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1 Faculty of Geoengineering, University of Warmia and Mazury, 10-957 Olsztyn, Poland;
ewa.daniszewska@uwm.edu.pl

2 Faculty of Technical Sciences, University of Warmia and Mazury, 10-957 Olsztyn, Poland;
jakub.banach@uwm.edu.pl (J.B.); smieja@uwm.edu.pl (M.Ś.)
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Abstract: Shock and vibration hazards to civil structures are common and come not only from
earthquakes but most often from mining operations or foundation work involving the installation of
piles using hammer-driving and vibrating technology. The purpose of this study is to present test
methods for low-cost MEMS accelerometers in terms of their selection for low-amplitude acceleration
vibration-prone object-monitoring systems. Tests of 24 commercially available digital accelerometers
were carried out on a custom-built test bench, selecting four models for detailed tests conducted on a
specially built precision vibration table capable of inflicting accelerations at frequencies of 1–2 Hz,
using displacements as small as a few micrometers. The analysis of the results was based, among
other things, on a modified method of determining the signal-to-noise ratio (SNR) and also on the
idea of the effective number of bits (ENOB). The results of the analysis showed that among low-cost
MEMS accelerometers, there are some that are successfully suitable for the monitoring and warning
of excessive vibration hazards in situations where objects are extremely sensitive to such impacts (e.g.,
treatment rooms in hospitals). Examples of accelerometers capable of detecting harmonic vibrations
with amplitudes as small as 10 mm/s2 or impulsive shocks with amplitudes of at least 70 mm/s2

are indicated.

Keywords: low-cost MEMS accelerometer; low-frequency testing; detection of low amplitude
vibrations; digital minimum threshold

1. Introduction
1.1. Background for the Genesis of the Research Topic

An earthquake is a phenomenon that occurs below the earth’s surface, but its effects
are felt at the surface as one of the most deadly and devastating sources of hazards affecting
local communities and the environment [1]. Most seismic phenomena are the result of
natural stresses that develop at tectonic plate boundaries. The released energy then travels
in the form of a shock wave (seismic wave), which causes sudden rupture and slippage
along fault lines. Seismic activity can also be the result of human activity [2], so-called
anthropogenic quakes. Seismic phenomena caused by mining tremors first began to be
studied after a series of earthquakes in the vicinity of a gold mine near Johannesburg
(South Africa) in 1894 [3]. Since then, additional types of human-induced seismicity have
been unraveled, including earthquakes associated with groundwater extraction [4], oil
and gas extraction [5,6] deposit dumping and fluid injection [7], and hydroelectric dam
construction [8]. Determining whether a given earthquake is natural or induced is not
easy, since those recorded on the seismogram look very similar. Seismic records generated
by seismographs determine the location, depth, and, most importantly, magnitude of a
seismic event. As Ramirez-Zelaya et al. [9] point out, many sensors of this type have certain
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limitations, most often concerning the measurement of displacements (land surface) in
higher frequency bands. Lei Li et al. [10] state that with traditional methods, measuring
accurate microseismic velocity inversion is challenging due to the low signal (useful)-to-
noise ratio of field data.

“Sources of vibrations” can also be dynamic loads from railroad [11] and road traf-
fic [12], the operation of construction equipment especially with vibration effects (slabs and
rollers), machinery (hammers, presses), explosions [13], blasts [14], and collision events.
Ground vibrations caused by rock mass shaking, but also vibrations generated during pile
driving [15], propagate through the ground and can result in damage to surface structures
(buildings, bridges, tunnels) and vibration-sensitive equipment. The noticeable increase in
the requirements for providing protection against vibrations of buildings and people in
them, as well as the observed steady increase in both the number of vibration sources and
their intensity, have contributed to the inclusion of such impacts in the design procedure
and diagnosis of buildings [16,17]. Criteria for the evaluation and control of dynamic
influences have been included in standards (e.g., [18,19]). The standard in [20] recommends
that “inspections should be carried out at the design, execution and maintenance stages”.
Sensors are installed at selected locations in the structure to record changes in physical val-
ues relevant to the safety of the facility, tunnel, or rock mass. The installation of structural
measuring devices on a facility should be due not only to the need to meet the relevant
construction law but primarily for reasons of safety in the implementation of construction
work (not allowing failure or disaster) and the continued operation of the existing facility
without exposing users to unreasonable costs [21].

1.2. MEMS Accelerometer Applications in the Context of Safety Monitoring

In 2010, a strong earthquake occurred in Darfield, New Zealand, after which the
use of nearly 200 low-cost micro-electromechanical accelerometers was immediately de-
ployed [22]. Electromechanical microsystems [23] are a collection of mechanical, electronic,
and electrical devices that are highly miniaturized and integrated with each other. In a way,
they are “smart” systems that combine electronic and mechanical components operating
in a small space. The use of MEMS (Micro Electromechanical Systems) in seismology and
related fields is relatively new. In addition to applications strictly related to earthquake
observation and monitoring, MEMS sensors are also used for seismic research and imaging,
vibration monitoring, and diagnostics of building structures [24–26]. Traditional seismic
sensors are analog, based on the principle of spring-mass to achieve high-precision measure-
ments, but they also have a large mass and are heavy, making them bulky and difficult to
transport and use. They are also usually very expensive. On the other hand, there are minia-
turized sensors that are easy to carry, install, and maneuver. The advances made in MEMS
technology have opened the door to new applications in the broad field of seismology with
innovative solutions. MEMS accelerometers, of course, have some shortcomings. The team
of Scudero et al. [27], in addition to the numerous advantages, list the disadvantages of
microsensors, including the noise level, which in the best accelerometer is about −100 dB.
Another disadvantage is the relatively poor response at low frequencies, suggesting that
the measurement of strong seismic movements is more suitable for MEMS sensors. In a
technical note [28], we find the following notation: “Traditional broadband seismometers
and tiltmeters do not have the range to measure strong seismic events and traditional strong
motion sensors do not have the sensitivity or stability to make good long-term geodetic
measurements. Quartz Crystal Triaxial Accelerometers, with parts-per-billion resolution,
can measure strong earthquakes without clipping and can use the invariance of Earth’s 1 g
gravity vector as a reference for long-term measurements”. However, MEMS technology is
evolving so rapidly that improved versions of products are constantly being released to
better meet the technical requirements for optimal earthquake monitoring.

