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Abstract: Fault diagnosis plays a crucial role in maintaining the operational safety of mechanical
systems. As intelligent data-driven approaches evolve, deep learning (DL) has emerged as a pivotal
technique in fault diagnosis research. However, the collected vibrational signals from mechanical
systems are usually corrupted by unrelated noises due to complicated transfer path modulations
and component coupling. To solve the above problems, this paper proposed the dynamic temporal
denoise neural network with multi-head attention (DTDNet). Firstly, this model transforms one-
dimensional signals into two-dimensional tensors based on the periodic self-similarity of signals,
employing multi-scale two-dimensional convolution kernels to extract signal features both within and
across periods. Secondly, for the problem of lacking denoising structure in traditional convolutional
neural networks, a temporal variable denoise (TVD) module with dynamic nonlinear processing is
proposed to filter the noises. Lastly, a multi-head attention fusion (MAF) module is used to weight
the denoted features of signals with different periods. Evaluation on two datasets, Case Western
Reserve University bearing dataset (single sensor) and Real aircraft sensor dataset (multiple sensors),
demonstrates that the DTDNet can reduce the useless noises in signals and achieve a remarkable
improvement in classification performance compared with the state-of-the-art method. DTDNet
provides a high-performance solution for potential noise that may occur in actual fault diagnosis
tasks, which has important application value.

Keywords: nonlinear denoising; multi-time resolution decomposition; short-time fourier transform;
mixed precision calculation; fault diagnosis

1. Introduction

Fault diagnosis of mechanical systems (typically such as rolling bearings, aircraft
sensors, etc.) has become an increasingly critical part of engineering [1,2]. Since mechani-
cal systems often work in harsh conditions, including high temperature, high humidity,
and overload, which are prone to failure [3]. These failures can cause economic losses and
safety risks and even lead to casualties [4]. Therefore, accurate monitoring and diagnosis
of mechanical system faults are crucial for maintaining production safety and preventing
catastrophic incidents [5].

Traditional fault diagnosis is usually based on system models or signal processing
models [6,7]. Jalan et al. proposed a model-based fault diagnosis method for rolling
bearing systems [8]. Dybała et al. proposed a signal processing-based diagnosis method.
The pure noise part is extracted from the original vibration signal through empirical mode
decomposition (EMD), and the spectral analysis method of the empirically determined local
amplitude is used to further extract fault-relevant features from the pure noise signal [9].
These methods largely depend on manually identifying intricate features and heavily rely
on empirical knowledge, which leads to reduced efficiency and narrow applicability of
the algorithms.
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Machine learning methods can automatically extract data features and have been
widely applied in fault diagnosis tasks [10,11]. Typical methods include artificial neural
networks (ANN), principal component analysis (PCA), K-nearest neighbors (KNN), and
support vector machines (SVM), etc. Zarei et al. proposed an ANN and proximal SVM
method for processing the time domain characteristics of fault signals [12]. Qian et al. used
a differential evolution algorithm to preprocess time domain signals and improved the
feature extraction method [13]. Islam et al. proposed a reliable multiple combined fault
diagnosis method for bearings using heterogeneous feature models and an improved one-
against-all multiclass SVM classifier [14]. Xue et al. proposed an improved local and global
principle component analysis (LGPCA) method and used the fast ensemble empirical mode
decomposition (EEMD) for multi-scale feature extraction in fault diagnosis [15]. The fault
diagnosis methods based on machine learning avoid the limitations of manually identifying
intricate features. However, the methods based on machine learning are often difficult to
extract high-dimensional features from data due to their simple structure (fewer network
layers, etc.), which limits the diagnostic performance of the algorithm.

Deep learning algorithms have more complex network structures and can learn
richer feature representations from data, which have been widely used in fault diag-
nosis tasks [16–18]. Janssens et al. proposed an equipment condition monitoring model
based on convolutional neural network (CNN), which automatically extracts data fea-
tures [19]. Xu et al. proposed a hybrid deep learning model based on CNN and deep forest
that processed signals through continuous wavelet transformation (CWT) [20]. Mao et al.
proposed a new type of deep autoEncoder model (DAE) that combines various types
of information, has effective land acquisition capabilities, and has simplified the DAE
network structure [21]. Saucedo et al. proposed a novel data-driven diagnostic method
based on stacked autoencoders for diagnosing and identifying bearing faults of different
bearing technologies (such as metallic, hybrid, and ceramic bearings) in electromechanical
systems [22]. Miao et al. proposed a deep feature interactive network that uses multi-
source heterogeneous data (i.e., infrared thermal images and vibration signals) for fault
diagnosis [23]. However, the above studies mainly focus on the design and optimization of
diagnostic algorithms, overlooking the significant noise included in the collected data in
practical scenarios, which has a serious impact on the performance of diagnostic algorithms.

