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Abstract: Accurate energy consumption prediction in the injection molding process is crucial for
optimizing energy efficiency in polymer processing. Traditional parameter optimization methods
face challenges in achieving optimal energy prediction due to complex energy transmission. In
this study, a data-driven approach based on the Rolling Learning Informer model is proposed
to enhance the accuracy and adaptability of energy consumption forecasting. The Informer model
addresses the limitations of long-sequence prediction with sparse attention mechanisms, self-attention
distillation, and generative decoder techniques. Rolling learning prediction is incorporated to enable
continuous updating of the model to reflect new data trends. Experimental results demonstrate
that the RL-Informer model achieves a normalized root mean square error of 0.1301, a root mean
square error of 0.0758, a mean absolute error of 0.0562, and a coefficient of determination of 0.9831 in
energy consumption forecasting, outperforming other counterpart models like Gated Recurrent Unit,
Temporal Convolutional Networks, Long Short-Term Memory, and two variants of the pure Informer
models without Rolling Learning. It is of great potential for practical engineering applications.

Keywords: injection molding process; green manufacturing; data-driven; energy consumption
prediction; RL-Informer

1. Introduction

Plastic is one of the most versatile materials in modern life, integral to numerous
industries and consumer products, with global production exceeding 400 million metric
tons in 2024 [1]. Within the plastic industry, injection molding is a critical process that is
not only energy-intensive but also marked by large-scale production and relatively low
energy efficiency, often requiring between 4 and 5 kWh of energy per kilogram of plastic
produced [2]. The accurate prediction of energy consumption in injection molding enables
timely adjustments to operational parameters and process optimization [3], leading to
reduced energy consumption and significant improvements in both energy efficiency and
production output.

The injection molding process is typically divided into four key stages: filling, packing,
cooling, and ejection [4]. Research has shown that each of these stages involves multiple
factors that significantly affect energy consumption (see Figure 1), such as filling speed
and mold temperature during the filling phase [5]. Meekers et al. identified that different
factors have varying degrees of impact on energy consumption, with cycle time having the
most pronounced effect, followed by nozzle temperature [6].
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Figure 1. Injection molding steps and energy consumption influencing factors. 

To date, numerous researchers have investigated the factors influencing energy con-
sumption in injection molding, utilizing statistical models, machine learning techniques, 
and simulation modeling to predict energy usage in this process. For example, Pacella et 
al. employed a regression mixed model based on time series clustering to classify energy 
consumption patterns and construct virtual energy profiles for predictive purposes [7]. 
Takasaki et al. incorporated actual operational parameters into a simulated injection mold-
ing framework, enabling forecasts under various conditions [8]. However, due to the com-
plex, nonlinear relationships between parameters like temperature, pressure, and cooling 
time [9], traditional models often fall short in accuracy, while high-fidelity simulations 
require substantial computational resources and data. This highlights an urgent need for 
more efficient analytical methods to develop predictive energy models for injection mold-
ing. To address these challenges, researchers have increasingly employed machine learn-
ing models to uncover latent relationships and predict energy consumption. For example, 
Bahij et al. evaluated the performance of machine learning techniques, such as artificial 
neural networks (ANNs) and support vector regression (SVR), in comparison with tradi-
tional methods like rule-based systems in industrial settings. Their results demonstrated 
that machine learning approaches significantly outperform traditional methods [10], both 
in terms of accuracy and efficiency, particularly when modeling complex energy con-
sumption patterns and managing the nonlinear dynamics inherent to industrial energy 
use. 

In the injection molding process, variables that influence energy consumption usu-
ally show complex correlations that machine learning models can effectively capture [11]. 
For example, Willenbacher et al. utilized the random forest algorithm to identify key fac-
tors affecting energy consumption in the production of plastic parts, enabling accurate 
predictions of energy usage and the determination of optimal machine settings to mini-
mize energy consumption [12]. Similarly, Wu et al. employed an active machine learning 
approach to optimize the process parameters of injection molding machines, achieving a 
multi-objective optimization that balances energy consumption and part quality. Their 
research demonstrated that the trained energy consumption prediction model possesses 
robust predictive capabilities [13]. 