A comprehensive review of the various applications of MEMS accelerometers, includ-
ing with particular emphasis on their suitability for vibration monitoring, can be found
in the review paper by Binali et al. [29]. Attention is drawn to the fact that the analysis
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of vibrations recorded by MEMS sensors is very useful in monitoring the condition of
buildings or machine components, as it successfully enables the detection of the causes
of the most common failures or defects. MEMS accelerometers are becoming an essen-
tial component of systems for predicting and monitoring the condition of engineering
structures, thus preventing unexpected failures and costly repairs. Low-cost sensors of
this type have already found practical applications for monitoring the technical condition
of buildings—Lin et al. [30] demonstrated the usefulness of MEMS accelerometers using
the example of observation of a public building in constant operation and located in an
area where periodic earthquakes occur. The observation system was characterized by
low-cost MEMS accelerometers with low intrinsic noise that were capable of recording
low-frequency, low-amplitude dynamic responses.

The commercialization of MEMS accelerometers typically focuses on minimizing their
manufacturing costs, followed by optimizing their power requirements, and finally their
reliability. In the case of MEMS accelerometers with a design solution dedicated to seismic
issues, the problem of achieving a sufficiently low noise level (i.e., 1 µg/

√
Hz) remains

a major technological challenge [31]. Current commercially available accelerometers of
this class are expensive but can function as short-period seismometers for measuring
ground vibrations with frequencies in the range of 0.1–10 Hz and even as broadband
seismometers recording seismic signals with frequencies starting as low as 0.01 Hz [32].
Many publications address the problem of determining the static characteristics of ac-
celerometers. However, the dynamic characteristics are more interesting from the point
of view of monitoring vibrations that threaten engineering structures. Wang et al. [33]
presented the problem of determining the performance of accelerometers under complex
dynamic loading circumstances. They compared a standard capacitive accelerometer with
an accelerometer constructed by their own design, proving that it is suitable for measuring
low-frequency vibrations in the 0.5–5 Hz range. It should be noted that before MEMS
technology was applied to seismology, there were colossal differences between geophone
and seismometer/seismograph type devices, both in terms of the idea of operation, de-
sign and the resulting detailed applications. While seismometers are typically designed
to detect extremely small ground displacements, with frequencies ranging from 0.01 to
50 Hz, the frequency bandwidth of geophones is usually in the range of 1–15 Hz [26]. The
development of design solutions for digital geophones, whose shock-sensitive element is a
MEMS sensor, has made it possible for them to record vibrations containing an extremely
wide frequency bandwidth reaching as high as 500 Hz [34], which has meant that the limit
of possibilities and applications separating geophones and seismometers is no longer clear.

There is no doubt that the observation and registration of vibrations having natural
sources as well as those originating from human activities is an important and current
topic of scientific research. However, the literature lacks test procedures and interpretive
methods for evaluating the suitability of MEMS accelerometers for recording low-frequency
oscillations with maximum amplitudes that lie at the limit of their intrinsic noise. This
paper presents the results of a study of 24 accelerometers, analyzing their properties with
a view to the feasibility of designing and implementing portable and low-cost devices
for monitoring dynamic impacts on building structures. Special emphasis was placed
on testing procedures and the interpretation of results in the context of evaluating the
utility of the selected MEMS accelerometers in low-frequency and low-amplitude vibration
monitoring systems for the safe operation of particularly sensitive building structures, such
as hospitals with surgical operating rooms.

2. Materials and Methods

The in-depth analysis, which is based on specially developed equipment and test
procedures, consists of two main stages:

• Initial selection of sensors based on an assessment of the stability of their readings;
• Analysis of selected sensors in terms of the minimum acceleration amplitude threshold that

can be correctly identified and interpreted by algorithms running in embedded systems.
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2.1. Stage I: Stability Testing
2.1.1. Selection of MEMS Accelerometers for Stability Testing

Twenty-four commercially available digital MEMS accelerometers were selected for
this study—a summary of their most important parameters is presented in Table 1. It should
be noted that some of them, despite their long existence in commerce and constantly emerg-
ing new technological solutions, are constantly in high demand among engineers/designers
of various types of IMU systems (e.g., ADXL345, MPU6050, etc.). It is obvious that the
presented selection of accelerometers may seem biased, but the authors assure that they
were guided by total “randomness” when purchasing these devices, and the only criterion
was “off-the-shelf” availability confirming the popularity of the technological solutions
they represent.

Table 1. The most important parameters of the analyzed accelerometers.

Name Acc. Range
[±g]

Resolution
[bits]

Sensitivity
[LSB/g]

Max. Output
Data Rate

[Hz]

Max.
Bandwidth

[Hz]

Nonlinearity
[±%FS]

Current Con-
sumption

[mA]

Oper.
Temp.
Range

[◦C]

Approx.
Cost *

[$]

