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Abstract: Pilostyles, an endoparasitic genus within the Apodanthaceae family, grows inside host
stems with flowers and fruits being the only external manifestations. Previous studies of P. berteroi
growing on Adesmia trijuga provided limited details of the endophyte and omitted the origin of
flowers and sinker structure. This study, using classical methods of optical microscopy applied to
the analysis with scanning electron microscopy and confocal laser scanning microscopy, expands the
understanding of the P. berteroi/A. trijuga complex. We find that P. berteroi develops isophasically
with its host, forming endophytic patches between the host’s secondary phloem cells. The parasitized
Adesmia stem’s cambium primarily produces xylem parenchyma, with limited vessel production
and halting fiber formation. The radial polarization of endophytic patches led to the formation of
floral meristems. Flowers develop endogenously and emerge by the breakthrough of the host stem.
Flowers are connected to the host cambium via chimeric sinkers, combining P. berteroi parenchyma
and tracheoids with Adesmia vessels. Unlike previous studies that show uniformity among Pilostyles
species, our analysis reveals new insights into the structural interaction between P. berteroi and
A. trijuga.

Keywords: CLSM; chimera; endoparasites; holoparasitic; SEM; sinkers; tracheoids; wood

1. Introduction

Researchers have always been fascinated by parasitic plants, their life cycles, complex
and bizarre structures, physiology, and interaction with their hosts [1,2]. Due to the strange
and cryptic nature of this life form, they have been the subject of multiple studies, especially
in recent years [3–12].

Traditional classifications divide parasitic plants into hemiparasites, capable of photo-
synthesis, and holoparasites, achlorophyllous plants that are totally dependent on their
host [1]. Other classifications present functional groups, considering—in addition to the
traditional characters—others such as type of haustorium, place of connection with the host,
growth form, and type of germination, among others [5,6,8,13]. Thus, Tesitel [13] proposes
four functional groups: root hemiparasitism, root holoparasitism, stem parasitism, and
endophytic parasitism. Recently, five functional groups of parasitic plants focused on life
history were identified: euphytoids, mistletoes, parasitic vines, obligate root parasites, and
endoparasites [5].

Among the variants of parasitism among plants, endoparasites represent the most ad-
vanced and specialized form of holoparasitism [1,2,5,13,14]. Endoparasites are emphasized
as a distinct functional group due to the “predominance of an endophytic phase in their
life cycle” [13]. These have a unique vegetative structure, as they are completely enclosed
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in the stems of their host, where they grow like fungi [6,13,15,16]. The only visible signs of
the parasite are the flowers and fruits that emerge from the host stem through the bark.

Endoparasites are present in families such as Apodanthaceae, Cytinaceae, Mitraste-
monaceae, and Rafflesiaceae [5,16,17]. Alternatively, they may appear as shoots in various
endophytic mistletoe genera within the Santalales [5,13].

The family Apodanthaceae Tiegh. ex Takht., order Cucurbitales, consists of endopar-
asites, including two genera and thirteen species [17,18]. The genus Apodanthes Poit. is
monospecific and can only be found in the tropical rainforests of the New World. On the
other hand, the genus Pilostyles Guill. consists of twelve species and has a broad distribution
that spans arid regions in North, Central, and South America, Iran, Iraq, Syria, subtropical
East Africa, and southwestern Australia [17,19–22]. Pilostyles species grow inside the stems
of Fabaceans and Salicaceans [17,23]. Pilostyles berteroi Guill. was collected from Adesmia
trijuga Gillies ex Hook. and Arn. during field trips in NW Argentina.

The endophytic body of Pilostyles is simple, without typical organs, such as roots, stems
and leaves, presenting only a mycelial-like system formed of parenchyma cells and tracheary
elements that invade the host stem [14,23–32]. The development of morphology, anatomy, and
flowers has been documented in various Apodanthacean species [18,25,28,30,33–38]. The only
study of P. berteroi growing on A. trijuga, focused on the general structure of the staminate and
pistillate flowers, proposed a mechanism of emergence through the cortex of the Fabacean
host [28]. Based on previous descriptions of P. blanchetii [Gardner) R. Br. and P. haussknechtii
Boiss. [25–27], Kummerow [28] provides an overview of the endophytic body, describing
the parasitic tissue as large, plasma-rich cells with a prominent nucleus and two nucleoli,
distinguishing them from host cells. In the genus Pilostyles, the connections between the
flowers and the host’s xylem are called sinkers [29]. Kummerow [28] notes that he was unable
to describe the sinkers with the material he had available, and the study also does not explore
the origin of the flowers of P. berteroi. A comprehensive morphological and anatomical analysis
of the sterile and fertile cycles in staminate and pistillate flowers of P. berteroi, including gamete
formation, fertilization, and seed development, has been undertaken [38].