However, industrial data are often complex, nonlinear, and multidimensional chal-
lenging machine learning models like random forests, which require large datasets and 
perform poorly with noisy data or time series characteristics, thus limiting prediction ac-
curacy. Neural networks, however, can effectively model nonlinear relationships and 
long-term dependencies, adapting to data variations to predict energy consumption accu-
rately across different production settings. For instance, Nazir et al. demonstrated that the 
TFT achieved superior predictive performance with a symmetric mean absolute 
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To date, numerous researchers have investigated the factors influencing energy con-
sumption in injection molding, utilizing statistical models, machine learning techniques,
and simulation modeling to predict energy usage in this process. For example, Pacella et al.
employed a regression mixed model based on time series clustering to classify energy
consumption patterns and construct virtual energy profiles for predictive purposes [7].
Takasaki et al. incorporated actual operational parameters into a simulated injection mold-
ing framework, enabling forecasts under various conditions [8]. However, due to the
complex, nonlinear relationships between parameters like temperature, pressure, and cool-
ing time [9], traditional models often fall short in accuracy, while high-fidelity simulations
require substantial computational resources and data. This highlights an urgent need for
more efficient analytical methods to develop predictive energy models for injection mold-
ing. To address these challenges, researchers have increasingly employed machine learning
models to uncover latent relationships and predict energy consumption. For example,
Bahij et al. evaluated the performance of machine learning techniques, such as artificial
neural networks (ANNs) and support vector regression (SVR), in comparison with tradi-
tional methods like rule-based systems in industrial settings. Their results demonstrated
that machine learning approaches significantly outperform traditional methods [10], both in
terms of accuracy and efficiency, particularly when modeling complex energy consumption
patterns and managing the nonlinear dynamics inherent to industrial energy use.

In the injection molding process, variables that influence energy consumption usually
show complex correlations that machine learning models can effectively capture [11].
For example, Willenbacher et al. utilized the random forest algorithm to identify key
factors affecting energy consumption in the production of plastic parts, enabling accurate
predictions of energy usage and the determination of optimal machine settings to minimize
energy consumption [12]. Similarly, Wu et al. employed an active machine learning
approach to optimize the process parameters of injection molding machines, achieving
a multi-objective optimization that balances energy consumption and part quality. Their
research demonstrated that the trained energy consumption prediction model possesses
robust predictive capabilities [13].

However, industrial data are often complex, nonlinear, and multidimensional chal-
lenging machine learning models like random forests, which require large datasets and
perform poorly with noisy data or time series characteristics, thus limiting prediction
accuracy. Neural networks, however, can effectively model nonlinear relationships and
long-term dependencies, adapting to data variations to predict energy consumption accu-
rately across different production settings. For instance, Nazir et al. demonstrated that the
TFT achieved superior predictive performance with a symmetric mean absolute percentage
error of 26.46%, outperforming LSTM (29.78%), interpretable LSTM (31.10%), and TCN
(36.42%) [14].
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The self-attention mechanism inherent in the Transformer model enables it to focus on
relevant segments of the input sequence, effectively managing long-distance dependencies
in time series data, which is particularly advantageous for energy prediction over extended
periods [15]. However, traditional Transformer models exhibit high computational com-
plexity and low inference efficiency [16] when addressing multivariate long-sequence pre-
dictions. To address these efficiency challenges, the Informer model incorporates advanced
techniques [17], including a probabilistic self-attention mechanism, self-attention distilla-
tion, and a generative decoder. These enhancements result in significant improvements
in both the accuracy and inference efficiency of multivariate long-sequence predictions,
thereby increasing its practical applicability in energy forecasting.

To summarize, research issues that motivate the presents study are (1) Traditional ma-
chine learning methods can hardly capture the complex temporal features associated with
energy consumption predictions in the injection molding process. (2) Simulation modeling
requires substantial amounts of practical data, making it challenging to predict dynamic
changes in energy consumption. (3) Transformer models are good at capturing temporal
relationships but suffer from computation complexity for long sequences, which makes
them difficult for practical deployment in the injection molding process. To bridge the
research gap and enable more accurate energy prediction in the injection molding process,
we propose the following contributions: We first conducted injection molding experiments
to identify multiple groups of variables that may influence energy consumption. We then
performed a correlation analysis on the experimental variables, selecting those with high
correlations to energy consumption in order to reduce model complexity. Finally, we pro-
posed an improved RL-Informer model to predict energy consumption during the injection
molding process, which excels at capturing the intricate temporal dependencies within
the data while maintaining a low computational complexity. A comparative analysis was
performed between the improved RL-Informer model and other models, including LSTM
and GRU, highlighting the advantages of the enhanced Informer model. Through this
study, we aim to optimize production strategies, facilitate real-time monitoring, and enable
predictive maintenance, ultimately contributing to more efficient and environmentally
sustainable manufacturing practices.