In recent years, various methods for solving fault diagnosis in noisy environments have
been widely studied. Liao et al. proposed a signal filtering and fault feature enhancement
method based on reconstruction adaptive deterministic stationary subspace filtering (Rad-
SSF) and enhanced third-order spectrum, and its feasibility and effectiveness were verified
under different conditions [24]. Chen et al. used 2 CNNs with different kernel sizes to
automatically extract signal features of different frequencies from the original data and then
used long short-term memory (LSTM) to identify the fault type [25]. Compared with other
intelligent algorithms, it has better diagnosis performance between the signal-to-noise ratio
(SNR) of −2 dB and 10 dB. Chen et al. proposed a stacked denoising autoencoder (SDAE)
based on structure adaptive adjustment for bearing fault diagnosis in noisy environments,
whose performance has been verified in experiments [26]. Zhang et al. used residual
learning to improve network training and conducted experiments with SNR between 0 dB
and 8 dB [27]. Huang et al. proposed a bearing fault diagnosis method based on Savitzky-
Golay gramian angle field (GAF) [28]. After segmenting the collected signal, the high-
frequency components containing fault information are obtained through Butterworth
high pass filtering, and the GAF image is obtained using an enhancement algorithm as
input for the ResNet18 model for bearing fault diagnosis. Liang et al. combined wavelet
transform with improved Resnet and proposed a new rolling bearing fault diagnosis
method that is robust to noise [29]. Guo et al. proposed a method based on attention
CNN and BiLSTM (ACNN-BiLSTM) [30]. Short-term spatial features are extracted through
attention CNN, and BiLSTM is used to extract long-distance dependence information of
signals. The setting range of the SNR in the experiment is 10 dB to 20 dB. Wang et al.
proposes a novel attention-guided joint learning convolutional neural network (JL-CNN),
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which mainly includes a joint feature encoding network and two attention-based encoder
networks [31]. The JL-CNN is evaluated on the wheelset bearing dataset and motor bearing
dataset. However, the diagnostic performance of this method in strong noise environments
is still unsatisfactory.

To further improve the diagnostic performance of deep learning models in noise en-
vironments (especially when SNR < 0), this paper proposes a dynamic temporal denoise
neural network with multi-head attention (DTDNet) method. Traditional denoising meth-
ods filter the signal before using neural networks to perform diagnostic tasks, which poses
a risk of information loss and the introduction of pseudofeatures. The denoise method
used in this paper is automatic noise filtering, and its working principle can be understood
as using TVD blocks to separate the useful and noisy parts of the original signal (binary
classification). A problem waiting to be solved is that the original signal containing noise is
difficult to separate in low dimensional space (such as two-dimensional space). Similar to
support vector machines (SVMs), which can more easily solve classification problems in
high-dimensional space, this paper maps the raw data to high-dimensional space and uses
adaptive filters to perform denoising, which achieves the highest diagnostic accuracy in
noisy environments. The main highlights of this paper are as follows:

(1) Efficient multi-time-resolution signal feature extraction: The short-time Fourier
transform (STFT) is used to decompose the signal to obtain different frequencies and
amplitudes, which is suitable for non-stationary signal processing in complex scenes.
Different frequencies of signal sorted by amplitude values are stacked into 2D images,
respectively, and multi-scale 2D convolution is used to extract features on the 2D image
(including intra-period and inter-period features). This method is different from the single-
time-resolution mapping method, which lacks in considering the changing characteristics
of different signals and signals at different times.

(2) Nonlinear noise filtering: The threshold unit in the temporal variable denoise (TVD)
module can dynamically and flexibly apply nonlinear processing to the signal features.
This dynamic adjustment ensures optimal noise reduction across a broad spectrum of signal
types and noise levels, without the need for manual intervention or preset thresholds that
may not be suitable for all conditions.

(3) Multi-head attention fusion weighting: The multi-head attention mechanism is
used to dynamically weight the components of the signal at different frequencies. Different
from using amplitude values at different frequencies as weighting weights, each head of
the multi-head attention mechanism focuses on different features of the signal, which can
learn rich and diverse feature representations.

The rest part of this paper is organized as follows. Section 2 details the principles of
the proposed DTDNet and the sub-modules. Section 3 conducts experimental verification.
Finally, conclusions are drawn in Section 4.

2. Methodology and Proposed Framework

The DTDNet framework proposed in this paper is shown in Figure 1. Its core modules
include temporal variable conversion (TVC), temporal 2D-feature extraction (TFE), tem-
poral variable denoise (TVD), and multi-head attention fusion (MAF), aiming to reduce
the noise in the signal and improve the classification performance of the faults. The de-
tailed information of the data used will be introduced separately in the Results section.
The individual modules of the framework will be discussed in detail in Sections 2.1–2.4.
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Figure 1. Framework of the proposed DTDNet model.

2.1. Temporal Variable Conversion and 2D-Feature Extraction Modules

It is difficult to extract features directly from one-dimensional signals with noise [32].
A common method is to stack one-dimensional signals into two-dimensional images, which
is beneficial for algorithms to extract coupling information from signals. The traditional
signal stacking method is shown in Figure 2. Assuming the number of sampling points
of the one-dimensional signal is N2, the principle involves decomposing the signal into N
segments, each with N sampling points, and then stacking these N segments into an N × N
two-dimensional tensor. This stacking method can be called single-time-resolution stacking,
where the value of N is fixed and does not consider distinctions between different signals.

Figure 2. The traditional signal stacking method.

In order to improve the signal stacking method, this paper proposed an multi-time-
resolution signal stacking method, which uses STFT to decompose the one-dimensional sig-
nal into multiple periods, and stacks the signals of different periods respectively, as shown
in Figure 3.