ADXL313 0.5:4.0 10:13 128:1024 3200 0.5 DR *** 0.5 0.300 −40:105 21.38

ADXL343 2.0:16.0 10:13 32:256 3200 0.5 DR 0.5 0.140 −40:85 8.16

ADXL345 2.0:16.0 10:13 32:256 3200 0.5 DR 0.5 0.140 −40:85 3.80

BMA220 2.0:16.0 5:8 2:16 1000 32:1000 2.0 0.250 −40:85 6.04

BMA400 2.0:16.0 11 128:1024 800 0.48 DR 0.5 0.015 −40:85 9.55

BMI160 2.0:16.0 16 2048:16,384 3200 0.22:0.43 DR 0.5 0.600 −40:85 4.16

BMI270 2.0:16.0 16 2048:16,384 1600 0.43:0.46 DR 0.5 0.970 −40:85 17.82

H3LIS331DL 100:400 12 49:195 1000 0.5 DR 2.0 0.370 −40:85 17.20

IIM42352 2.0:16.0 16 2048:16,384 32,000 4000 (1650 **) 0.1 0.280 −40:105 32.39

ISM330DHCX 2.0:16.0 16 2048:16,384 6667 0.5 ODR n.d. 0.430 −40:105 30.05

KX132 2.0:16.0 16 2048:16,384 25,600 4200 (2900 **) 0.5 0.148 −40:105 15.97

LIS2DH 2.0:16.0 8:12 1:192 5376 n.d. n.d. 0.185 −40:85 6.54

LIS2DW12 2.0:16.0 16 128:4096 1600 0.5 DR n.d. 0.090 −40:85 5.46

LIS3DH 2.0:16.0 16 1000:12,000 1250 0.5 DR n.d. 0.011 −40:85 7.55

LIS331HH 6.0:24.0 16 3000:12,000 1000 0.5 DR n.d. 0.250 −40:85 14.95

LSM6DS3 2.0:16.0 16 2048:16,384 6664 0.5 DR n.d. 1.250 −40:85 6.94

LSM6DSO 2.0:16.0 16 2048:16,384 6664 0.5 DR n.d. 0.550 −40:85 15.88

LSM6DSO32 4.0:32.0 16 1024:8196 6664 0.5 DR n.d. 0.550 −40:85 17.32

LSM6DSVX16 2.0:16.0 16 2048:16,384 7680 0.5 DR n.d. 0.650 −40:85 23.96

MMA7660FC 1.5 6 21.33 120 n.d. n.d. 0.294 −40:85 10.86

MMA8452Q 2.0:8.0 8, 12 256:1024 800 0.5 DR n.d. 0.165 −40:85 18.44

MPU6050 2.0:16.0 16 2048:16,384 1000 n.d. 0.5 0.500 −40:85 17.65

MPU6500 2.0:16.0 16 2048:16,384 4000 n.d. 0.5 0.450 −40:85 2.48

MSA311 2.0:16.0 12 128:1024 1000 500 2.0 0.130 −40:85 6.54

* price as of October 18, 2024; ** for z-axis; *** DR—output data rate.

2.1.2. Method and Experimental Setup for Stability Testing

One of the elements of great importance in terms of quality assessment of the MEMS
devices under study is the noise characteristics of the sensory systems (random stray,
constant error stability), which is most often determined in the form of Allan variance
(AV). Originally, this algorithm was designed to describe the accuracy characteristics of
clocks, but it has been successfully used to determine the errors of any time-correlated
measurements [35–38]. The method involves presenting the average drift errors of a system
as a function of time averaging. Currently, the Allan variance is an IEEE 952-1997 (Institute
of Electrical and Electronics Engineers Standards Association) standard used to determine
the accuracy characteristics of gyroscopes [39]. The algorithm consists of the following
steps: collecting data from a long period of time; dividing the collected data into equal-
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length samples; averaging the data in individual parts, thus creating a so-called list of
averages; and calculating the Allan variance value from the following formula [38]:

AV(τ) = σ2(τ) =
1

2(n − 1)∑
(
a(τ)i−1 − a(τ)i

)2 (1)

where τ—averaging time, a(τ)—average value for one sample, and n—number of
parts averaged.

The selection of time t to be used in the analysis depends on the device under study. In
the case of inertial sensors, the selected averaging times range from a few tens of seconds
to several hours. In order to correctly read the quantities of interest, the results of the
calculations are presented on a graph on a vertical logarithmic scale. On the vertical axis
are the values of the Allan variance, and on the horizontal axis are the averaging times. An
example of the shape of the AV graph and its interpretation is shown in Figure 1 [38].
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Figure 1. Allan variance interpretation (S—slope factor) [38].

In the case of MEMS accelerometers, the value sought for the random stray velocity
can be read from the AV plot at an averaging time t equal to one hour, when the plot has a
slope S = −1/2. The stability value of the mean error, on the other hand, can be read for an
averaging time of about 100 s. (depending on the quality of the sensor) at the lowest point
of the plot, where the slope is S = 0 [39]. When measuring to determine random straying,
the length of the measurement session is very important. It is assumed that for the correct
determination of random stray, the minimum length of the session should be 9 h [36]. The
stability of the constant error is read for shorter averaging times because the error occurs
cyclically over short periods. For larger averaging times, the impact of stability is so small
that it is lost in the random straying of the device. Despite this, an extended measurement
session time of a minimum of 24 h was adopted in the completed test plan.

In the first stage, samples of readings from all sensors were collected, assuming the
most common minimum operating range of ±2 g and the maximum available resolution
of AD converters. Measurements were made at a frequency of about 100 Hz for a period
of time of at minimum 24 h. The experimental setup consisted of a wooden board with
dimensions 800 mm × 300 mm × 18 mm, to which sensors were attached with screws.
The board rested on 30 mm thick polyurethane acoustic foam insulating it from the floor
(Figure 2). The measurements were carried out in the UWM laboratory located in the
basement of a building on the outskirts of the university campus in order to eliminate
environmental influences as much as possible (constant temperature and humidity, no
vibrations caused by traffic, human activity, etc.). During the tests, attention was paid to
details such as proper shielding, low-noise power supply, galvanic isolation of systems
powered by boost converters, and linear regulators.
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Figure 2. Experimental setup for AV measurements. 1—accelerometer; 2—dual-channel data acquisi-
tion unit; 3—power supply; 4—wooden board; 5—polyurethane foam. The resonant frequency of the
system as a mass-spring model is about 44.7 Hz.

The sensors were controlled via the I2C bus (data rate 400 kHz) using a dual-core
RP2040 32-bit microcontroller (one core handled transmission with one accelerometer,
Figure 3). The data, in the form of a stream with a fixed sampling rate of 100–125 Hz
(depending on the accelerometer model, see Table 2), were sent via a UART port to a
prefabricated module managed by an 8-bit ATmega328 microcontroller (Microchip), which
stored it on an SD card via an SPI port.
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Figure 3. Block diagram of a single MEMS sensor data acquisition unit.

Table 2. Configuration of data rates.

