filters the
signal based on predefined thresholds to determine if it represents a potential danger (alert).
If it does, the data are forwarded to the analytics module (analytics layer), which assesses
whether the signal is a true or false positive. For example, a false positive could be an
anomalous spike in temperature. If the signal is classified as true, an alarm is generated
and propagated to the clients (web clients used by operators in the control center) and to
the smartphone of the person wearing the device.

The main data flows of the application, primarily concerning real-time alarm manage-
ment and the procedures for acquiring data from the devices, are described in Figure 4,
using temperature as an example. The management of other parameters from the sensors
follows a similar workflow: two Lambda functions process the ECG and respiratory traces
(at 250 Hz), generating average frequency values (BPM and Resp Frequency) at 1/60 Hz.
The subsequent analysis of alerts and alarms is based on these calculated values. Fall
detection analysis is performed at the edge, so the alarm message is sent to the platform
without any preprocessing. In contrast, motion analysis, which requires downstream data
processing, is performed on the Cloud platform.
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Figure 4. Sequence diagram describing the reading of a signal from the device (e.g., a temperature
sample at 1/300 Hz, corresponding to a 5 min interval), the storage of the data in the Cloud system,
the generation of an alarm, and the propagation of the alarm to the mobile app and the web client.

2.3. IoT Layer

The IoT layer includes both hardware (HW) and software (SW) components for con-
tinuous multiparameter monitoring. The YouCare medical wearable device (Accyourate
wearable technology [40]) consists of textile garments equipped with innovative non-
invasive polymeric sensors embedded in the clothing via ink-jet printing. These devices’
wearability and ergonomic characteristics enable a novel method of detecting biovital and
kinetic parameters, providing dynamic, real-time measurements of an individual’s status.
The device, which is a type IIa-certified medical device, resembles a T-shirt that covers the
upper chest. It has been used to monitor several biovital parameters in home settings and
during everyday activities, across different contexts, such as healthcare, workplaces, sports,
and scientific research. The parameters measured and calculated included heart rate (HR),
respiratory rate (RR), skin temperature (SkT), and heart rate variability (HRV, expressed as
time–domain and frequency–domain parameters) [41,42]. The sensors within the device,
which offer comfortable wearability and favorable ergonomic features, also detect kinetic
parameters, enabling dynamic, real-time measurements. Sensor signals are digitized and
processed by a miniaturized wearable control unit, which records the data and transmits
them to a smartphone app via Bluetooth. The control unit is equipped with various sensors,
including a BLE module based on SoC NORDIC nRF52811, Bluetooth 5.1 Low Energy,
ECG (1 channel, 16-bit resolution), respiration monitoring (1 channel bioimpedance, 20-bit
resolution), temperature, accelerometer, gyroscope, shock detection, 8 MB memory, RGB
LED, Micro-USB charge, 3.7 V 190 mAh battery, autonomy > 30 h, 9.5 g weight, 250 Hz
sampling frequency (ECG, respiration and accelerometer) and 1/300 Hz (temperature),
and two-channel analog front end (24-bit delta-sigma converter). The device’s quality was
previously assessed in a study [43] that compared 7200 ECG signals from 20 patients with
those acquired from a commercial ECG monitor in a controlled clinical setting.
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The textile garment is composed of 90% polyester and 10% elastane, with the wearable
device weighing approximately 80.8 g. All validations of the sensor and the wearable
device were conducted under dry skin conditions. We experimentally found that increased
humidity—whether from sweating or environmental factors—tends to elevate the ampli-
tude (in volts) of the signal without compromising its quality or stability during movement.
To maintain the amplitude of the signal within the operational range of the signal acquisi-
tion system, we developed an auto-scaling mechanism specifically designed to normalize
the signal and prevent saturation of the digitizer inputs. This ensures that the analysis is
accurate under all operating conditions.