The structure of this study is organized as follows: Section 2 describes the data col-
lection and preprocessing methods employed in this research. Section 3 elaborates on
the sparse attention mechanism, self-attention distillation, and rolling learning techniques
incorporated into our approach. Section 4 presents a detailed comparison of model per-
formances and discusses the key results derived from the experiments. Finally, Section 5
provides a comprehensive summary of the study’s findings and contributions.

2. Data Processing in Injection Molding Experiments
2.1. Data Acquisition Platform

The injection molding machine utilized in this experiment is depicted in Figure 2 and is
manufactured by Rui Xiang Plastics Co., Ltd. (Shantou, China). The identification number
of the machine is Si-180IV_EHEXA284950-0505, and it is classified as a servo energy-saving
drive model. This machine features an innovative V-type molding device and incorporates
a newly designed shooting mechanism characterized by high rigidity and flexible stability.

The injection components processed in this study are handle inner buckle parts,
measuring 82 mm in length, 45.9 mm in width, and 47.3 mm in height. The injection
molding experiments utilize a blend of ABS and PBT in a mixing ratio of 70:30. The
operational parameters of the injection molding process can be primarily categorized into
temperature, speed, time, pressure, position, voltage, and current. In this study, using
the data acquisition platform integrated into the machine, we collected real-time values
for key parameters, including V-P switching position, remaining position, shrinkage time,
mold opening time, and mold off time. Figure 3 provides a schematic diagram of the data
measurement platform within the machine.
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Figure 3. Schematic diagram of the multi-sensor platform.

2.2. Data Processing Procedure

During the injection molding process, the generated data typically exhibit strong
continuity. However, due to interference factors such as vibrations and temperature
fluctuations inherent to the molding process [18,19], the sensor-collected data often suffer
from missing values or extreme outliers, etc. To ensure data integrity and continuity,
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which are crucial for accurately analyzing and monitoring energy consumption, this study
employs a fixed-range method to replace outliers. For instance, each component of the
injection molding machine operates within a predefined range, and data exceeding these
upper and lower bounds are replaced with the corresponding maximum or minimum
values. In the case of power data exceeding the set limits, the outlier is substituted by the
average of adjacent data points. For handling missing data, the KNN method is applied,
which leverages the similarity between data points to fill in the missing values, with more
accurate imputations when dealing with multiple missing values [20].

The main measured variables for the injection molding experiment are summarized in
Table 1.

Table 1. Data variables of injection molding experiments.

Variable Meaning Unit

x1 Time s
x2 Remaining position mm
x3 V-P switching position mm
x4 Periodic time s
x5 First-stage speed mm/s
x6 Second-stage speed mm/s
x7 Packing pressure MPa
x8 Maximum pressure MPa
x9 Maximum speed mm/s
x10 1-st injection mass g
x11 2-nd injection mass g
x12 Mass deviation g
x13 Forming label /
x14 Energy consumption J

The relationships between various variables exhibit complexity, including linear and
nonlinear characteristics, owing to the correlations of multiple influencing factors. To
alleviate the computational burden of the model, enhance the operational efficiency, and
effectively capture the correlations among variables, only those variables exhibiting strong
effects on energy consumption are selected as model inputs. Linear relationships are
evaluated using Pearson’s correlation coefficient [21], while nonlinear correlations are
assessed through Spearman’s rank correlation coefficient [22]. In this context, a correlation
coefficient closer to zero indicates a weaker association between variables.

As illustrated in Figure 4, two pairs of variables, x7 and x8, as well as x10 and x11,
exhibit (a) Spearman and (b) Pearson correlation coefficients as high as 0.99. These near-
perfect correlations indicate a high degree of both linear and monotonic association between
the variables, suggesting that they carry almost identical information. Such high correlation
coefficients are indicative of potential multicollinearity, which can negatively impact the
stability and interpretability of the model. To mitigate the risk of multicollinearity and re-
dundancy, we selected one variable from each pair that demonstrated a stronger correlation
with the target variable, x14, discarding the less correlated counterpart.