The host of P. berteroi is Adesmia trijuga, a spiny fabacean plant native to Argentina and
Chile that grows in semi-arid or arid mountainous regions at elevations of
1100–3000 m [39–41]. Anatomical studies of A. trijuga have focused on the leaves [42]
and some secretory structures [43]. The wood anatomy has only been described in A. boro-
nioides Hook [44], A. rahmeri Phil., and A. spinosissima Vogel [45]. Within the Apodanthaceae
family, the impact of holoparasite growth inside the host has been studied in P. blanchetii
[Gardner) R. Br. in various species of Mimosa [23].

Given the scarce knowledge of this particular species of endoparasitic plant, the
objectives of this study are as follows: (1) to provide a comprehensive description of the
anatomical differences between healthy A. trijuga stems and those parasitized by P. berteroi;
(2) to re-evaluate the characteristics of the endophyte; (3) to elucidate the process of flower
primordia formation; and (4) to describe the structure and cellular composition of the
sinkers, comparing these characteristics with those of other Pilostyles species analyzed
so far.

2. Results
2.1. Pilostyles berteroi–Adesmia trijuga System

Adesmia trijuga is a spiny, microphyllous shrub. Its stems are characterized by the
rapid development of secondary growth, which appears only a couple of centimeters from
the apex of the branches, and is identified by the presence of peridermis (Figure 1A,B).
External signs of parasitism by P. berteroi on the stems of A. trijuga are the flowers and the
scars left by abscised staminate flowers or fruits from previous seasons (Figure 1C,F).
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1.5 cm; (E,F): 0.5 cm. 

Figure 1. Specimens of A. trijuga. (A) General aspect of the landscape with A. trijuga plants; (B) A. tri-
juga plants, where the zone of stem secondary structure is indicated by arrows and detailed in the
inset; (C) A. trijuga plant parasitized by P. berteroi (arrows indicate the parasite’s flowers); (D–F) P. bert-
eroi flowers emerging from host stems; (E) Detail of buds and flowers at anthesis; (F) Basal region
with older staminate flowers and scarring from previous year’s flowers. Abbreviations: b: flower
buds, f: flowers in blossom, mf: mature flowers; sf: scars of flower or fruits. Scales: (B,C): 10 cm;
(D): 1.5 cm; (E,F): 0.5 cm.

The flowers break through the bark on stems with secondary growth, approximately
30–40 cm from the apex of the branch (Figure 1D). These unisexual flowers are distributed
across different branches of the same A. trijuga specimen. They emerge gregariously
through the bark in longitudinal rows (Figure 1D,F). The flowers of P. berteroi appear
acropetally on the branches of A. trijuga. In the upper half of the infested area, flower buds
are intermixed with blooming flowers (Figure 1D,E). At the base of the infested area, the
senescent flowers or fruits and the scars from the flowers of the previous season are visible
(Figure 1F). Thus, each year, the appearance of flowers progresses towards the apex of the
branches of A. trijuga.
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2.2. Anatomy of Non-Parasitized Stems of Adesmia trijuga