Each sensor detects raw parameters, which are processed to generate derived param-
eters following the data flow outlined in Figure 5. Depending on system configuration
and internet connectivity stability, derived parameters can be computed remotely in the
Cloud (Cloud), locally on the smartphone CPU (edge), or through a hybrid approach. Raw
parameters include ECG traces, respiratory traces, body temperature, and motion data.
The first level of derived parameters includes BPM (heart rate), RespRate (respiratory rate),
fall detection (frontal, lateral, and posterior), and shock detection, all computed from raw
signals. The second level involves the generation of alert events to identify anomalies or
abnormal health conditions.
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format along with examples. Each payload includes identifiers for both the account and the device,
the timestamp of the measurement or event, and corresponding values that vary based on the type
of device.

This process facilitates real-time data exchange with the Cloud platform, where the
post-processing and analysis of collected data occur using dedicated, proprietary software
and algorithms. Raw data, except for specific cases delegated to the smartphone (e.g., skin
temperature conversion, fall detection, and so on), are processed in the Cloud. Artifacts
are identified using the algorithm in [43] and subsequently discarded. Derived HRV time–
domain parameters include RMSSD, standard deviation (SD) of all NN intervals (SDNN),
SD of R-R intervals (SDRR), RMSSD to MeanNNI ratio (CVSD), percentage of successive
R-R intervals differing by more than 20 ms (pNNI-20) or 50 ms (pNNI-50), SD of successive
differences between NN (SDSD), Mean of NN (M-NNI), and SDNN divided by MeanNN
(CVNNI). Derived HRV frequency–domain parameters include low-frequency power (LF),
high-frequency power (HF), LF/HF ratio, normalized LF power (LFnu), normalized high-
frequency power (HFnu), and total spectral power.

The clothing designer assigned sensorized textiles to subjects, ensuring a specific fit
to each breast circumference. Each subject received an experimental kit consisting of a
YouCare T-shirt (Figure 6A), a control unit (Figure 6B) with an anonymous serial number,
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and accessories, including a battery charger, USB type C cable, and the YouCare app to be
installed on the users’ personal smartphone. Each medical device was paired with a control
unit using an individual pseudo-anonymized code known only to the scientific staff.
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ing unit (B). This unit gathers and transmits data to a mobile smartphone application via Bluetooth,
which then forwards the information to the Cloud platform.

The smartphone app offers typical features for this kind of application: device
registration on the platform upon initial access, Bluetooth pairing with the Micro Con-
troller Unit (MCU), authentication, initiation and termination of monitoring sessions, and
data visualization.

Before transmission to the Cloud platform, sensor datasets are enriched with metadata
(user identifier, device identifier, and timestamp), packed in JavaScript Object Notation
(JSON) format, and compressed. The data are transmitted using the MQTT protocol,
where clients publish messages to specific topics, and the broker manages distribution to
subscribers. This decoupling of the sender and receiver allows for independent message
transmission, simplifying the overall architecture’s scalability. The MQTT broker, a compo-
nent of the IoT layer, also communicates with the persistence layer by forwarding sensor
data to a NoSQL database and sending MQTT events to an SQS queue, which acts as a buffer
to send messages in batches and prevent overloading the system for real-time processing
by the Cloud platform. More details are provided in the persistence layer section.

2.4. Data Persistence Layer

The Data Persistence Layer (DPL) consists of components and software interfaces that
encapsulate routines for accessing data that need to be permanently stored in the Cloud
platform. The two primary data flows feeding the DPL are from IoT devices through the
IoT Layer and from the Web User Interface. The first data flow includes streams of ECG and
respiratory traces, processed time series (such as BPM and temperature), generated alerts,
and messages tracking the connectivity status of the devices. Due to the nature of this
information (key/value or unstructured stream format), NoSQL databases were chosen:
TimeStream for storing data streams and time-series measures, and Redis for storing device
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status. NoSQL databases offer several advantages over traditional relational databases
in this context: they are designed to automatically scale horizontally (by adding new
computational nodes) as the amount of data grows; they are well suited for applications
requiring high scalability and availability, and they provide efficient access to large volumes
of data.