For example, Figure 4 highlights that variables x3, x5, x6, x9, x10, and x11 are signifi-
cantly correlated with x14, either through (a) Spearman or (b) Pearson coefficients. Notably,
x11 exhibits a marginally stronger correlation in both Pearson (0.68) and Spearman (0.63)
analyses, leading to the decision to retain x11 and eliminate x10 to maintain model parsi-
mony. Also, Figure 5b reveals that x2 presents a Pearson correlation coefficient of −0.47 (in
Figure 5, the absolute values are shown), indicating a moderate negative linear correlation
with x14, which suggests that, as x2 increases, x14 tends to decrease, albeit not in a perfectly
linear manner. However, Figure 5a shows that the Spearman correlation coefficient for x2
is notably lower, at −0.26, indicating a weak monotonic relationship. This discrepancy
between the two correlation measures suggests that, while x2 shares a linear relationship
with x14, this relationship is not uniformly consistent across the entire data range, poten-
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tially due to the presence of local nonlinearities or the influence of outliers. Such behavior
could indicate that x2 and x14’s relationship is sensitive to specific data points or particular
regions of the data.
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In summary, to ensure the robustness and interpretability of the model, we retained
both highly and moderately correlated variables and selected x2, x3, x5, x6, x9, and x11
for further analysis. This selection strategy was designed to balance the inclusion of
informative variables while mitigating multicollinearity and maintaining model efficiency.

3. Informer Model and Rolling Learning Prediction

The Transformer model, introduced in 2017 [23], has gained significant attention for
its effectiveness in time sequence prediction within NLP. Unlike traditional RNN [24]
and CNN [25], the Transformer employs a multi-head self-attention mechanism and feed-
forward networks, allowing for efficient processing of long sequences through parallel com-
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puting [26]. This architecture enhances both training efficiency and task performance across
various NLP applications. However, as sequence lengths increase, the Transformer exhibits
limitations, including high memory consumption, inefficiencies in encoding/decoding,
and increased time complexity, which restricts its application in large-scale temporal
data prediction.

To address these challenges, the Informer model was introduced with several key
improvements. By leveraging techniques such as model pruning, quantization, and struc-
tural innovations, the Informer significantly reduces computational and memory overhead
while maintaining prediction accuracy, facilitating its deployment on embedded and edge
devices [27]. Key enhancements include the sparse attention mechanism, self-attention
distillation, and a generative decoder.

The sparse attention mechanism optimizes memory usage and reduces time com-
plexity by focusing on essential key factors, improving efficiency in processing large
datasets [28]. Self-attention distillation reduces input layers and parameters, effectively
capturing long-term dependencies while enhancing generalization and minimizing input
redundancy [29]. Finally, the generative decoder predicts entire long sequences in a single
step, accelerating inference and improving efficiency for real-time applications. These
innovations enable the Informer to handle long-sequence predictions more effectively,
making it suitable for practical, large-scale temporal data tasks.

Figure 6 outlines the Informer model’s framework, with the encoder on the left
and the decoder on the right. The Informer’s key improvement lies in its structural
optimization of both components, enabling faster processing of long sequences. The
encoder transforms the input sequence into hidden representations, leveraging sparse
attention and self-attention distillation to capture critical information efficiently. Sparse
attention enhances computational speed, while self-attention distillation refines feature
extraction. The decoder then utilizes a generative mechanism to produce target sequence
predictions by interacting with the encoder’s hidden representations through attention.
This interaction allows the decoder to focus on relevant parts of the input, improving
prediction accuracy and stability. Together, these mechanisms make the Informer highly
effective for long-sequence predictions.

3.1. Encoder Module of the Informer Model

Figure 7 is a single stack of the encoder structure in the Informer model, showing
its complexity and the multi-level feature in detail. Combining the multi-head attention
mechanism and the convolution operations with the maximum pooling operation and
the self-attention distillation technique, the encoder can efficiently extract and integrate
multilevel features of the time series data.

The primary role of the Informer model’s encoder is to transform input sequences
into higher-level abstract representations [30]. Each encoder layer comprises a multi-
head self-attention mechanism and a feed-forward neural network. The self-attention
mechanism computes correlations across different positions within the sequence, allowing
the model to prioritize critical time steps and features. Simultaneously, the feed-forward
network applies nonlinear transformations to enhance feature extraction and the model’s
representational capacity.