STFT is a time-frequency domain analysis method for time-varying signals [33]. Com-
pared with fast Fourier transform (FFT), STFT is better suited for handling non-stationary
signals. Essentially, a time-limited window function, denoted as h(t), is introduced to
the signal before undergoing Fourier transformation in STFT. For a signal with length T
and sampling points C, its original sequence is represented as X1D ∈ RT×C. In this paper,
the original one-dimensional signal X1D is assumed to be constant within a certain short
period of time, and the window function h(t) moves on the signal to convert it by segment.
The calculation formula of STFT is given by Equation (1).
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STFT( f (t)) =
∫ +∞

−∞
f (t)h(t − τ)e−jωtdt (1)

where STFT(∗) represents the calculation of STFT; f (t) is the time domain signal before
transformation, h(t − τ) is the window function, and τ is the center of the window function.
The calculation equations for using STFT to analyze time series in the frequency domain is
shown in Equations (2)–(4).

A = Avg(Amp(STFT(X1D))) (2)

{ f1, . . . , fk} = argTopk f∗∈{1,...,⌊ T
2 ⌋}(A) (3)

pi =

⌊
T
fi

⌋
, i ∈ {1, . . . , k} (4)

where Amp(∗) represents the calculation of amplitude value. Avg(∗) indicates that the
calculated amplitude of a frequency is averaged over C dimensions. Due to the conju-
gation of the frequency domain, this paper only considers frequencies within the range{

1, . . . ,
[

T
2

]}
. To avoid introducing noise from high-frequency signals, this paper only

selects the top k highest amplitude values and obtains the most significant k frequencies
through non-normalized amplitudes

{
A f 1, . . . , A f k

}
(where A fn represents the intensity

of the periodic basis function at frequency fn), along with their corresponding k periods,
where k is a hyperparameter. The value of hyperparameter k corresponds to the number
of selected frequencies, and comparative experiments are conducted in the experimental
section to determine its optimal value. Therefore, Equations (2)–(4) can be reformulated as

Period(X1D) = A, { f1, . . . , fk}, {p1, . . . , pk} (5)

Figure 3. Signal stacking with multiple temporal resolutions and multi-scale feature extraction.

Based on the selected frequencies { f1, . . . , fk} and periods {p1, . . . , pk}, this pa-
per utilizes the Equation (6) to reshape the one-dimensional time series X1D into two-
dimensional tensors.

Xi
2D = Reshapepi , fi

(sequence(X1D)) (6)

where sequence(∗) is to unfold the time series to adaptively fill the Reshape; pi and fi
respectively represent the number of rows and columns of the two-dimensional tensor;
Xi

2D ∈ Rpi× fi×C denotes the two-dimensional tensor of the frequency fi corresponding
to the one-dimensional sequence, recorded as the i-th tensor. With multiple different pi

and fi, a sequence of two-dimensional tensors
{

X1
2D, . . . , Xk

2D

}
is obtained. As shown in
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Figure 3, the columns and rows indicate the intraperiod-variation and interperiod-variation
of the signal at the corresponding frequencies.

After obtaining the sequence of two-dimensional tensors, this paper performs feature
extraction by constructing an inception block containing multi-scale 2D convolutional
kernels. The calculation formula is shown in Equation (7).

X̂l, i
2D = Inception

(
Xi

2D

)
(7)

2.2. Temporal Variable Denoise Module

In order to dynamically and flexibly reduce the noise in the input signal, the TVD mod-
ule is designed in this paper, as shown in Figure 4. For the l-th TVD block, the computation
equation is given by

TVDω

(
X̂l, i

2D

)
= LayerNorm

(
X̂l, i

2D + GLUω(η1)
)

(8)

η1 = W1, ωη2 + b1, ω (9)

η2 = ELU
(

W2, ωX̂l, i
2D + b2, ω

)
(10)

where η1 ∈ Rdmodel and η2 ∈ Rdmodel are hidden layers, and dmodel is the dimension of the
hidden layers. W∗ ∈ Rdmodel×dmodel is the weights, b∗ ∈ Rdmodel is the bias, and ω represents
the shared parameters of the weights. LayerNorm(∗) is standard layer normalization.
ELU(∗) is the exponential linear unit activation function. When W2, ωX̂l, i

2D + b2, ω ≫ 0,
the ELU activation function will act as an identity function; when W2, ωX̂l, i

2D + b2, ω ≪ 0,
the ELU activation function will produce a constant output. GLUω(∗) is a gating layer
based on gated linear units, which functions to suppress the unnecessary parts (noise in
this paper). When β ∈ Rdmodel is taken as input, the expression of GLU is

GLUω(β) = σ(W3, ω β + b3, ω)⊙ (W4, ω β + b4, ω) (11)

where σ(∗) is the sigmoid activation function, and ⊙ is the Hadamard product of elements.
GLU can be used to control the passage of data information flow in TVD blocks, thereby
achieving the purpose of nonlinear filtering of signal. In this paper, the number of TVD
blocks is set to 1.

Figure 4. TVD module that can perform non-linear signal filtering.

2.3. Multi-Head Attention Fusion Module

X̂L, k
1D =

{
X̂l, 1

1D , . . . , X̂l, k
1D

}
is the output vector after the denoising of the TVD module

(L is the total number of TVD blocks). This paper adopts the MAF module to dynamically
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weight the components of the signal at different frequencies. Different from using the
amplitudes in the frequency domain as the weight, the proposed weighting method can
effectively capture the critical information.