Name Data Rate [Hz] Name Data Rate [Hz] Name Data Rate [Hz]

ADXL313 100 LIS2DW12 100 IIM42352 100

ADXL343 100 LIS3DH 100 ISM330DHCX 104

ADXL345 100 LIS331HH 100 KX132 100

BMA220 125 LSM6DS3 104 LIS2DH 100

BMA400 100 LSM6DSO 104 MMA8452Q 100

BMI160 100 LSM6DSO32 104 MPU6050 100

BMI270 100 LSM6DSVX16 120 MPU6500 100

H3LIS331DL 100 MMA7660FC 120 MSA311 125

2.2. Stage II: Determination of Identifiable Minimum Amplitude of Low-Frequency Vibrations
2.2.1. Selection of MEMS Accelerometers for Stage II Testing

The second parameter characterizing MEMS sensors, after stability, assumed to be
of utmost importance in this discussion, is the minimum threshold resulting from the
instantaneous noise values and the resolution of the sensor itself and possibly the on-chip
analog-to-digital converter system. Taking into account the fact that the sensors in question
are tested in terms of their suitability for the construction of low-cost devices for monitoring
building structures exposed to dynamic impacts, the possibility of extracting a useful signal
from noise is the basic evaluation criterion.
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Selecting the best sensor based on AV analysis is not a simple task, as it depends
primarily on the significance of the impact of individual errors expressed by the variance
on the measurement performed in specific applications. Given that the Allan variance can
help determine the ideal observation time for a particular measurement, and this study
focuses on short-term measurements, the representative part of the AV is its values located
in its initial fragments that visualize quantization noise. The tested sensors were classified
into three groups/grades, arbitrarily adopting the following values for the maximum AV
value corresponding to quantization noise (for τ < 2, denoted here as AV2): AV2 < 10−6

(grade A), 10−6 ≤ AV2 < 10−5 (grade B), and AV2 ≥ 10−5 (grade C). It should be noted that,
despite the sharp criterion adopted, MEMS sensors with very different parameters were
selected for stage II analyses to objectively visualize the performance of the proposed test
method and interpretation of obtained results.

2.2.2. Method and Experimental Setup for Stage II Testing

The main idea of the experiments conducted in the second stage of the research was to
subject the sensors to harmonic and impulsive vibrations. In the first case (sub-stage S), the
sensors were loaded with sinusoidal vibrations at frequencies of 1 and 2 Hz (sub-stage S1
and S2, see Figures 4 and 5), with the amplitudes of the loads not being constant but fading
linearly to zero, generating accelerations with values starting at 10 mm/s2 and 40 mm/s2,
respectively. In the second case (sub-stage P), the sensors were subjected to pulse loads with
a maximum displacement amplitude of 0.005 mm and durations of 1 and 2 s (sub-stage P1
and P2, see Figures 6 and 7). Displacements were induced alternately with the amplitude
being reduced by 0.001 mm in each successive loading cycle (i.e., 0, −0.005, 0, +0.005, 0,
−0.004, 0, 0.004, 0, etc.). A summary of the sensor load parameters is included in Table 3.

Table 3. Parameters of experiments conducted in the second stage of this study.

Sub-Stage Signal Frequency/
Duration

Maximum
Amplitude

Number of
Cycles/Steps

S1 sinus 1.0 Hz 10 mm/s2 50

S2 sinus 2.0 Hz 40 mm/s2 50

P1 step 1 s 0.005 mm 20

P2 step 2 s 0.005 mm 20
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Figure 4. Harmonic signal with linearly decreasing amplitude (S1).
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Figure 5. Harmonic signal with linearly decreasing amplitude (S2).
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Figure 6. Step signal with linearly decreasing amplitude (P1).
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Figure 7. Step signal with linearly decreasing amplitude (P2).

The goal of sub-stage S is to identify the minimum amplitude of low-frequency vibra-
tions that can be recognized in the waveform recorded by the sensors. The maximum ampli-
tude of 40 mm/s2 was chosen so that it is below the threshold required for objects that are
particularly sensitive to vibrations (e.g., surgical operating rooms in hospitals—according
to Polish regulations, the maximum amplitude of acceleration must not exceed 50 mm/s2 in
their structures). In turn, the aim of sub-stage P of this study is to check the response of the
sensors to impulsive loads having the characteristic of a wide spectrum of frequencies in
terms of the possibility of recognizing a momentary disturbance against the background of
equipment noise. It should be noted that in the case of dynamic impacts on civil structures,
the two above always occur in the form of an individual combination with different mutual
proportions of participation in a specific impact occurrence. Additionally, readings from the
sensors were carried out at a constant frequency of 400 Hz, which made it possible to check
the suitability of the sensors for detecting sudden changes in their position at relatively
low sampling frequencies (the influence of the inertia of the entire system but also of the
internal structure of the MEMS). It should be emphasized that sampling frequencies in the
range of 200–500 Hz are most often used in systems for long-term monitoring of dynamic
impacts on buildings (e.g., mining damage). Sensors that successfully pass both types of
tests, i.e., can unambiguously identify impacts at both extremes, will be able to be indicated
as potentially applicable to practical low-cost monitoring systems for building structures.

The following procedure is proposed for interpreting the results of sub-stage S:
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• Extracting the signal from the raw data using a low-pass filter with an assumed cutoff
frequency (cleaned signal);

• Determination of the noise based on the difference of the signals: raw and cleaned;
• Determination of the raw signal-to-noise ratio (SNR);
• Determination of the ratio of the cleaned signal to the noise (modified SNR, MSNR);
• Determination of the effective number of bits based on the SNR (ENOB);
• Determination of the threshold amplitudes based on the ENOB and MSNR.

Interpreting the results of sub-stage P in a manner analogous to sub-stage S is much
more difficult and introduces a lot of ambiguity due to the nature of the forcing signal.
Therefore, the evaluation was made by adopting only the simplest criterion of the occur-
rence of a reading with a value exceeding the assumed threshold, which is commonly used
in systems that support tap and double-tap detection.

The sensors selected in the previous stage were mounted on a laminate table and
shielded by a copper layer of a specially designed and constructed device—a low-frequency,
low-amplitude shaker/exciter—to determine the minimum acceleration value that can
be successfully recorded by these sensors (Figure 8). This dedicated test stand consists
of four basic components: an electromagnetic exciter for mechanical vibrations, a control
signal generator, a measurement data acquisition system, and software installed on a
laptop computer.
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Figure 8. Exciter scheme (modified 200 W wideband loudspeaker). 1—NdFeB magnet; 2—hall
sensor; 3—aluminum support frame; 4—base (steel ballast braced with plaster); 5—steel frame;
6—accelerometer mounting platform (plastic composite covered with shielding copper); 7—copper
coil; 8—ferrite magnet; 9—loudspeaker diaphragm.

The electromagnetic exciter was equipped with a set of mounts matching the PCBs
with the accelerometers under test (Figure 9). The most important parameters of the exciter
are summarized in Table 4.
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Table 4. The parameters of the exciter.