The stems with secondary growth are characterized by the presence of a continuous
periderm, composed of either phellogen or the cork cambium; phellem or “cork” to the
outside and phelloderm to the inside (Figure 2A,B). The phellogen and phelloderm are
unistratified and the cork varies from three to more than ten cell layers (Figure 2B,D). All
periderm cells form very ordered stacks in radial alignment with no intercellular spaces
(Figure 2B,D). Lenticels are abundant and large relative to the stem diameter (Figure 2C).
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Figure 2. Anatomy of the non-parasitized stem of A. trijuga in transversal (A–G), and radial lon-
gitudinal sections (H,I) are analyzed with a light microscope (LM). (A) Transection of 2-year-old
non-parasitized stem; (B,C) phloem and cambial zone in a stem with vessels in the process of for-
mation (*); (D) periderm; (E) secondary phloem; (F) wood anatomy showing its diffuse porosity;
(G) detail of vessels, paratracheal parenchyma and libriform fibers; the crystals in the area indicated
with a square are shown in the inset (polarized light); (H) vessels, libriform fibers and rays; crystals
in the inset; (I) vessels showing simple perforation plates; (J) detail of vestured pits. Abbreviations:
as: air spaces; cc: companion cells; ck: cork; co: cortex; cr: prismatic crystals; cz: cambial zone; lf:
libriform fibers; le: lenticels; p: phellogen; pe: periderm; pf: primary phloem fibers; ph: secondary
phloem; pi: pith; pl: phelloderm; pp: simple perforation plate; ra: rays; se: sieve elements; ve: vessels;
xy: xylem. Scales: (A) 0.5 mm; (B,C,F) 50 µm; (D,H) 20 µm; (E,G,I) 10 µm; (J) 2 µm.
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The cortex consists of parenchymatous cells with very thin walls. The primary phloem
has small caps of thickened-walled fibers (Figure 2B). The secondary phloem is charac-
terized by sieve elements and their companion cells (Figure 2B–E). The phloem rays are
2–3 cells thick at the cambium level and within older phloem portions they expand and sep-
arate to form dilated rays with air spaces. The phloem is thus formed into long triangular
extensions (Figure 2B,C).

The secondary xylem exhibits indistinct growth rings characterized by vague, impre-
cise, or absent boundaries (Figure 2B,F). In certain areas, these boundaries may be marked
by marginal bands of parenchyma or thick-walled libriform fibers that help delineate the
limits of the growth rings (Figure 2F). The wood is diffuse-porous, the vessels are solitary or
in tangential bands, and commonly in clusters. The vessels are circular in outline and small-
sized, with a 24 (13.8–34.2, SD ± 10.2) µm diameter (Figure 2F,G). The perforation plates
are simple; the intervessel vestured pits scalariform to opposite; the vessel-ray pits are
similar in shape and size to the intervessel pits (Figure 2H–J). Libriform fibers have simple
to minutely bordered pits, and are very thick-walled (Figure 2G,H). Parenchyma is predom-
inantly paratracheal and is also in 2–5 cell-wide marginal bands. Rays are 1–3 cells wide,
and prismatic crystals are present (Figure 2B,F–H). The pith is composed of thick-walled
parenchyma cells. The elements of the primary xylem are indistinct (Figure 2F).

2.3. Parasitized Stems

The first evidence of P. berteroi cells can be found in the phloem of stems undergoing
secondary growth (Figures 3A and S1A). The endophytes of P. berteroi grow vegetatively,
forming compact clusters that develop into patches or distinct areas within the elements
of the secondary phloem of A. trijuga (Figure 3B,C). We designate this arrangement as
endophytic patches (EPs). The primary phloem and cortex regions are not invaded by
holoparasite cells (Figures 3B,C and S1B).

In older stems of A. trijuga, multiple EPs were observed in the secondary phloem,
forming a mycelial-like structure representing P. berteroi’s vegetative body (Figures 3D–F and
S1A–F). The EP’s cells extend into the cambial region, where they are preferentially observed
at the level of the initial radial cells (Figure S1F). The differentiation of the secondary xylem
is modified; the vascular cambium produces mainly parenchyma cells inwards, production
of tracheary elements is restricted to certain areas and libriform fiber formation is arrested
(Figures 3D–F and S1B–F). However, the EPs were never observed penetrating vessels
(Figure 3D–F). The secondary phloem cells that are formed by the cambium during the P.
berteroi infestation do not show any signs of variation in structure (Figures 3D–F and S1A,B).

All P. berteroi cells in EP are parenchymatic and isodiametric, with uniformly thin
walls and no intercellular spaces (Figure 3B,C). Endophytic cells have a prominent, more or
less centrally located nucleus (6.15–8.25 µm), often with two nucleoli. The EP´s cells have a
dense cytoplasm which distinguishes them from the surrounding host tissue (Figure 3C,G).
The results of the performed histochemical stains indicate the presence of starch (detected
with Lugol), lipids (Sudan black) and tannins (Ferric chloride, Figure 3H–J).