Qi (Query), Ki (Key), and Vi (Value) matrices are used to calculate the attention weights,
respectively; Qi = X̂L, k

1D WQ
i , Ki = X̂L, k

1D WK
i , and Vi = X̂L, k

1D WV
i (i represent the i-th head).

The calculation equation of the attention weights of the i-th head is as follows

Attentioni(Qi, Ki, Vi) = so f tmax

(
QiKT

i
dattn

)
Vi (12)

where dattn is used to scale the inner product to avoid the input of the so f tmax(∗) function
being too large or too small. Concatenate the output vectors of multiple heads to obtain the
matrix Z.

Z = concat(Attention1, . . . , Attentioni) (13)

A linear transformation is applied to the matrix Z to obtain the weighted feature
information output hattn.

hattn = Z × W (14)

where W is the weight matrix that can be trained.

2.4. Training Strategy of the Proposed Model

The forward propagation process of the proposed DTDNet for both single-sensor
and multi-sensor data during training is illustrated in Figure 5. For the rolling bearing
data collected by a single sensor, the 2D images of the signal at different time resolutions
are obtained after STFT decomposition. Then the inception block with the multi-scale 2D
convolution kernel can be used to captured the feature information. The TVD module
provides a channel for denoising the feature information. The features are weighted by the
MAF module to obtain a one-dimensional tensor, which is then processed through the linear
layer of the neural network to obtain the category of the fault. For real aircraft attitude
measurement data with multiple sensors, the DTDNet is utilized to perform denoising on
different sensors. Finally, the multiple denoised one-dimensional tensors are spliced as the
input of the neural network classification layer, yielding the category of the fault.

Figure 5. The forward propagation process of DTDNet.

To reduce computational costs, increase training speed, and save computing resource
space while maintaining model performance, this paper chooses the optimization strategy
of mixed precision calculation in the DTDNet model training, as depicted in Figure 6.
During the forward propagation of the model training, BFloat16 precision parameters are
utilized. During the backward propagation of gradients, to avoid numerical underflow
caused by gradient scaling, this paper employs Adam optimizer with Float32 precision.
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Figure 6. Mixed precision calculation method used by DTDNet.

3. Results

In this section, the performance of the proposed model is verified on the dataset of Case
Western Reserve University bearing data [34] and the real aircraft sensor fault [35]. The code
is written on the platform of Data Science Workshop with Python 3.8. The training of the
model is completed on an integrated development platform, which has one Nvidia-A100
GPU with 80 GB video memory.

3.1. Evaluation Metrics

Following common settings, four evaluation metrics (Accuracy, Precision, F1, and
Recall) are used to evaluate the performance of the model [36]. Table 1 depicts the corre-
spondence between the predictions of DTDNet and the true labels.

Table 1. Confusion matrix of predictions and labels.

Predictions (Positive) Predictions (Negative)

Labels (Positive) TP FN
Labels (Negative) FP TN

Expanding to the multi-classification tasks (taking n classes as an example), the values
of

−→
TP (True Positive),

−→
FP (False Positive),

−→
FN (False Negative), and

−→
TN (True Negative)

are n-dimensional vectors, where n represents the number of classes in the dataset (in this
study, n = 10 and 6, respectively). In Equation (15), each dimension of the vector represents
a specific value for a particular class.

−→
TP =

∣∣∣∣∣∣∣∣
TP0
TP1
· · ·
TPn−1

∣∣∣∣∣∣∣∣ (15)

Assuming there are M samples, for a specific sample S , the true label for the kth
(k ∈ [0, n − 1]) specific class is denoted as Lk, and the predicted class is denoted as Pk.

Lk = 1, Pk = 1, then TPk = 1
Lk = 0, Pk = 1, then FPk = 1
Lk = 0, Pk = 0, then TNk = 1
Lk = 1, Pk = 0, then FNk = 1

(16)
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The
−→
TPS for sample S is formed by combining the aforementioned results into a vector.

−→
TPS =

∣∣∣∣∣∣∣∣
TP0
TP1
· · ·
TPn−1

∣∣∣∣∣∣∣∣ (17)

The final result of
−→
TP is a vector obtained by summing the results for M samples.

−→
TP =

−→
TP0 +

−→
TP1 + · · ·+−→

TPM−1 (18)

Using the same calculation steps and methods as the above,
−→
FP,

−→
FN, and

−→
TN can be

obtained, respectively. The calculation formulas for evaluation metrics are as follows:

Accuracy =

∣∣∣∣∣
−→
TP +

−→
TN

−→
TP +

−→
TN +

−→
FN +

−→
FP

∣∣∣∣∣ (19)

Precision =

∣∣∣∣∣
−→
TP

−→
TP +

−→
FP

∣∣∣∣∣ (20)

F1 =

(
2 × prec × rec

prec + rec

)
(21)

Recall =

∣∣∣∣∣
−→
TP

−→
TP +

−→
FN

∣∣∣∣∣ (22)