The core of the Informer consists of a stack of multiple encoder layers, where each layer
extracts essential features and passes them to subsequent layers for deeper processing. The
self-attention mechanism utilizes dot product matrices to compute positional correlations,
enabling the model to focus on key time steps. The hidden representations at each step are
processed and combined, eventually forming the encoder’s output.
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A key innovation in the Informer model is its distillation operation. By applying hier-
archical distillation to the encoder stack, the model simplifies its structure while improving
generalization. This operation reduces the complexity of the encoder without sacrificing
accuracy. The distillation operation can be represented by the following formula [17]:

Xt
j+1 = MaxPool

(
ELU

(
Conv1d

([
Xj

t]
AB

)))
(1)
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where
[

Xt
j

]
AB

represents the output of the multi-headed ProbSparse self-attention layer

in the precious layer, and Xt
j+1 is the output of distillation in this layer; Conv1d(·) per-

forms as a 1D convolutional filter;ELU(·) is used as the activation function; MaxPool(·) is
finally applied to down-sample the processed data, retaining essential feature information
while reducing data dimensionality. The distillation process enables efficient storage and
processing without significant loss of critical information.

3.2. Decoder Module of the Informer Model

The decoder module is designed to generate the prediction of long sequences through
a concise forward process. The model adopts the conventional decoder structure, which
contains two identical multi-head attention layers. It solves the problem of high time
complexity in long sequence data prediction by using a generative prediction method [31].
The input vector of the decoder is shown as follows:

Xt
feed_de = Concat

(
Xt

token, Xt
0
)
∈ R(Ltoken+Ly)×dmodel (2)

where Xt
token is the start token; Ltoken is the length of the long sequence selected from

the input sequence and taken as the leading sequence that needs to be predicted. Xt
0 is

a placeholder of the target sequence, and it should be zero. Through introducing the
masked multi-head attention into the sparse self-attention mechanism, it will avoid the
autoregressive phenomenon of Xt

0, because it will stop each position from noticing the
next position. In the final output phase, the model obtains the prediction results through
the fully connected layer, which is able to achieve the ability of univariate or multivariate
prediction. The generative structure is integrated into the encoder so that the predicted
sequence can be generated at once without gradual dynamic decoding. Owing to this, it
significantly reduces the decoding time and improves the prediction efficiency.

3.3. Self-Attention Mechanism of the Informer Model

The self-attention mechanism was originally defined by the three matrix tuple inputs
(Q, K, and V), which perform scaled dot product operations. The initial formulas are as
follows [23]:

A(Q, K, V) = Softmax
(

QKT
√

d

)
V (3)

where d is the input dimension and Q ∈ RLQ×d, K ∈ RLK×d, and V ∈ RLV×d represent
query, key, and value, respectively. Both the key and the value are paired, and the query can
get the corresponding value using the key. To further analyze the self-attention mechanism,
the attention of the i-th query is defined as a kernel smoother in probabilistic form, which
is defined as follows [17]:

A(qi, K, V) = ∑
j

k(qi, k j)

∑
l

k(qi, kl)
vj = Ep(kj |qi)

[Vj] (4)

where p
(
k j | qi

)
=

k(qi ,kj)

∑
l

k(qi ,kl)
, k(qi, k j) = exp

(
qikT

j√
d

)
are the asymmetric indices. This kind

of self-attention mechanism calculates the probability p
(
k j | qi

)
through the dot product

operation, reaching the quadratic time complexity. Additionally, it needs the spatial
complexity of O

(
LQ | LK

)
while calculating.

By regulating self-attention through qualitative analysis, the probability distribution
of the self-attention mechanism has the potential sparsity, showing a trend of long-tailed
distribution. It means that a very small amount of dot products contributes the main
attention weight, so the contribution of other dot products can be ignored. In that case, the
contribution of the partial query to a value can be calculated without calculation. Conse-
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quently, the KL (Kullback–Leibler) divergence is introduced to compute and distinguish
the important query. It is as follows [17]:

KL(q ∥ p) = ln Lk

Lk

∑
j=1

e

qikT
j√
d − 1

Lk

Lk

∑
j=1

qikT
j√
d
− ln Lk (5)

Excluding the constant, the sparsity formula of the i-th query is:

M(qi, K) = ln Lk

Lk

∑
j=1

e

qikT
j√
d − 1

Lk

Lk

∑
j=1

qikT
j√
d

(6)

where the first item qi is the LogSumExp (LSE) on all keys. If the i-th query has a large value
M(qi, K), it means that the corresponding probability of attention distribution has greater
diversity. This shows that, in the self-attention mechanism, the chance of including the
dominant dot product pair in the head domain of the long-tailed self-attention distribution
is high. Based on this analysis, by allowing each key to handle only u dominant query, the
ProbSparse Self-attention formula is as follows [17]:

A(Q, K, V) = Softmax

(
QKT
√

d

)
V (7)

In the ProbSparse Self-attention, a kind of sparse matrix of the same size as the query
vector q is used. This sparse matrix contains only the Top-u query under the sparse
evaluation; while u is controlled by a fixed sampling factor c, let u = c · ln LQ [32]. In
this way, when ProbSparse Self-attention is in each matching query key, ProbSparse Self-
attention only needs to perform u dot product operations, so that the memory overhead
of each layer is reduced to O(LK ln LQ). However, traversing all measured query M(qi, K)
requires computing each dot product pair, with potential numerical stability problems.
Therefore, the max–mean metric is introduced as a new indicator for assessing the sparsity
of the query.