The second data flow originates from user interactions with the Web Interface for
managing clinical and anamnesis data, logistic information about device provision, and the
current status and history of active alarms. These data must be managed with respect to
authorization and permissions (ACL), using the basic Create, Read, Update, and Delete
(CRUD) operations. For this purpose, a relational database (PostgreSQL) was selected, as it
provides a static, clear, and well-defined data structure that maps seamlessly to application
domain objects.

A set of Lambda functions are also part of this layer. In the context of Cloud computing,
the Lambda function is a flexible way to provide event-driven computing without taking
care of provisioning the underline computational resources. They can be easily connected
to input events (for example, MQTT or SQS events), and their output can trigger another
event, making it possible to implement a fully managed data workflow. In the proposed
platform, the Lambda functions are used mainly to preprocess the input coming from the
IoT Layer and to generate the alarm:

1. The computation of BPM rate, respiratory rate, and motion-related events;
2. The generation of alarm to be shown in the web user interface;
3. Updating the relational database, which contains the status of the devices.

As said before, depending on the configuration, all computations performed by
Lambda functions can be also performed directly by the mobile device (Edge). Finally,
Simple Queue Service (SQS) components are used to buffer the input of Lambda functions
in order to aggregate the data in batch and reduce the amount of calls.

2.5. Web Backend/Frontend Layer

The user interface and associated business logic are implemented in the final layer
of the system’s architecture. This layer includes a web backend built using the Flask
microframework, which provides an API for the web frontend. The backend microservice
implements OpenID+JWT-based authentication and interacts with both SQL and NoSQL
databases to retrieve data for the user interface.

The backend system has been deployed on an elastic load balancer, which automati-
cally distributes incoming traffic across a group of servers. This helps to ensure that the
backend can handle a high volume of traffic and can scale up or down as needed to meet
changing demand. The load balancer routes incoming requests to a pool of worker servers,
which are responsible for processing the requests and returning the appropriate responses.
The number of worker servers can vary over time, depending on the workload, allowing
the system to adjust its capacity as needed to handle the load.

The topmost component of the system is the web interface, which is implemented
using the Vue open-source JavaScript framework as a single-page application (SPA). It is
based on the model-view-viewmodel (MVVM) paradigm, which separates the application’s
data model from its presentation layer and allows developers to build complex, interactive
user interfaces more easily. The web interface allows one to perform all operations necessary
to view and modify data and to monitor the IoT parameters with plots and forms.

One of the main features of the interface is to open and maintain, during the web
sessions, a stable connection with the Data Persistence Layer through an MQTT-based
websocket client. The client subscribes to the topics necessary to keep the interface up to
date in response to new IoT events. In particular, it is used to show the status of the devices
(connected/disconnected) and to receive alarms in real time.
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2.6. Analytics Layer

This layer undertakes the tasks of processing incoming data streams, implementing
several algorithms of filtering, artifact detection and QRS and BPM computation. Iden-
tifying artifacts poses a critical and recurring challenge in IoT systems, given the typical
deployment of IoT devices in uncontrolled environments. The main causes include poor
device placement, interference issues, and anomalous body movements that could interfere
with the acquired signal.

ECG analysis: The ECG analysis is performed with methods specifically developed for
the device in use; filtering and artifact detection is performed with an algorithm [44] that
leverages the distinct measurable statistics in good signals compared to artifacts within a
2 s window. ECG signals are then processed to extract the QRS with a variant [41] of the
well-known Pan-Tompkins method [45]; finally, the BPM is evaluated as an average of the
number of peaks over a 5 s window.