3.2. Case Western Reserve University Bearing Dataset

SKF rolling bearing of model 6205-2RS is employed in Case Western Reserve University
(CWRU) bearing dataset, which is provided by Case Western Reserve University in the
United States. Vibration signals of the rolling bearing are collected at a sampling frequency
of 48 kHz. The test platform is shown in Figure 7. Single-point faults are induced in the
ball, inner raceway, and outer raceway, with fault diameters of 0.178 mm, 0.356 mm, and
0.532 mm, respectively. Therefore, the dataset contains 10 types of labels (9 for faults and
1 for normal). In order to facilitate feature extraction, the collected signals are subjected to
min-max normalization to limit the preprocessed data within a certain range. The dataset
is noise-free, and the current methods for solving fault diagnosis under noise environment
are generally implemented by adding noise to the pure dataset. Therefore, the Gaussian
white noise is used to simulate the interference in real scenes to verify the ability of the
proposed method. The comparison of the original signal and the noise signals are shown in
Figure 8. The equation for the SNR is shown in (23):

SNR = 10 log
(Psignal

Pnoise

)
(23)

where Psignal and Pnoise represent the effective power of the signal and noise, respectively.
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Figure 7. CWRU rolling bearing test platform [34].

(a) Original Signal (b) Noisy Signal (SNR = 4 dB)

(c) Noisy Signal (SNR = 2 dB) (d) Noisy Signal (SNR = 0 dB)

(e) Noisy Signal (SNR = −2 dB) (f) Noisy Signal (SNR = −4 dB)

(g) Noisy Signal (SNR = −6 dB) (h) Noisy Signal (SNR = −8 dB)

Figure 8. The comparison of the original signal and the noise signals.

3.2.1. Comparison with Traditional Algorithms

In order to verify the effectiveness of the proposed DTDNet, five algorithms were
used for comparative experiments, including 1D-CNN [37], 1D CNN with LSTM [38],
2D CNN with ELM [39], Pretrained Alexnet [40], deep convolutional neural networks
with wide first-layer kernels (WDCNN) [41], and the state-of-the-art method JL-CNN [31].
The original vibration signal data were divided into 4096 segments and shuffled (a total
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of 9289); 80% of the data were used as training data, and the remaining data were used
as test data. Optimization is performed using Adam with default parameters. The initial
learning rate is set to 5 × 10−5 , the batch size is set to 8, and the dropout rate is set to 0.5.
The variation range of SNR in the experiment was set from −8 to 4 dB, with a step size
of 2. The number of iterations of the experiment was set to 50. As the iteration proceeds,
the changes in the four evaluation indicators for fault diagnosis using DTDNet are shown
in Figure 9. The diagnostic accuracy of DTDNet is obviously affected by the noise in the
data, but it still has excellent diagnostic capabilities for signals under different SNRs and
ensures convergence performance.

(a) Accuracy (b) Precision

(c) F1 (d) Recall

Figure 9. Diagnostic results of the proposed DTDNet under different SNRs.

The comparison results with other algorithms are shown in Table 2. 1D CNN is limited
by feature extraction capability, and its diagnostic performance is much lower than that of
other algorithms. By combining the long-range dependency information extraction ability
of LSTM, 1D CNN with LSTM has better diagnostic accuracy than 1D CNN. Algorithms
based on 2D CNN have the ability to capture more complex features. However, 2D CNN
with ELM and Pretrained AlexNet are difficult to handle fault diagnosis tasks under
low SNR, especially when the SNR is −8. WDCNN and JL-CNN have more advanced
diagnostic performance, among which JL-CNN integrates fault diagnosis tasks and signal
denoising tasks into an end-to-end CNN architecture, achieving good noise robustness
through dual task joint learning. The proposed DTDNet can maintain excellent diagnostic
performance under low SNR. It has 94.56% and 97.47% classification accuracy at −8 dB and
−6 dB, respectively, which are 31.35% and 15.51% higher than the suboptimal algorithm
JL-CNN. In all SNR experiments, DTDNet achieved the best diagnostic accuracy, which
verifies the effectiveness of the method proposed in this paper. In addition, to compare
the computational costs of different methods, we mainly compared the inference time
of WDCNN, JLCNN, and the proposed method. The results indicate that the method
proposed in this paper has good inference speed. For 4096 sequence samples, this method
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can provide diagnostic results at an average speed of 13.07 ms, which means that the sensor
of the tested device can sample at frequencies greater than 300 kHz. Although WDCNN
and JLCNN have good inference time results, the method proposed in this manuscript has
significant advantages in diagnostic accuracy and can meet the needs of practical tasks.

Table 2. The comparison experiments on CWRU.

Algorithm
SNR

Average
−8 −6 −4 −2 0 2 4

1D CNN [37]

Acc 14.72 18.45 26.31 33.97 39.11 43.25 48.49 32.04
Pre 14.24 15.37 23.83 30.86 41.58 47.18 55.96 32.72

Recall 14.45 18.25 26.47 34.49 39.46 43.93 49.24 32.33
F1 14.25 15.95 24.59 31.67 38.39 42.05 48.24 30.74

1D CNN with LSTM [38]

Acc 17.54 30.85 40.63 49.09 56.45 70.16 81.25 49.42
Pre 18.27 31.05 41.37 49.83 57.26 70.27 81.26 49.9

Recall 17.80 31.70 41.41 50.46 57.92 71.55 82.25 50.44
F1 17.93 31.20 41.13 50.05 57.49 70.68 81.50 50

2D CNN with ELM [39]