M(qi, K) = maxj

(
qikT

j√
d

)
− 1

LK

LK

∑
j=1

qikT
j√
d

(8)

In the case of the long-tail distribution, U = LK ln L dots are randomly selected to
calculate M(qi, K), and the other dot product pairs are filled to zero. The reason for choosing
the number of Top-u to be the max operator in Q and M(qi, K) is that its sensitivity to
zero is low and numerically stable. In practice, the input lengths of the query and key in
self-attention computation are often equal, like LQ = LK = L. This reduces the temporal
and spatial complexity of ProbSparse Self-attention to O(L ln L).

3.4. Rolling Learning Prediction

Rolling learning prediction enhances time series models by dynamically updating the
training dataset, enabling models to capture evolving patterns and improve prediction ac-
curacy. Liu et al. [33] applied this approach with LSTM for battery performance prediction,
allowing continuous parameter updates for future state estimation. Similarly, Guo et al. [34]
demonstrated that rolling learning improves MPC model accuracy, particularly in real-time
energy management of plug-in hybrid electric vehicles. These studies underscore the
potential of rolling learning for managing dynamic temporal data and complex nonlinear
systems, achieving precise predictive control.

The original Informer model, though effective for fixed-length time series predictions,
shows declining accuracy over time due to its limited adaptability to dynamic input
data [35]. Rolling learning addresses this by continuously updating the model to capture
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new data trends. Traditional time series models rely on static historical data, limiting
their adaptability in dynamic environments. In complex processes like injection molding,
where fluctuating parameters impact energy consumption, static models struggle to capture
real-time variations.

Rolling learning prediction, utilizing techniques such as sliding windows, addresses
this challenge by dividing time series data into overlapping subsequences. The model is
trained on each subsequence and updated continuously, enhancing the adaptability to new
data and shifting trends. This approach improves prediction accuracy and enables the
model to handle non-stationary and abrupt changes in the data [36].

By integrating rolling learning prediction into the Informer model, an improved
RL-Informer model is proposed. The steps are as follows:

1. Use the original Informer model to predict future values for the next time periods and
generate the initial prediction sequence.

2. Feed the predicted values back into the model to update the input sequences.
3. Use the updated input sequences to predict the next time periods, continuously

refining the model with the latest date.

3.5. Evaluation Metric

The performance of each model was assessed using several evaluation metrics, in-
cluding NRMSE, RMSE, MAE, and R2. NRMSE calculated by Equation (9) provides a
normalized measure of the prediction error, allowing for a relative assessment of model
accuracy across different scales [37]. RMSE calculated by Equation (10) is a standard metric
in regression analysis that calculates the average magnitude of errors between predicted
and actual energy consumption data [38]. MAE defined by Equation (11), on the other
hand, measures the average absolute deviation, offering an intuitive sense of prediction
accuracy [39]. The R2 metric defined by Equation (12) indicates the proportion of variance
in the actual data that is explained by the model [40], reflecting its ability to capture the
underlying patterns in energy consumption. Lower NRMSE, RMSE, and MAE values,
combined with higher R2 values, signify greater accuracy and robustness in the model’s
predictions. Equations for calculating NRMSE, RMSE, MAE, and R2 are given below:

NRMSE =

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
yi

2
(9)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

MAE =
1
n

n

∑
i=1

|yi| (11)

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − Y)2

(12)

where y1,y2,. . .,yn represent the actual data; ŷ1,ŷ2,. . .,ŷn are the predicted data; Y is the
mean value of the actual data; n is the number of the samples.