Temperature: The values received at 1 Hz from the central unit are cached and sent to
the Cloud every 5 min. These values are not subjected to specific analysis before sending to
the Cloud platform

Respiratory Trace: The analysis of Respiratory Trace is analyzed with a butterworth
low-pass filter (order size 4, cut off 4 Hz) and averaged with a moving window of 25 samples
to reduce noise. The frequency is then computed as a count of peaks every 60 s.

Fall detection: Body movements are measured with an accelerometer device incorpo-
rated into the central unit, and fall is recognized when a sudden acceleration of more than
6 g is detected.

Alarms: One of its pivotal functions on the analytics layer is the generation of real-
time alarms, triggered in response to detected anomalies or critical events, thus ensuring
timely interventions and proactive management. To mitigate the risk of false positives and
enhance alarm accuracy, the layer employs a window mean filtering and a mechanism that
stops the generation of new alarms if an alarm of the same type is already in open state.

2.7. Case Study

The presented platform has been developed to monitor the vital signs of a group of
paramedics and medical workers employed by the Italian National Red Cross Society (Croce
Rossa Italiana, CRI) during their work session. The invitation to participate was voluntary,
following the signing of informed consent forms, and was extended to all CRI national
committees of the organization. Compilation of a questionnaire enabled the selection of
volunteers based on specific acceptance criteria, which included the following: absence
of heart disease, chronic cardiovascular diseases, motor neuron diseases, severe motor
disabilities (such as paraplegia), chronic diseases with progressive effects; legal age (greater
than 18 years); weight and height within a healthy range (neither severely underweight nor
overweight); and technical specifications regarding the smartphone. Furthermore, medical
staff thoroughly evaluated the presence of critical medical history, past interventions, or
hospitalizations before confirming inclusion in the experimentation and, when necessary,
consulted with the medical specialists on our team for the final decision on eligibility.

Finally, each participant received an IoT device, consisting of the sensor-equipped
shirt. Additionally, participants will undergo several hours of training on correctly wearing
the shirt and utilizing the accompanying mobile application.

According to GDPR, only a minimal set of information is included (see Table 2).
Moreover, data are classified in different categories with their own set of permissions based
on use. For example, access to clinical information is granted only to medical staff upon
justified request or for the management of a critical alarm. Information related to alarm
and technical measures is accessible only to operations room staff.
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Table 2. Anamnesis information is utilized as inclusion criteria for the experimentation conducted on
a group of active workers engaged in emergency response operations within ambulances.

Category Description

Familiar disease Heart disease, diabetes, hypertension, neoplastic pathologies, sudden juvenile
death

Physiological anamnesis Weight, height, motor skill (full or reduced), heart rate, diastolic and systolic blood
pressure

Lifestyle Quantification of alcohol consumption and cigarette use

Pathological anamnesis
COVID-19, endocrine diseases, allergies, respiratory pathologies, liver or biliary
diseases, neurological diseases, neoplastic pathologies, kidney or urinary tract
disease

Interventions and hospitalizations Type, age and duration of hospital admissions including related intervention
related to surgical intervention

To enhance security measures, OAuth2 and OpenID are employed for authentication,
delegating authentication and permission management to the GAIA (Gestione Avanzata
ed Integrata dell’Anagrafica) platform of Italian Red Cross [46].

Out of the 3600 invited, only about 2935 participants passed the selection criteria, were
recruited, and began the experiment after a few weeks. During the study, some participants
were excluded for various reasons (personal reasons or errors in parameter recording and
so on), leaving 892 who actively participated in the project.

The participants are fairly evenly distributed between males (52%) and females (48%),
have an average age of 41.5 ± 14.3 years (40.3 ± 14.9 for males and 43.0 ± 13.33 for females),
and are across the entire Italian territory, organized by regional committees, and grouped
into northern, central, and southern regions (see Figure 7).

This study lasted approximately one year (330 days with 316 days with at least 1 active
device), totaling about 23,000 h of activity, where 1 h counted for each participant if at least
1 stream signal (ECG or Respiratory Trace) was registered in the platform (see Figure 7 for
more information).