Acc 18.04 29.64 42.24 61.90 79.54 88.00 93.95 59.04
Pre 19.29 30.29 43.01 62.89 80.63 88.62 94.42 59.88

Recall 18.34 30.40 42.88 63.18 80.80 88.56 94.42 59.8
F1 18.66 30.17 42.58 62.49 80.12 88.52 94.36 59.56

Pretrained AlexNet [40]

Acc 31.25 48.29 55.95 69.15 91.03 72.28 95.97 66.27
Pre 38.43 54.57 64.84 72.61 92.73 84.59 96.31 72.01

Recall 32.17 48.88 56.68 69.84 91.51 72.57 96.19 66.83
F1 26.86 47.58 54.45 67.71 91.01 70.86 96.07 64.94

WDCNN [41]

Acc 30.65 68.15 77.42 77.52 97.38 87.50 98.59 76.74
Pre 23.98 56.92 63.73 64.32 97.43 80.98 98.68 69.44

Recall 31.26 69.60 79.17 79.16 97.56 88.79 98.63 77.74
F1 23.51 61.84 70.14 70.40 97.44 84.28 98.65 72.32

Time (ms) 0.111 0.109 0.112 0.103 0.108 0.105 0.103 0.107

JL-CNN [31]

Acc 63.21 81.96 93.15 90.52 96.88 99.40 99.90 89.29
Pre 66.21 83.66 93.82 91.35 97.17 99.42 99.91 90.22

Recall 64.69 82.71 93.64 91.39 97.14 99.41 99.90 89.84
F1 65.23 83.08 93.69 91.34 97.15 99.41 99.91 89.97

Time (ms) 0.21 0.212 0.206 0.204 0.209 0.209 0.203 0.208

Proposed DTDNet

Acc 94.56 97.47 96.66 97.79 99.25 98.76 99.35 97.69
Pre 85.75 87.88 87.44 98.31 99.13 97.3 98.62 93.49

Recall 87.86 89.71 89.14 94.37 97.76 96.27 98.63 93.39
F1 86.71 88.75 88.2 95.55 98.36 96.71 98.63 93.27

Time (ms) 12.98 13.26 13.2 12.97 12.96 13.16 12.99 13.07

3.2.2. Ablation Analysis

The schematic diagram of using STFT to decompose the CWRU signal is shown in
Figure 10. The original signal is decomposed by STFT to obtain the top 3 sorted frequencies,
and the signal segment is stacked based on the obtained 3 frequencies. To demonstrate
the effectiveness of STFT, this work sets up 7 sets of experiments with SNR ranging from
−8 to 4 dB and a step size of 2. The hyperparameter k (number of stacked images) ranges
from 2 to 8 with a step size of 2. The experimental results are shown in Table 3. Applying
STFT decomposition can effectively improve the diagnostic accuracy, especially when the
k is large, which reveals the powerful ability of STFT to handle non-stationary signals.
As the k increases, the model can capture more detailed information, which is beneficial to
providing more accurate diagnostic results. When the k reaches 8, the average accuracy of
the model in 7 sets of experiments is 97.69%, which is an improvement of 5.19% compared
to applying FFT.
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Figure 10. STFT decomposition on CWRU signals.

Table 3. The diagnostic accuracy (%) of different decomposition methods on CWRU.

Algorithm k
SNR

Average
−8 −6 −4 −2 0 2 4

FFT

2 89.71 90.19 91.11 90.41 93.05 94.34 91.81 91.52
4 92.81 89.33 88.2 93.21 93.16 92.4 96.28 92.2
6 90.52 91.65 92.35 94.23 96.23 94.72 92.73 93.2
8 80.87 93.64 93.86 94.07 95.26 95.1 94.78 92.51

STFT

2 88.42 89.44 88.58 91.49 92.13 93.97 91.06 90.73 (↓ 0.52)
4 94.45 94.07 95.37 94.83 94.23 96.55 94.94 94.92 (↑ 2.72)
6 94.45 96.12 96.28 97.14 96.5 97.74 99.03 96.75 (↑ 3.55)
8 94.56 97.47 96.66 97.79 99.25 98.76 99.35 97.69 (↑ 5.19)

The ablation analysis results of TVD and MAF modules are shown in Figures 11, 12
and 13 respectively. For the TVD module, this work sets up 3 sets of experiments at SNRs
of −8, −2 and 4 dB. It can be clearly observed that adding the TVD module can effectively
improve the diagnostic accuracy of the model, especially when the SNR is −2 dB (23.33%
improvement in accuracy). In Figure 12, it can be observed that the diagnostic performance
of the model is further improved after adding the TVD module, even when facing the
problem of class imbalance (category label 4). For the MAF module, this work sets up 7 sets
of experiments with SNR ranging from −8 to 4 dB and a step size of 2. Figure 13 shows the
results from the 41st iteration to the 50th iteration. It can be found that by adding the MAF
module, the model can achieve higher diagnostic accuracy and make the final accuracy
change curve smoother.

(a) Accuracy (b) Precision

Figure 11. Cont.
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(c) F1 (d) Recall

Figure 11. The ablation analysis results of TVD module.

(a) SNR = −8 dB (b) SNR = −2 dB (c) SNR = 4 dB

(d) SNR = −8 dB (e) SNR = −2 dB (f) SNR = 4 dB

Figure 12. Ablation experiments on TVD modules under different SNRs. (TVD is not included in
experiments (a–c). TVD is included in experiments (d–f)).