Drive System Impedance
[Ohm]

Max Power
[W]

Max Amplitude
[mm]

Frequency Range
[Hz]

electromagnetic 8 200 ±10 0.001:2000

In order to control the generated displacement waveforms as accurately as possible,
the bench consists of individually selected components, both mechanical and electronic.
The design of the electrodynamic transducer, which is the exciter of the vibrating table, is
based on a broadband speaker capable of carrying a constant current of 2 A without the risk
of thermal damage (typical bias current did not exceed 0.5 A). It should be noted that the
design of the test bench was modified and improved several times in order to best adapt its
parameters to the adopted research plan and the properties of the MEMS accelerometers
used for analysis. Attempts were made to avoid ready-for-use solutions in the form of
“black boxes” due to the significantly limited possibilities of manipulating the functioning
of the equipment at the level of the individual analog and digital components.

The control signal generator includes the following functional components (Figure 10):
a 16-bit DAC (32 kHz, 40 kHz, 64 kHz, and 80 kHz sampling rates) coupled to a power
amplifier controlling the electromagnetic inductor coil; a 16-bit ADC (40 kHz sampling rate)
with a Hall sensor providing information about the position of the inductor table; a set of
mating 32-bit microcontrollers with external flash memories that operates the DAC and
ADC and provides communication with external control software; an internal calibration
circuit with an artificial load (for calibration purposes); and power supply circuits. The main
component of the measurement data acquisition system is a microcontroller that handles
the data transmission protocols of the accelerometers under test with digital outputs. The
microcontroller also provides communication with external control software via UART.
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Figure 10. Block diagram of exciter driver.

The control software consists of two computer applications, controlling the operation
of the exciter and the measurement data acquisition system. The software was developed
specifically for the test stand and is being improved all the time. Additionally, data
processing was verified using Matlab scripts specially developed for this purpose.

All tests were conducted in a laboratory room with constant temperature and humidity.
Because accelerometers emit heat during their operation, each measurement was preceded
by an hour’s annealing of the current sensor under test. In addition, due to the MEMS
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being mounted on PCBs of different sizes (Figure 11), weight differences were compensated
for with additional weights to keep the mass inertia of the system constant (the control
consisted of, among other things, recording the position of the table loaded with the sensor
under test).
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Figure 11. Example modules with MEMS accelerometers.

The configuration of the sensors for stage II testing included only the operating range
and sampling frequency. On some models, it was necessary to enable maximum resolution
mode and disable energy-saving mode. All other features assumed default values. Table 5
summarizes the information on the basic configuration of the selected sensor models.

Table 5. Basic sensor configuration for stage II testing.

Name Acc. Range
[±g]

Resolution
[bits]

Sensitivity
[LSB/g]

Output Data
Rate [Hz]

Special
Features

ADXL313 2.0 12 1024 400 -

BMI270 2.0 16 16,384 400 -

IIM42352 2.0 16 16,384 200 * LNM **

ISM330DHCX 2.0 16 16,384 416 -

KX132 2.0 16 16,384 400 IIR

LIS2DW12 2.0 14 4096 400 -

LSM6DSVX16 2.0 16 16,384 480 -

MMA8452Q 2.0 12 1024 400 -
* highest sampling rate supported by the manufacturer’s application; ** low noise mode.

3. Results
3.1. Stage I: Results

Table 6 summarizes the values of the largest Allan variances to classify all the sen-
sors tested. Figures 12–14 and A1–A6 (Appendix A) show the results of AV analysis for
accelerometers grouped into three grades: A, B, and C.

Table 6. Maximum Allan variance values corresponding to quantization noise (AV2).

Name X-Axis Y-Axis Z-Axis Mean (AV0) Grade

H3LIS331DL 9.96 × 10−3 8.24 × 10−3 9.29 × 10−3 9.16 × 10−3

C

MMA7660FC 1.09 × 10−3 1.10 × 10−3 8.84 × 10−4 1.02 × 10−3

BMA220 1.02 × 10−4 3.81 × 10−6 7.96 × 10−5 6.18 × 10−5

LIS331HH 2.65 × 10−5 2.30 × 10−5 2.98 × 10−5 2.64 × 10−5

MPU6050 9.90 × 10−6 9.51 × 10−6 1.96 × 10−5 1.30 × 10−5
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Table 6. Cont.

Name X-Axis Y-Axis Z-Axis Mean (AV0) Grade

MPU6500 4.49 × 10−6 4.48 × 10−6 1.22 × 10−5 7.06 × 10−6

B

ADXL345 5.74 × 10−6 3.02 × 10−6 8.83 × 10−6 5.87 × 10−6

ADXL343 7.68 × 10−6 2.76 × 10−6 7.03 × 10−6 5.82 × 10−6

MSA311 2.75 × 10−6 3.03 × 10−6 6.21 × 10−6 4.00 × 10−6

LIS3DH 2.45 × 10−6 2.10 × 10−6 2.72 × 10−6 2.42 × 10−6

LIS2DH 2.27 × 10−6 2.04 × 10−6 2.62 × 10−6 2.31 × 10−6

BMA400 1.02 × 10−6 1.01 × 10−6 2.53 × 10−6 1.52 × 10−6

ADXL313 6.34 × 10−7 7.26 × 10−7 1.77 × 10−6 1.04 × 10−6

BMI160 8.07 × 10−7 7.72 × 10−7 1.24 × 10−6 9.39 × 10−7

A

LSM6DSO32 8.17 × 10−7 6.73 × 10−7 5.40 × 10−7 6.77 × 10−7

BMI270 4.99 × 10−7 5.52 × 10−7 6.34 × 10−7 5.62 × 10−7

LIS2DW12 4.03 × 10−7 4.38 × 10−7 7.35 × 10−7 5.26 × 10−7

MMA8452Q 4.99 × 10−7 5.19 × 10−7 5.49 × 10−7 5.22 × 10−7

LSM6DSO 3.33 × 10−7 2.79 × 10−7 2.38 × 10−7 2.83 × 10−7

LSM6DS3 1.96 × 10−7 1.60 × 10−7 2.59 × 10−7 2.05 × 10−7

ISM330DHCX 1.95 × 10−7 1.72 × 10−7 2.25 × 10−7 1.97 × 10−7

KX132 (IIR on) 1.02 × 10−7 1.43 × 10−7 2.42 × 10−7 1.63 × 10−7

LSM6DSVX16 1.31 × 10−7 1.14 × 10−7 2.43 × 10−7 1.63 × 10−7

IIM42352 1.17 × 10−7 1.28 × 10−7 1.78 × 10−7 1.41 × 10−7
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Figure 14. Allan variance for grade A accelerometers (z-axis).