4. Energy Consumption Prediction and Results Analysis
4.1. Process Structure

In Section 2, six key variables influencing energy consumption in the injection molding
process were identified. To eliminate the impact of varying magnitudes and dimensions
among these variables, the max–min normalization technique [41] was applied, transform-
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ing the data into the [0, 1] range. This ensured that each variable contributed proportionally
to the model without introducing biases due to differences in scale. Following normal-
ization, other advanced models, including LSTM, GRU, and TCN, were implemented
for comparison against the RL-Informer model, providing a comprehensive performance
benchmark. The overall process structure is illustrated in Figure 8. Note that, in order to
highlight the benefits of incorporating rolling learning prediction, the pure Informer model
and its variant, Informer_lag, are also compared. They will be detailed later.
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4.2. Performance Comparison

In this experiment, data from 180 injection molding cycles were collected and divided
into training, validation, and testing sets in a 7:2:1 ratio. To establish a robust comparative
framework for evaluating the performance of the Informer model in predicting energy
consumption in injection molding, several advanced temporal prediction models were
introduced, including LSTM, GRU, and TCN. These models are well suited for handling
complex time series data and capturing long-term dependencies with nonlinear features.
By comparing the prediction outcomes of these models, the accuracy and generalization
capabilities of the Informer and RL-Informer models can be comprehensively assessed,
thereby providing a strong basis for determining their superiority in this application.

The GRU is an efficient recurrent neural network designed for capturing long-term
dependencies in time series data, offering a balance between accuracy and computational
cost [42]. In contrast, the TCN uses dilated convolutions to model long-range dependen-
cies, providing faster training and improved scalability for time series forecasting [43].
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The prediction curves and corresponding error plots for the GRU and TCN models are
shown below.

Figure 9 shows that the GRU and TCN models capture short-term fluctuations well
but struggle with larger residual errors in areas of rapid change. However, they can capture
the overall change characteristics of the data more accurately. Then, we test the initial
Informer model, and the predicting curve and error results are as follows.
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Figure 10 shows that, for the Informer model, the predicted values generally track
the variation trends of the true values across most cycles. However, the predicted curve
exhibits an obvious lag in output, which reduces the overall prediction accuracy. To address
this, output lag processing was incorporated into the Informer model, resulting in the new
variant, Informer-lag. Furthermore, a comparison with the LSTM model was conducted.
The results are shown in Figure 11.
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Figure 11 shows that the predicted curve of Informer_lag closely follows the true
values, with significant reductions in both extreme values and mean errors, indicating
a notable improvement in the model performance. However, when compared to the
prediction curve of the LSTM model, the Informer model with anti-lag treatment still
showed slightly lower tracking accuracy. To address this, we applied a rolling learning
prediction technique to enhance the original Informer model. The prediction results of the
improved RL-Informer model are presented in Figure 12.
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As shown in Figure 12, the prediction accuracy of the improved RL-Informer model
has significantly increased. The model demonstrates precise tracking of the true energy
consumption trends across all cycles, with a noticeable reduction in both the extreme value
and mean errors. This improvement is further highlighted by the residual error plot, where
the error magnitudes are substantially lower compared to previous models.

The RL-Informer model exhibits superior performance in capturing the complex
dynamics of energy consumption, effectively reducing prediction discrepancies. This en-
hanced accuracy, particularly in the reduction of residual errors, underscoring the model’s
robustness and its ability to generalize well across different segments of the time series.
Compared to the GRU, TCN, and LSTM models, the RL-Informer model delivers more
reliable forecasts with minimized prediction errors, making it a highly effective solution for
time series energy consumption forecasting.

4.3. Performance Analysis

Table 2 presents the evaluation of different models in energy consumption prediction,
with RL-Informer clearly outperforming all others. It achieves the lowest root mean square
error (RMSE, 0.0758) and mean absolute error (MAE, 0.0562), demonstrating the smallest
prediction error, and the highest coefficient of determination (R², 0.9831) not only demon-
strates the model’s superiority in explaining the variance within the data but also indicates
the potential of the RL-Informer model to deliver accurate predictions in dynamic and
complex industrial applications. This is particularly significant for energy management
and optimization, as accurate predictions can help identify potential energy-saving oppor-
tunities, thereby enhancing the overall production efficiency. Additionally, its normalized
root mean square error (NRMSE, 13.01%) highlights its robustness, outperforming both
traditional models and pure Informer-based models across all key metrics.
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Table 2. Prediction index of the timing prediction model.