2.4. Origin of Pilostyles’ Flowers

Pilostyles berteroi flower initiation occurs entirely within the stem of A. trijuga, i.e.,
it is completely endogenous (Figures 4 and S2). Some EPs increase in volume due to
a rise in cell number, where the cells dedifferentiate and constitute the floral meristem
(Figure 4A,B). These endophytic patches exhibit radial polarity; the cells situated in the
inner part (oriented towards the center of the A. trijuga stem) retain the characteristics
described above, featuring prominent nuclei and dense cytoplasm. In contrast, the cells
of the EP oriented towards the cortex and the periderm of the host stem enlarge, with
the cytoplasm becoming less dense and developing vacuoles; consequently, the nucleus
appears small relative to the overall cell size (Figure 4B). This polarized PD develops in a
broad and flattened floral meristem (Figure 4C). Floral organs are initiated on the flanks of
the apex; the whorls of the perianth organs are initiated first (Figure 4D).
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Figure 3. Stems of A. trijuga parasitized by P. berteroi in transverse (A–D,G–J), and radial longitudinal
section (E,F), analyzed with LM. (A) Stem of A. trijuga with early stages of parasite development; the
first endophytic patches (EPs) of P. berteroi cells are seen in the phloem (box); (B) detail of an EP of P.
berteroi corresponding to the box in (A); (C) detail of EPs of P. berteroi and cells of secondary phloem
of A. trijuga; (D–F) parasitized stems showing the presence of numerous EPs that occupied most of
the secondary phloem. (G) EP stained with Safranin–Astra blue; (H–J) EP subjected to histochemical
tests, combined with Astra blue to enhance cell wall identification: (H) lugol (black) for starch,
(I) ferric chloride (brown) for phenol groups, (J) sudan black (blue–black) for lipids. Abbreviations:
cc: companion cells; co: cortex; cz: cambial zone; hc: host cells; EP: endophytic patches; lra: lignified
rays; nra: non-lignified rays; np: parasite nuclei; pe: periderm; ph: secondary phloem; pra: phloem
rays; ra: rays; se: sieve elements; xy: secondary xylem. Scales: (A,F) 100 µm; (B,C,E,G–J) 10 µm;
(D) 50 µm.
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Figure 4. Flower development of P. berteroi in stems of A. trijuga, analyzed with LM (A–D,G), and
CLSM for autofluorescence (E,F). (A,B,E,G) Cross-sections and (C,D,F) radial sections of infested
A. trijuga stems. (A) Origin of the P. berteroi floral meristem from an EP (box); (B) Close-up of box
in (A) showing the polarity of EP with vegetative and reproductive cells surrounded by collapsed
host cells; (C) floral meristem; (D) meristem with first bract whorl; (E–G) P. berteroi staminate flowers
at various stages of development, with some already emerging through the periderm of the stem
of A. trijuga. Abbreviations: ch: collapsed host cells; co: cortex; cz: cambial zone; EP: endophytic
patches; fb: floral bud; fm: floral meristem; pe: periderm; ph: phloem; rc: reproductive cells; sf:
staminate flower; sk: sinker; vc: vegetative cells; xy: xylem. Scales: (A) 200 µm; (B) 20 µm; (C) 100 µm;
(D,E) 200 µm; (F,G) 1 mm.
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Host cells contacting floral buds collapse, gradually forming a small chamber where
floral meristem and flowers develop (Figures 4C,D and S2A–C). The floral meristem
develops into either a staminate or pistillate flower. Before the flower emerges, all the floral
organs (gynoecium or androecium) are fully formed (Figures 4 and S2). The developing
flower grows through the periderm and emerges on the surface of the stem of the A. trijuga
plant (Figures 4E–G and S2).

The unisexual flowers are distributed on different branches of the same individual
of A. trijuga. Although in the section of the A. trijuga stem parasitized by P. berteroi, floral
buds emerge in the upper portion while old flowers or fruits are located in the basal region
(Figure 1D–F), examination of the sections reveals that there are flowers at various stages
of development intermixed throughout (Figure 4E,F). Flowers emerge perpendicularly to
the A. trijuga branch (Figure 4D–G).