In terms of the criterion adopted, the best sensor turned out to be the IIM42352, man-
ufactured by TDK InvenSense. As can be seen, all the tested sensors belonging to the
LSM6DS family of accelerometers (STMicroelectronics) are in grade A. It was decided to
choose the best of them, i.e., the one with the lowest average AV2 value—LSM6DSVX16.
Other sensors worthy of attention are the KX132 (Kionix) and ISM330DHCX (STMicroelec-
tronics), which rank third and fourth, respectively, in the accepted classification. Taking
into account the previously selected representative of the LSM6 family, the next three in
the ranking were selected for further testing, namely, MMA8452Q (NXP Semiconductors),
LIS2DW12 (STMicroelectronics), and BMI270 (Bosch Sensortec), and one, the best of grade
B: ADXL313 (Analog Devices). It should be mentioned that grade B (ADXL345) and C
(MPU6050) sensors are already successfully used in structural health monitoring systems
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for buildings (see [40]), which, due to their price and performance, can be an interesting
alternative to the commonly used expensive solutions.

At high sampling frequencies during AV analysis (i.e., 100 Hz), it is possible to register
an increase in the AV in the initial parts of the Allan function waveform (e.g., in the case of
IIM42352 or KX132), which is the result of filters that effectively reduce the intrinsic quanti-
zation noise of the sensors (compare KX132 with the IIR filter on and off—Figures 12–14).
These filters are enabled in the default configuration of the manufacturers of these sensors,
and only in the case of the KX132 IIR filter can they be disabled.

3.2. Stage II: Results

In sub-stage S, the sensors were subjected to sinusoidal vibrations, paying atten-
tion to the minimum amplitude value that could be recorded by them (see Figures 15, 16
and A7–A20—Appendix B). Two series of tests (with initial amplitudes of 40 and 10 mm/s2)
are aimed at a preliminary and detailed determination of the threshold value of the vibra-
tion amplitude, which can be easily identified visually on the graphs.
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Figure 15. S1 signal recorded by ADXL313.
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Figure 16. S2 signal recorded by ADXL313.
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Sub-stage P of testing involved sensor loads characterized by an abrupt change in
their position with decreasing amplitude. Figures 17, 18 and A21–A34 (Appendix C) show
the results of this part of the analysis.
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Figure 17. P1 signal recorded by ADXL313.
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Figure 18. P2 signal recorded by ADXL313.

4. Interpretation of Results and Discussion
4.1. Interpretation of the Results of Stage I

While AV analysis is an extremely important tool in the diagnostics of various types
of MEMS sensors, their testing under simulated laboratory conditions fully reflects their
properties, which are key features of their suitability for practical use in well-defined envi-
ronmental conditions. For this reason, a more important issue is the minimum threshold
and selectivity of accelerometers in terms of vibrations, which can pose a threat to the
monitored construction objects. Despite this, the AV analysis carried out successfully allows
preliminary identification of the most promising candidates, which in the case currently
under consideration have significantly different resolutions and resulting minimum thresh-
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olds (see Table 5). The aforementioned differences should become clearly apparent in the
results of the principle tests performed using the proposed procedure.

4.2. Interpretation of the Results of Stage II, Sub-Stage S

All analyses were carried out in the Matlab environment, developing scripts with
interpretive procedures implemented. All steps in the analysis of the measurement data
obtained from the tests are presented below.

• Extracting the clean signal from the raw data.

Obtaining a usable signal from the raw data was carried out using a Butterworth low-
pass filter, which has maximally flat amplitude characteristics in the frequency response. A
10th-order filter with a cutoff frequency of 10 Hz was used. Data filtering was carried out in
windows of width equal to the number of samples recorded in 1 s. Examples of waveforms
of the cleaned signal superimposed on the raw signal are shown in Figures 19 and 20.
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Figure 19. Filtered S1 signal recorded by LSM6DSVX16.
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Figure 20. Filtered S2 signal recorded by LSM6DSVX16.

• Determination of the noise and signal-to-noise ratio (SNR)

The determination of the SNR is necessary due to the stated goal of this research: this
measure relating signal power to noise power is the initial parameter forming the basis for
estimating the minimum threshold of the accelerometers under study, understood here as a
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practical acceleration amplitude threshold identifiable in the raw signal without the use of
sophisticated numerical tools. Figures 21 and 22 show comparisons of the SNR values for
the sensors tested.
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Figure 21. SNR for S1 signal.
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Figure 22. SNR for S2 signal.

It is rather obvious that the evaluation of sensors on the basis of the SNR alone is
neither sufficient nor easy to implement—a good example is the fluctuation of SNR values
for signals with the lowest amplitudes in the case of the KX132 accelerometer, which is most
likely due to the interference having a form very close to that of the useful signal. (compare
Figures 21 and A13). It is worth noting that this situation, although most pronounced for
the Y-axis, is repeated for the other axes as well (measurements for each axis were made
independently of each other and repeated several times).

• Determination of the modified SNR, MSNR.

Determination of the MSNR value, representing the relation of the power of the cleaned
signal to the power of the extracted noise, greatly facilitates individual and comparative
analyses of the practical capabilities of the studied sensors. Having functional waveforms
with positive and negative values, it is much easier to adopt a clear criterion that can be used
to select the most valuable devices. Of course, such a criterion will always be subjectively
adopted, being adequate for the expected purpose of each sensor. Figures 23 and 24 show
a comparison of the MSNR for the studied sensors.
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Figure 23. MSNR for S1 signal.
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Figure 24. MSNR for S2 signal.

• Determination of the ENOB.

In the case of S1 and S2 signals, only S2 gives a chance to determine an effective
number of bits of practical use for a direct event identification method (i.e., without the
use of advanced signal processing methods). This is because in the case of S1 signals,
the SNR level is too low to give ENOB values even just approaching unity. Figure 25
compares the ENOB values for the tested accelerometers. Obviously, the achievement of
ENOB = 1 for the IIM42352, ISM330DHCX, KX132, and LSM6DSVX16 sensors for the largest
amplitudes in the X and Y axes clearly indicates the possibility of identifying an event based
on observing the value of only one LSB in the raw data. Undoubtedly, this is an extremely
advantageous situation from the point of view of the complexity of embedded systems
design and software. Of course, the use of even simple filters based on, for example, a
moving average can significantly shift the threshold of identifiable acceleration amplitudes
toward much smaller values.