In this experimentation, a total of 100 GB of persistent data was collected from the
wearable devices deployed in the monitoring system, with ECG data being the most promi-
nent. The data collection process involved capturing a wide range of vital signs, including
ECG and breathing patterns, during various work sessions. The ECG data underwent a
rigorous validation process to ensure their quality and reliability. All artifacts and noise
were removed using the proprietary methods described previously, before performing any
further analysis. This step was crucial for obtaining accurate intermediate measurements
and, ultimately, for generating alarms. Additionally, the dataset was assessed from a clinical
perspective, with a particular focus on cinematic and cardiorespiratory data.

A total of about 4000 alerts (see Table 3) were generated throughout the monitoring
period, and more than 72% were related to BPM anomalies, with 15% related to body
temperature increasing above the risk threshold. Among these, more than 40% were
identified as false positives (artifacts or incorrect wearing of the device). This high number
of false positives underscores the importance of continuous refinement of our alerting
system. We recognize the need for improvements to reduce the incidence of false alerts and
enhance the precision of the alerting mechanism, ensuring that only real issues are flagged
in order to ensure accurate evaluation of the risk in working activity.

Looking ahead, we plan to implement a comprehensive clinical labeling process for
the ECG data. This process will involve categorizing different types of ECG events and
correlating these events with the clinical data collected. Our goal is to conduct an in-depth
correlation analysis between the clinical data and the alerts received. This analysis will
help us to better understand the relationship between vital sign patterns and real-time
alerts, contributing to the refinement of our monitoring platform. Our future work aims to
improve the predictive capabilities of our system by enhancing its accuracy and reliability.
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By doing so, we hope to not only improve emergency response but also gain valuable
insights into vital sign trends and their connection to alert events. This ongoing research
will play a crucial role in advancing our understanding of how wearable technology can be
optimized for effective health monitoring and emergency management.
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Figure 7. (A) Boxplots of the statistical distribution of age, divided into Male (blue) and Female (pink),
and into the three macroregions where the project took place: North (green), Center (orange), and
South (violet) of Italy. Each boxplot bar represents the statistical distribution of the corresponding
dataset, including the mean (white line), the 68th percentile (the border of the box), and the max/min
values (the extreme lines) (B) histogram distribution of recording hours per participant (device). Each
participant recorded an average of 26.23 h for a total of 23,394 h over about 1 year of experimentation;
(C) distribution of the number of active devices over the duration of experimentation.
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Table 3. Percentages of the ~4000 alerts generated by the platform during this study.

Alert Type Percent

BPM 72%
Temperature 15%
Fall 13%
False positive 40%

3. Results

In this section, we describe the web interface of the proposed application, its main
workflows, and the performance and scalability analysis.

3.1. Web Interface

The central component of the interface is the Dashboard page (Figure 8A), which
displays the history of alarms received by the edge devices. The system manages four types
of alarms: abnormal BPM values, abnormal breathing frequency, high temperature, and
falls. Whenever the platform generates a new alarm, it is instantly captured by the web
interface using websockets. Subsequently, it appears at the top of the list, triggering visual
and audible alarms on the web page.

Based on the current permissions and roles (administrator, doctor, operator and
volunteer), the user can view a set of clinical, physiological, and anamnestic parameters,
as well as the outcome of medical visits. Additionally, it is possible to access data from
IoT devices, such as ECG, respiratory trace, and temperature, with associated timestamps
(Figure 8B).
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The user can also navigate through temporal data using a menu that allows for
immediate access to the raw trace associated with the moment an alarm is triggered or
other critical points (for example, the maximum BPM value). This feature enables visual
inspection of the specific data point linked to the alarm occurrence.