(a) Accuracy (b) Precision

Figure 13. Cont.
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(c) F1 (d) Recall

Figure 13. The ablation analysis results of MAF module.

3.2.3. Comparison of Training Efficiency

The optimization strategy of mixed precision calculation is applied to the training of
DTDNet. The results of the model trained with 2 precisions of Float 32 and Float 64 in
terms of diagnostic accuracy, video memory, and iteration time are shown in Figure 14.
Applying mixed-precision calculations will slightly reduce the diagnostic accuracy of the
model (0.12% of the Float 64), greatly reduce memory consumption (43.65% of Float 64)
and iteration time (16.22% of Float 64), and improve the efficiency of training models.
This is not a task-dependent strategy and can be embedded in the training of other deep
learning models.

Figure 14. Results of different calculation strategies in terms of diagnostic accuracy, video memory
consumption, and iteration time.

3.3. Real Aircraft Sensor Fault Dataset
3.3.1. Dataset Description

In this study, this work conducted real aircraft data collection using a 78-inch EXTRA
300 NG (owned by Fudan University, Shanghai, China) fixed-wing unmanned aerial vehicle
(UAV) equipped with the CUAV X7+ PRO (owned by Fudan University, Shanghai, China)
flight control system, as depicted in Figure 15. This UAV is equipped with a range of sensors,
including the CUAV C-RTK 9P GPS, SMV-1 non-contact Hall principle angle measuring
vane (owned by Fudan University, Shanghai, China), and ADM800 altitude/airspeed meter
(owned by Fudan University, Shanghai, China). Notably, many aviation accidents have
been attributed to the Pitot tube becoming obstructed, leading to airspeed-related issues.
Consequently, drift faults (manifesting as measurement loss) are taken into consideration
for airspeed sensors (Vm). As for angle of attack (AOA, αm) and sideslip angle sensors (βm),
potential issues may arise from deflection vanes getting stuck or perturbed by external
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atmospheric conditions, giving rise to drift (constant bias) and additional noise faults.
As detailed in Table 4, a total of five distinct fault cases are explored. By combining the
normal data, this work has established a real aircraft sensor fault dataset that encompasses
6 categories. Gaussian white noise with different SNRs (−4, 0, 4, 6, 8, 10, and 20 dB) was
added to the signals, and the results are shown in Figure 16.

Figure 15. Configurations of the UAV adopted in this paper.

Table 4. Aircraft sensors fault cases adopted in this paper.

Case Sensor Fault Type Magnitude *

5 βm extra noise 5◦∼10◦

4 βm drift ±(5◦∼10◦)
3 αm extra noise 5◦∼10◦

2 αm drift ±(5◦∼10◦)
1 Vm drift −(50%∼100%)

0 clean measurement with noises and disturbances, no fault
* Noise standard deviation and drift values defined in this column.

(a) Original Signal (b) Noisy Signal (SNR = 20 dB)

Figure 16. Cont.
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(c) Noisy Signal (SNR = 10 dB) (d) Noisy Signal (SNR = 8 dB)

(e) Noisy Signal (SNR = 6 dB) (f) Noisy Signal (SNR = 4 dB)

(g) Noisy Signal (SNR = 0 dB) (h) Noisy Signal (SNR = −4 dB)

Figure 16. The comparison of the original signal and the noise signals.

3.3.2. Comparison and Ablation Analysis

On the Real aircraft sensor fault dataset, this work sets up experiments with 7 SNR
conditions. The original vibration signal data was divided into 4096 segments and shuffled
(a total of 11,028); 90% of the data was used as training data, and the remaining data
was used as test data. Optimization is performed using Adam with default parameters.
The initial learning rate is set to 5× 10−5, the batch size is set to 8, and the dropout rate is set
to 0.5. The number of iterations of the experiment was set to 50. As the iteration proceeds,
the changes in the 4 evaluation indicators for fault diagnosis are shown in Figure 17. It
can be clearly observed that compared to the results of the CWRU dataset in Figure 9,
the performance of DTDNet shows a downward trend due to factors such as redundant
information from multiple sensors and strong noise background. Especially when the SNR
is 6, this work visualizes the ROC curve results of the model performing fault diagnosis as
the iteration progresses, as shown in Figure 18, which demonstrate the excellent diagnostic
results of the model for various categories of data. The schematic diagram of using STFT to
decompose the aircraft sensor signal is shown in Figure 19, and it can be clearly observed
in the stacking results that the information between cycles is captured. The results of the
ablation experiments on STFT are shown in Table 5. Applying STFT can effectively improve
the diagnostic accuracy of the model, especially when the k is 2 (a 3.52% improvement
compared to FFT). Different from the results of the CWRU dataset, when the k value is too
large (8), more interference information will be introduced, resulting in a decrease in the
performance of the model. The comparison results with advanced methods WDCNN and
JL-CNN and ablation analysis results for TVD and MAF modules are shown in Table 6.
The method proposed in this paper achieves a 29.76% improvement compared to JL-CNN,
verifying the effectiveness of the TDTNet. It can also be found that only adding the MAF
module can bring a slight improvement in diagnostic accuracy to the model, especially
at low SNR (−4). The role of the TVD module is even more significant, which verifies its
effectiveness in performing signal processing in noisy environments.
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(a) Accuracy (b) Precision

(c) F1 (d) Recall

Figure 17. Diagnostic results of the proposed DTDNet under different SNRs.