On the other hand, ENOB values should be determined taking into account the full
information about the interference, so not only the noise but also the distortion of the signal
itself is usually taken into consideration (SINAD). However, taking into account the fact
that in the practical applications of the studied sensors the shape and distortion of the
recorded forcing signals are not important, the step of determining the level of distortion
was omitted.
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• Determination of threshold amplitudes based on ENOB and MSNR.
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Figure 25. ENOB evaluated for S2 signal.

Analyzing the results of the second stage of testing, it can be seen that all eight
sensors can successfully be used to detect sinusoidal vibrations with low frequencies
and amplitudes expressed in terms of acceleration located in the range of 20–40 mm/s2

(Figures 16, A8, A10, A12, A14, A16, A18 and A20). Particularly noteworthy are the
IIM42352, ISM330DHCX, LSM6DSVX16, and KX132 sensors, whose data enable detec-
tion of vibrations with smaller acceleration amplitudes reaching up to 10 mm/s2 (see
Figures A9, A11, A13 and A17, initial data fragment). However, it should be noted that
the sensors respond differently when the vibration is continuous in nature with decreasing
amplitude and the signal of interest is in the middle of the waveform (see the 19th second
in Figure A20) and when the signal is freshly excited (compare with the beginning of the
vibration waveform in Figure A19).

The determination of the minimum threshold, understood in this case as a practical
characteristic that determines the suitability of the sensor under specified operating condi-
tions, is based on subjective assumptions. An example is the threshold of minimum ampli-
tude, for which the ENOB value is equal to 1. In the case of the IIM42352, ISM330DHCX,
LSM6DSVX16, and KX132 sensors, this threshold is about 28 mm/s2, 45 mm/s2, 46 mm/s2,
and 44 mm/s2, respectively (Figure 25, x-axis), while for the other sensors, it cannot be
determined. Another example of a criterion for determining the minimum threshold can
be the assumption that, using simple averaging filters, the identification of a signal will
be unambiguous as long as its MSNR value is not negative. The minimum amplitude
thresholds determined under the above assumption are shown in Table 7.

Table 7. Amplitude thresholds for MSNR ≥ 0.

Name X-Axis
[mm/s2]

Y-Axis
[mm/s2]

Z-Axis
[mm/s2]

Resolution
[bits]

Threshold
[mm/s2/LSB]

ADXL313 33.98 34.59 46.65 12 9.77

BMI270 32.73 31.68 37.25 16 0.61

IIM42352 17.52 17.85 19.01 16 0.61

ISM330DHCX 19.05 23.42 23.34 16 0.61

KX132 25.71 27.54 19.39 16 0.61

LIS2DW12 26.88 30.21 41.74 14 2.44

LSM6DSVX16 18.98 19.68 23.69 16 0.61

MMA8452Q 26.43 29.11 35.45 12 9.77
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In addition, given the maximum range of accelerations for which the sensors were
configured (2 g), the dynamic range (DR) of each sensor can be determined for the adopted
criterion. A comparative summary is shown in Figure 26.
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Figure 26. DR evaluated for S2 signal.

4.3. Interpretation of the Results of Stage II, Sub-Stage P

The analysis of the results of recording harmonic signals presented in the previous
section is completely different from the case where the goal is to detect disturbances that
are of short pulse nature. Obviously, the maximum signal frequency that can be correctly
recorded or reproduced by a sampling system must satisfy the Nyquist–Shannon theorem,
that is, to accurately reproduce an analog signal using digital samples, the sampling
frequency must be at least twice the highest signal frequency. Given that the test used
single acceleration pins of about 100 mm/s2, an attempt was made to determine the
impact of, among other things, the inertia of the MEMS system itself and its ability to
record vibrations of much higher frequency and much shorter duration relative to the
sampling frequency. The tests were repeated five times, and the results indicate that most
accelerometers (all but the KX132, Figures 17, 18, A21–A26 and A29–A34) reproducibly
detect impulse shocks with a minimum amplitude of about 70 mm/s2 (see Figures 27–29).
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Figure 27. P1 signal recorded by LSM6DSVX16.
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Figure 28. P2 signal recorded by LSM6DSVX16.
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Figure 29. P2 signal recorded by MMA8452Q.

It should be noted that the configuration of all accelerometers subjected to testing
included the activation of only the most basic functions, leaving all others in the default
settings provided by the manufacturer. Thus, it can be concluded that in the case of
KX132, in the basic configuration of its operation, the default IIR filter effectively eliminates
individual pulses by treating them as incidental noise (in the default settings, it is a low-
pass filter with a cutoff frequency of 44.4 Hz, when the sampling rate is set to 400 Hz). So
a sure solution to this problem is to disable this filter or increase the sampling frequency,
but this involves increased power consumption and is also associated with more intensive
processing of more information by the microcontroller managing the chip. On the other
hand, the low-noise mode of the IIM42352 sensor did not interfere with the recording of
signals having the characteristic of single pulses (see Figures A23 and A24). This is because
the module under analysis (DK-42352) is equipped with a microcontroller that operates the
sensor and preprocesses the raw data (SAM G55).

Since MEMS positioning is very delicate, and considering mounting on low-cost circuit
boards, the MEMS sensitivity axis may not be perfectly parallel to the vibration application
axis. Transverse motions then appear, which can be registered, but only at significant
amplitudes of acceleration forced on the main axis. Such a phenomenon was registered,
for example, in the case of the ISM330DHCX sensor (see Figure 30). Note that no such
phenomenon was observed for S1/S2 signals.