3.2. Workflows

The workflow of enrollment of participants is described in Figure 9A. They join after
signing an informed consent for data processing based on European General Data Protection
Regulation 2016/679 GDPR. Then, they undergo a medical examination to establish an
updated and accurate clinical record, crucial for properly configuring device parameters
and analyses. At this stage, a volunteer may be excluded from the study if deemed unfit (for
instance, in cases of cardiac issues). In research study monitoring scenarios, identification
data are removed through pseudo-anonymization methods. Additionally, there exists a
provision to exclude patients from the ongoing analysis within the project at any juncture.
This exclusion may occur if patients no longer meet the outlined requirements or choose
to voluntarily withdraw their participation from the project. This mechanism ensures the
integrity and accuracy of the ongoing analysis by allowing for the removal of data points
that no longer align with the project’s criteria or are voluntarily retracted by the participants.
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the health status, (C) alarm management.

The alarm status follows the workflow depicted in Figure 9B. Once an event associated
with an alarm is generated, it is immediately displayed on the desktop of the operators
of the control center. An operator can promptly reach out to the individual concerned to
verify if there have been any technical issues (such as connectivity problems or incorrect
device usage) and provide assistance for resolution. If the event is a real health issue, the
case is forwarded to the medical center with a priority (low, medium or high), where a
doctor handles the situation, conducting a televisit and analysis of the data collected in the
immediate time prior to the event. At this point, emergency services can be activated, and
the worker’s activity can be promptly suspended.

Finally, Figure 9C displays the workflow for offline analysis of ECG signals, which
can be performed through automated batch analysis to highlight both technical anomalies
(such as excessive noise) and clinical irregularities. Medical staff can annotate the signal
with messages visible to the entire team, facilitating a sequence of second opinions on the
case, enabling a decision to schedule a visit.
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3.3. Performance and Scalability

The response speed of a Cloud application is crucial for ensuring both a good user
experience and optimal system performance and scalability. During the development and
operation of the application, extensive testing was performed, and performance metrics
were collected from the system logs and continuously analyzed to identify potential bot-
tlenecks and optimize processing times. The ingestion time of raw data from IoT devices,
in particular for ECG and respiratory traces, holds significant importance within this ap-
plication. This timeframe encompasses the duration required for transmitting data from
the devices to the backend through the MQTT protocol and the subsequent storage time.
Figure 10A shows the histogram distribution of the ingestion time of a typical workflow
session comprising 16,000 payloads of 1 s from 1000 devices. Simulations conducted
in a controlled environment confirmed that the average ingestion time is 10 ± 0.4 µs,
demonstrating the efficiency of the data ingestion pipeline.

In addition to these simulations, tests were conducted to assess the system’s per-
formance under poor network conditions by deliberately interrupting mobile network
access in a controlled manner. These interruptions simulated real-world scenarios where
connectivity with the Cloud is limited or lost, leading to the smartphone’s cache filling up.
This approach allowed us to ensure that the architecture could continue functioning even
in the absence of a network connection for up to 15 h (depending on the local memory of
the smartphone).

Figure 10B illustrates the scalability of the application when subjected to varying
loads of read queries with different numbers of payloads. The tests simulate real-world
conditions with increasing query loads to assess the system’s elastic response. As expected,
due to the elastic capabilities of the Cloud infrastructure, the read time of raw data from
the TimeStream DB scales linearly, maintaining performance under higher loads.

The final recorded metric is the Time to First Byte (TTFB), defined, from a web appli-
cation perspective, as the duration from the initiation of the web request to the receipt of
the first byte of the response. In this case, the time is also influenced by the computational
capabilities of the client to generate the request (usually in JSON format) and the client
networking. Values < 200 ms are considered good in modern applications. Performance
tests comparing cache-enabled and non-cached scenarios showed improvements in TTFB,
as seen in Figure 10C. Specifically, a simple web caching mechanism was implemented on
a specific Cloud component to enhance user experience when navigating through the data
stream, reducing TTFB by an average of 90% in cache-enabled scenarios. These experimen-
tal results confirm the advantages of the caching strategy in maintaining responsiveness,
even under varying loads.