(a) Iteration is 0 (b) Iteration is 10 (c) Iteration is 20

(d) Iteration is 30 (e) Iteration is 40 (f) Iteration is 49

Figure 18. Fault diagnosis results of ROC curve.
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Figure 19. The STFT decomposition results on the real aircraft sensor fault signal.

Table 5. The diagnostic accuracy (%) of different decomposition methods on real aircraft sensor
fault dataset.

Algorithm k
SNR

Average
−4 0 4 6 8 10 20

FFT

2 62.86 77.14 83.57 77.86 94.11 95.71 98.93 84.31
4 67.32 59.11 78.93 81.43 94.11 88.57 99.82 81.33
6 52.5 66.07 66.96 84.64 90.54 95.71 96.07 78.93
8 54.11 68.04 75.54 88.75 90 93.57 94.11 80.59

STFT

2 71.79 78.75 81.07 90.89 96.43 96.07 99.82 87.83 (↑ 3.52)
4 57.68 63.57 83.39 95.54 91.07 91.61 99.82 83.24 (↑ 1.91)
6 55.54 63.75 80.89 87.86 88.57 91.43 99.82 81.12 (↑ 2.19)
8 56.07 60.89 68.21 80.18 84.29 85.18 96.07 75.84 (↓ 4.75)

Table 6. The comparative and ablation experiments on real aircraft sensor fault dataset.

Algorithm
SNR

Average
−4 0 4 6 8 10 20

WDCNN [41]

Acc 33.69 37.73 40.95 45.45 44.26 45.17 68.01 45.04
Pre 26.53 30.67 32.83 49.03 33.28 38.55 63.26 39.17

Recall 33.67 38.01 40.81 45.73 43.94 45.29 68.24 45.10
F1 28.67 31.26 34.01 40.69 35.87 37.60 63.23 38.76

JL-CNN [31]

Acc 43.47 46.78 54.14 57.81 61.12 64.15 70.50 56.85
Pre 37.88 42.16 48.27 52.17 56.29 58.08 61.76 50.94

Recall 43.47 46.82 54.16 57.64 60.83 64.67 70.54 56.88
F1 38.70 42.82 49.34 53.20 57.09 59.62 65.02 52.26

Without TVD without MAF

Acc 52.14 58.04 71.25 71.79 89.11 88.57 98.75 75.66
Pre 43.24 49.43 75.57 74.27 91.03 90.68 98.83 74.72

Recall 54.15 58.27 73.35 71.21 89.75 88.26 98.66 76.24
F1 46.96 52.81 71.9 71.85 89.51 88.9 98.71 74.38

Without TVD With MAF

Acc 56.07 71.07 78.04 84.47 83.93 92.14 99.82 80.79
Pre 47.87 72.92 86.24 88.15 84.89 93.26 99.82 81.88

Recall 58.87 72.64 79.19 85.31 84.16 92.87 99.81 81.84
F1 49.05 71.8 76.62 84.67 84.42 92.07 99.82 79.78
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Table 6. Cont.

Algorithm
SNR

Average
−4 0 4 6 8 10 20

With TVD Without MAF

Acc 68.57 75.71 82.86 85.89 91.78 94.82 98.57 85.46
Pre 70.14 72.79 85.1 87.27 92.08 95.18 98.64 85.89

Recall 69.18 73.31 83.45 86.18 91.69 95.17 98.5 85.35
F1 69.49 72.52 83.06 85.54 91.49 95 98.48 85.08

With TVD With MAF

Acc 71.25 74.46 83.21 87.32 93.39 96.61 100 86.61
Pre 66.46 72.78 84.69 88.96 94.64 96.69 100 86.32

Recall 71.22 72.88 83.76 86.87 93.33 96.67 100 86.39
F1 66.76 71.36 84.05 87.22 93.6 96.62 100 85.66

4. Conclusions

To address noise-induced challenges in fault diagnosis of mechanical systems, this
paper proposes the DTDNet model. Unlike the traditional approach of using denoising tools
for noise reduction before using neural networks for fault diagnosis, which carries the risk
of affecting important features in the signal and introduces some pseudofeatures, DTDNet
uses a multi-scale convolutional network to extract features from the signal and then uses
the TVD denoising module to perform non-linear processing on the features. Using STFT
to decompose signals at multiple time resolutions is beneficial for the network to extract
more important feature information and avoids the high constraints of FFT on signal
stability. The inclusion of TVD and MAF modules further boosts diagnostic precision on
both datasets, especially in low SNR conditions. Compared to existing methods such as 1D
CNN, 1D CNN with LSTM, 2D CNN with ELM, Pretrained Alexnet, WDCNN, and JL-CNN,
the proposed DTDNet demonstrates superior diagnostic accuracy. DTDNet has powerful
noise reduction and feature extraction capabilities, and future work will focus on verifying
the effectiveness of the model in other tasks, such as signal detection for current signatures
and acoustic sound, and exploring its practical deployment through mobile devices, aiming
to improve accessibility and effectiveness in different deployment environments.
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