2.5. Sinkers of Flowers

The formation of a peg-like extension, the sinker, can be observed at the base of each
flower. The sinkers connect the flowers of P. berteroi with the cambium-adjoining xylem
of the host (Figures 4F, 5A,B, S2 and S3). In differentiated flowers, the sinker has a greater
volume, consisting of abundant parasite parenchyma and intermingled xylem elements
belonging to both species Figures 5B–F and S3F).Plants 2024, 13, x FOR PEER REVIEW 11 of 21 
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analyzed with LM. (A–D) Flowers of P. berteroi and their sinkers; (B) detail of the sinker showing parasite
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and host tracheary elements separated by parenchymal cells, corresponding to the box indicated in
photo (A); (D) close-up of the plate in the radial longitudinal section of the stem, corresponding to
the boxed area in (C); (E) detail of the cambial zone showing the sinker with the A. trijuga tracheary
elements and the tracheoids of P. berteroi; (F) another detail showing the A. trijuga vessels of the axial
system and the tracheary elements entering the sinker. The tracheary elements of A. trijuga and the
tracheoids of P. berteroi are in contact. Abbreviations: ahx: axial host xylem; cz: cambial zone; EP:
endophytic patches; he: host tracheary elements; pc: parenchyma cell; pt: parasite tracheoid; ra: rays;
xy: xylem. Scales: (A) 200 µm; (B,E,F) 20 µm; (C) 500 µm; (D) 100 µm.

The xylem elements of P. berteroi in the sinkers are here described as tracheoids (refer
to the discussion section for the use of this term). They are short cells, and the wall is
thickened in a helical to scalariform pattern with smooth ridges and lack perforation plates
(Figures 5B,E,F, 6A–D,G, and S3D–F). They are almost always oriented with their long axis
parallel to the sinker of the flower (Figures 5C,D and S3F).

Conversely, the xylem elements of A. trijuga that form the sinker are tracheary ele-
ments. They are shorter than the vessels of the axial system of the wood but have the
same lateral wall design as the vessels, characterized by scalariform walls with vestured
pits (Figures 5B,F and 6A,B,E–G). The A. trijuga tracheary elements in the interior of the
sinkers are almost always oriented with their longitudinal axis parallel to the sinkers,
as are the tracheoids of the P. berteroi (Figure 5D,E). This means the A. trijuga xylem ele-
ments inside the sinkers are perpendicular to those of the secondary xylem of the stem
(Figure 5D–F and Figure S3F).

The sinkers do not penetrate the xylem of the A. trijuga stem, remaining confined
to the cambial zone (Figures 5D,E and S3). Although the sinkers develop entirely within
the secondary phloem of the A. trijuga stem, a detailed analysis of the cambium and
underlying xylem shows that some tracheal elements are reoriented from the secondary
xylem of A. trijuga and extend into the sinkers (Figure 5D–F). This region exhibits an
apparent disruption of the cambium. The vascular elements of A. trijuga in the secondary
xylem are not invaded by the parasite, exhibit a larger diameter, and are perfectly aligned
longitudinally with the stem (Figure 5D).

Using a light microscope, P. berteroi tracheoids within the sinkers can be distinguished
from A. trijuga tracheary elements by their more intensely stained walls Figures 5B–F and
S3D–F). The xylem elements of the two species in the sinkers are typically separated by
at least one layer of elongated parenchyma cells (Figures 5B, 6A–C and S3E,F). However,
in some zones, the tracheary elements come into direct contact (Figures 5F and S3D).
These parenchymatous cells have a small diameter and an elongated shape, parallel to the
vascular elements. However, the presence of a dense cytoplasm allows us to assume that
they belong to A. trijuga.

The elements of the xylem of P. berteroi are always tracheoids (Figure 6G,H), both
those in the sinker and those inside the flowers. The vessel walls of A. trijuga located inside
the sinkers have scalariform intervessel pits, which are arranged in a ladder-like series
(Figure 6E–G). Vestures are present in the pits and helical thickenings of the vessel walls.
The vestures are tiny protuberances on the secondary wall of the vessel. These ingrowths
are only visible using the SEM (Figure 6E,F). The xylem vessels of the axial system of the
stem of A. trijuga are longer than those of the sinkers and have numerous intervascular pits,
alternate or opposite (Figure 6I).
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Figure 6. Host vessels and parasite tracheoids of sinkers analyzed with SEM (A–F), and CLSM maxi-
mum images projection of 30 optical sections at 0.95-µm intervals (G–I). (A,B) Parasite tracheoids and
host tracheary elements separated by parenchymatic cells; (C) parasite tracheoids and parenchymatic
cells; (D) detail of tracheoid with smooth ridges; (E,F) host tracheary elements with vestured pits;
(G,H) CLSM merged two channels images, green: ex/em 503/508–633; red: 627/635–750; (G) detail
of sinker highlighting elements of the parasite and host xylem; (H) tracheoids from the flower of P.
berteroi; (I) detail of macerated host stem secondary xylem axial elements from a region not invaded by
the parasite, CLSM green: 503/508–633 nm. Abbreviations: ahv: axial host vessel; lf: libriform fibers;
he: host tracheary elements; ht: helical thickenings; pc: parenchyma cell; pt: parasite tracheoids; rc:
rays cells; vp: vestured pits. Scales: (A,B,E) 10 µm; (C) 5 µm; (D,F) 2 µm; (G–I) 20 µm.
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3. Discussion