To address the limitations of traditional infrastructure, such as limited scalability
and high maintenance costs, our Cloud-based solution leverages elastic scalability and
automated backup capabilities, ensuring efficient data ingestion and response times. The
results, including data on ingestion times and TTFB measurements, were obtained through
rigorous testing under varying loads, demonstrating the advantages of Cloud architecture
over traditional systems in terms of performance and reliability.

Overall, the system demonstrates good reliability due to the intrinsic resilience prop-
erties of the Cloud, including elasticity, redundancy, and fault tolerance. These features
enable the application to adapt to varying loads and ensure continuous operation, even
during peak usage times. On the other hand, the user’s smartphone represents a potential
weakness when network disconnections occur; in these cases, it must accumulate data
over time and subsequently send all collected data once it reconnects to the network. This
aspect highlights the need for robust offline capabilities (internal memory and bandwidth)
to maintain data integrity and prevent loss during connectivity issues.
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4. Discussion

Continuous vital sign monitoring is pivotal in modern e-health, spanning hospital
settings, home care, emergency management, and occupational safety. However, this task
is laden with technical complexities, particularly in managing real-time data.

To address these challenges, we introduced a Cloud-based monitoring architecture
designed for remote vital sign tracking for paramedics and medical personnel, leveraging
low-cost, wearable IoT sensors. Continuous monitoring of vital signs, such as ECG and
respiration, serves as a crucial tool in emergency management, reducing risks during rescue
operations and ensuring worker safety.

This solution boasts inherent resilience and elasticity, effectively circumventing the
limitations of traditional infrastructures while addressing the challenges posed by massive
data volumes, network congestion, and the computational demands of IoT monitoring. Ad-
ditionally, it orchestrates the management of essential health metrics during work sessions,
providing real-time alerts to a central personnel management center. This implementa-
tion enables efficient tracking and immediate responses to critical events, exemplifying
the practical application of wearable IoT technology in safeguarding the well-being of
frontline workers.

We evaluated the system’s performance in its critical paths to assess scalability and
robustness for larger case studies. In particular, caching systems and elastic features—such
as resource adaptation based on load—have been integrated into all data paths of the
Cloud infrastructure.

5. Conclusions

The proposed application exemplifies how technological innovation can be a game
changer when tailored to the specific needs of particular user groups and operators, thus
enhancing the adoption of modern approaches in healthcare and research.

The experience described proved invaluable in identifying limitations during the
experimentation phase, particularly concerning wearability issues encountered during
extensive movements. These challenges were addressed through a modeling process aimed
at improving the fit of the textile garment.

In future work, we plan to further develop the platform in three directions: (1) integrat-
ing advanced textile technology to incorporate three ECG derivations for a fully compliant
Holter clinical examination; (2) embedding a 4G and 5G modem to enable direct data
transmission to the Cloud without relying on a smartphone; and (3) incorporating a set of
new, more accurate cinematic sensors (IMU) to acquire motion detection data on the Cloud
platform. These enhancements to the wearable device, alongside ongoing developments of
the Cloud platform, will broaden the potential applications of the system in both clinical
and non-clinical areas, such as workplace health protection and overall well-being.

This technological model is underpinned by a cooperative intent, facilitating multidis-
ciplinary collaboration, even in challenging areas, like research on syndromic conditions,
which are difficult to investigate without solutions such as YouCare and its monitoring plat-
form. Recently, a study on RETT syndrome carriers and their caregivers was published [47],
showcasing the success of real-time monitoring of biovital and environmental parameters,
with YouCare playing an essential role in the research. Additionally, several studies focus-
ing on the telemonitoring of adapted physical activity are currently underway, involving
research groups in Neuromotor Science, Physiatry, Pharmacology, and Psychology. This
illustrates how complex scenarios can serve as challenging ecosystems for the development
of highly innovative solutions like WaidX [48], promoting the adoption of good health
practices and the use of modern technologies in healthcare.
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