A final point is the power consumption of the MEMS studied: all draw less than 1 mA
from the power source, which makes them extremely attractive in terms of battery-powered
embedded systems. Of course, taking into account all the results of the analyses performed,
three of the sensors can certainly be considered as potential candidates for the construction
of low-cost systems for monitoring objects at risk of low-amplitude shocks—these are the
IIM42352, ISM330DHCX, and LSM6DSVX16.
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Figure 30. P1 signal recorded by ISM330DHCX (y-axis excitation; pulses recorded in the z-axis).
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5. Conclusions

This study proposes a specific set of test methods for MEMS accelerometers in terms of
their selection for vibration monitoring of building structures that are threatened by loads
characterized by low frequencies and small acceleration amplitudes. Although such threats
are quite rare (e.g., in the case of operating rooms in hospitals, not far from which, for
example, driven pile foundations are installed, see Figure 31), the emerging possibility of
low-cost MEMS sensors creates a huge opportunity for the spread (e.g., in the construction
industry) of uncomplicated, and therefore low-failure, as well as cost-effective systems
that can effectively warn of such incidents. The following conclusions are drawn from
this study:

1. The selection of sensors can be successfully carried out by means of tests involving
the loading of the tested sensors with:

- Harmonic vibrations of linearly varying amplitude;
- Vibrations of an impulsive nature;

2. The proposed test procedures require the use of precise measurement equipment
dedicated to this type of testing (exciters/shakers and data acquisition systems);

3. The application of the proposed test procedure makes the process of interpretation
of the obtained results relatively simple, although it requires the adoption of criteria
depending on the purpose of the MEMS sensors under analysis;

4. The results of the analysis showed that in the wide range of commonly available low-
cost MEMS accelerometers, it is possible to select at least a few models characterized by
satisfactory operating stability, high sensitivity, and energy efficiency (e.g., IIM42352,
ISM330DHCX, LSM6DSVX16, or KX132);

5. An analysis based solely on the catalog parameters of the sensors does not give a
complete picture of the properties and suitability of the sensors for specific purposes;
an example is sensors with lower resolutions, which can be successfully used in
vibration monitoring systems in construction facilities (e.g., MMA8452Q).

It should be noted that this study did not use embedded DSP systems built into the
sensors, including those with AI algorithms. However, such extensions should not be
underestimated, as they open up new possibilities and fields of application (in addition
to those dedicated by manufacturers, such as fitness trackers, wirstbands, smart watches,
earbuds, ankle bands, neck bands, smart clothes, and augmented and virtual reality glasses
and controllers). Some of the sensors tested (e.g., MPU6050, MPU6500, and ADXL345)
have already been successfully used by the authors in systems for tracking the effects of
dynamic loads on buildings, and the last mentioned sensor has even been used in advanced
laboratory studies of dynamic soil properties (see [41]). Currently, based on the results of
the analyses presented in this study, four modules using MEMS accelerometers have been
designed and constructed to monitor the vibration of the hospital building structure near
to which foundation work is underway (Figure 31).

The control of vibration and dynamic motion plays an important role in many indus-
trial processes, seismic measurements, navigation and positioning systems, and natural and
environmental hazard studies. In these applications, data quality is a priority. Evaluation
of sensor data quality depends on the established metrology infrastructure, such as the
calibration of digital sensors at nodes, metrological treatment of the entire sensor network,
and remote self-calibration. When considering energy-efficient and low-cost accelerometers
as measuring devices, it is necessary to trace the calibration method of digital sensors in
metrological terms [42]. A calibration system developed at the National Institute of Metro-
logical Research allows the evaluation of the main and transverse sensitivity of three-axis
accelerometers by means of single-axis vibration excitation, using inclined planes rigidly
attached to a vibration table [42–44], and the calibration procedure is based on compari-
son to a reference transducer (similar to ISO 16063-21 [45]). Calibration of the frequency
response is essential to extract the correct information from the measurements. The team
of Shimoda at al. [46] developed a synchronized data acquisition system for digital and
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analog signals and implemented it in the main calibration system for accelerometers. Seeger
and Bruns [47] undertook the development of a dynamic calibration of modern sensors
with integrated data sampling and digital output for measuring mechanical quantities,
such as force, pressure, torque, angular velocity, or acceleration. However, the system is
presented with an emphasis on the basic calibration of accelerometers. Taking into account
the context of low-cost accelerometers adopted in the presented research, an effort was
made to present a low-cost device design enabling a relatively simple methodology for
testing low-cost accelerometers in terms of their selection for applications related to the
construction industry.
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Figure A7. S1 signal recorded by BMI270.
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Figure A8. S2 signal recorded by BMI270.
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Figure A9. S1 signal recorded by IIM42352.
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Figure A10. S2 signal recorded by IIM42352.
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Figure A11. S1 signal recorded by ISM330DHCX.
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Figure A12. S2 signal recorded by ISM330DHCX.
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Figure A13. S1 signal recorded by KX132.
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Figure A14. S2 signal recorded by KX132.
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Figure A15. S1 signal recorded by LIS2DW12.
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Figure A16. S2 signal recorded by LIS2DW12.
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Figure A17. S1 signal recorded by LSM6DSVX16.
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Figure A18. S2 signal recorded by LSM6DSVX16.
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Figure A19. S1 signal recorded by MMA8452Q.
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Figure A20. S2 signal recorded by MMA8452Q.
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Figure A21. P1 signal recorded by BMI270. 

 

 

 
Figure A22. P2 signal recorded by BMI270. 

  

0 2 4 6 8 10 12 14 16 18 20
-100

-50

0

50

100

x-
ac

ce
le

ra
tio

n 
[m

g]

0 2 4 6 8 10 12 14 16 18 20
-100

-50

0

50

100

y-
ac

ce
le

ra
tio

n 
[m

g]

0 2 4 6 8 10 12 14 16 18 20
-100

-50

0

50

100

z-
ac

ce
le

ra
tio

n 
[m

g]

time [s]

0 5 10 15 20 25 30 35 40
-100

-50

0

50

100

x-
ac

ce
le

ra
tio

n 
[m

g]

0 5 10 15 20 25 30 35 40
-100

-50

0

50

100

y-
ac

ce
le

ra
tio

n 
[m

g]

0 5 10 15 20 25 30 35 40
-100

-50

0

50

100

z-
ac

ce
le

ra
tio

n 
[m

g]

time [s]

Figure A21. P1 signal recorded by BMI270.
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Figure A22. P2 signal recorded by BMI270.
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Figure A23. P1 signal recorded by IIM42352.
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Figure A24. P2 signal recorded by IIM42352.
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Figure A25. P1 signal recorded by ISM330DHCX.
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Figure A26. P2 signal recorded by ISM330DHCX.
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Figure A27. P1 signal recorded by KX132.
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Figure A28. P2 signal recorded by KX132.
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Figure A29. P1 signal recorded by LIS2DW12.
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Figure A30. P2 signal recorded by LIS2DW12.
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Figure A31. P1 signal recorded by LSM6DSVX16.
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Figure A32. P2 signal recorded by LSM6DSVX16.
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Figure A33. P1 signal recorded by MMA8452Q.
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Figure A34. P2 signal recorded by MMA8452Q.
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