Model RMSE MAE R2 NRMSE

GRU 0.1492 0.1034 0.9345 25.59%
TCN 0.1752 0.1220 0.9096 30.06%

LSTM 0.1540 0.1219 0.9302 26.42%
Informer 0.4614 0.2988 0.3923 22.04%

Informer_lag 0.1741 0.1258 0.9108 29.87%
RL-Informer 0.0758 0.0562 0.9831 13.01%

To facilitate a clearer comparison of the model performance, the evaluation metrics
from Table 2 were normalized, with R2 replaced by 1/R2 to ensure consistency, whereby
lower values indicate better performance in the models. The radar chart in Figure 13
visualizes these results, comparing six time series forecasting models—GRU, TCN, LSTM,
Informer, Informer_lag, and RL-Informer—across four key metrics: RMSE, MAE, 1/R2, and
NRMSE. The radar chart reveals each model’s strengths and weaknesses at a glance. The
Informer model notably occupies the largest area on the radar chart, with the RMSE, MAE,
and 1/R2 values close to the outer boundary, indicating significant errors in capturing the
overall data trends and magnitudes. With the incorporation of lag-based adjustments, In-
former_lag demonstrates considerable improvements in RMSE, MAE, and 1/R2, indicating
enhanced data fitting capabilities and increased sensitivity to trend variations. Never-
theless, the higher NRMSE observed for Informer_lag suggests limitations in accurately
capturing relative errors, revealing potential weaknesses in its robustness against data
variability. Despite these adjustments, the overall accuracy of the lag-enhanced Informer
remains comparable to that of the TCN model while still trailing slightly behind the GRU
and LSTM models in terms of overall predictive accuracy.
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Further improvements were achieved by implementing rolling learning techniques,
which led to substantial reductions across all the evaluated metrics, underscoring the
model’s enhanced accuracy and adaptability. This trend is especially evident in RL-
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Informer, which displays the smallest area on the radar chart, with all metrics converging
closer to the center. These results underscore RL-Informer’s superior performance, high-
lighting its efficacy in minimizing prediction errors comprehensively.

5. Conclusions

This study introduces the RL-Informer model as a robust solution for accurately pre-
dicting energy consumption in the injection molding process. By enhancing the baseline
Informer model with output lag adjustment and integrating a rolling prediction mechanism,
the RL-Informer demonstrated significantly improved predictive accuracy. Compared to
conventional temporal models such as GRU, TCN, and LSTM, the RL-Informer achieved
notable reductions in RMSE (0.0758), MAE (0.0562), and NRMSE (0.1301), alongside an R²
increase to 0.9831. These results underscore the RL-Informer model’s exceptional adaptabil-
ity and precision, establishing it as a highly effective tool for real-time energy consumption
forecasting in dynamic industrial settings.

The results confirm the reliability and accuracy of the RL-Informer model, making
it a robust tool for energy consumption prediction in the injection molding process. The
integration of rolling prediction has proven effective in optimizing the model’s perfor-
mance, providing a practical and reliable approach for energy monitoring and prediction
in industrial applications.

Although the RL-Informer model demonstrated a strong performance in energy con-
sumption prediction for injection molding processes, the dataset used was relatively small
and focused on a specific machine type, which may limit the model’s generalizability to
other contexts. Additionally, while correlation-based variable selection reduced the compu-
tational load, it may have overlooked complex nonlinear interactions among the variables.
Future work could focus on expanding the dataset and applying more advanced variable
selection techniques to further enhance the model prediction accuracy and applicability
across different production environments. Moreover, the current study focuses on pre-
dicting energy consumption as a single target variable. In real-world industrial processes,
multiple variables such as product quality, cycle time, and machine health play critical
roles in the overall performance. Future research could extend the RL-Informer model to
predict multiple variables simultaneously, allowing for a more comprehensive optimization
of the production process. Multi-output prediction models, including multi-task learning
approaches, should be explored to simultaneously forecast energy consumption alongside
other key metrics. By doing so, researchers can gain deeper insights into how various
factors interact and impact the efficiency and effectiveness of the injection molding process.
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RL-Informer Rolling Learning Informer
NRMSE Normalized Root Mean Square Error
RMSE Root Mean Square Error
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MAE Mean Absolute Error
R2 coefficient of determination
GRU Gated Recurrent Unit
TCN Temporal Convolutional Networks
LSTM Long Short-Term Memory
ABS Acrylonitrile-Butadiene-Styrene co-polymers
PBT Polybutylene terephthalate
KNN K-nearest neighbor
NLP Natural Language Processing
RNN Recurrent Neural Networks
CNN Convolutional Neural Networks
TFT Temporal Fusion Transformer
MPC Model Predictive Control
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