The family Apodanthaceae, together with the Cytinaceae, Mitrastemonaceae, and
Rafflesiaceae are classified as endoparasitic plants, so named because their vegetative
body is reduced to filaments of parenchyma cells that grow inside their host [6,8,13]. This
mode of vegetative body development was named the “endophytic system” by Thoday
and Johnson [46], to describe the body of the endoparasite Arceuthobium pusillum Peck
(Santalaceae). It is only the appearance of the flowers or the fruit scars that makes the
presence of the parasite visible [2,47]. Given the peculiarity of this vegetative development,
several authors have dealt with the subject in depth [6,15,16].

The endoparasitic P. berteroi are notable for invading only those parts already in
secondary development. The endophyte’s presence and the emergence of flowers are
consistently observed at the same distance from the apex of A. trijuga branches. This
phenomenon was initially described in dwarf mistletoes (Arceuthobium) as “isophasic
parasitism”, meaning it grows at the same rate as its host [48]. This pattern aligns with
observations in other species of the Pilostyles genus [14,25,26,29]. Despite this isophasic
growth, in P. berteroi the floral primordia and flowers at anthesis are observed together in
the apical region of the infested zone. This phenomenon could be explained by the structure
of the endophyte, characterized by multiple endophytic patches capable of generating
floral meristems, or even by the presence of multiple individuals of Pilostyles parasitizing
the same branch of Adesmia. However, this last hypothesis cannot be corroborated with the
methodology used in the present study.

In general terms, the anatomy of healthy wood of A. trijuga agrees with that described
for other species (A. boronioides, [44], A. rahmeri, and A. spinosissima [45]). None of these
studies included electron microscopy observations, nor the structure of the cambium or
phloem. The presence of vessels with vestured pits in A. horrida Hook. and Arn. that are
similar to those described in other Fabaceae, as well as the deformation of the cambium
and wood due to environmental variations, has been studied [49]. Modifications in the
wood of Mimosa species caused by P. blanchetii were studied [23], in which it was found that
parasitized plants exhibited smaller vessels and characteristics associated with reduced
total hydraulic conductivity. The effects produced by P. blanchetii on M. maguirei, including
host architecture and reproductive performance, were analyzed by other authors [50,51]. In
A. trijuga parasitized by P. berteroi, we describe changes in the cambium leading to increased
parenchyma formation at the expense of vessel and libriform fibers production. To verify
whether the presence of the parasite affects the life and normal development of A. trijuga
both structurally and physiologically, new collections and in-depth studies are needed.

In the genus Pilostyles, the anatomical features of the endophytic system have been
examined in several species, including P. blanchetii [23,27], P. hamiltonii C.A. Gardner [31],
P. haussknechtii Boiss. [25], and P. thurberii A. Gray [29,30]. Although various species of
Pilostyles parasitize several fabacean genera, the studies referenced above highlight their
distinct common characteristics in terms of endophytic structures. First, parasite cells are
easily recognized by their large nuclei, usually with two nucleoli, and dense cytoplasm.
Second, these cells invade only the parts of the plants that have undergone secondary
growth. Finally, the cells that form the vegetative body of Pilostyles are organized into an
endophytic system consisting of endophytic patches of cells growing exclusively between
the elements of the secondary phloem of its host. These EPs are composed exclusively of
parenchyma cells without xylem or phloem elements.

The only previous study of P. berteroi growing on A. trijuga has been published by
Kummerow [28], who briefly described the endophyte restricted to the cortex of the host,
consisting of cells rich in cytoplasm and with large nuclei. In contrast to Kummerow [28],
we found that the endophytic patches of P. berteroi are located among the secondary phloem
elements of A. trijuga. Kummerow [28] states that these descriptions are based on the
results of previous studies of P. blanchetii and P. hausknechtii by Endriss [27] and Solms-
Laubach [25,26], respectively. Our observations of the endophytic body of P. berteroi are
consistent with previous studies on other species of this genus.
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The cells of the endophytic system of P. berteroi demonstrate characteristics typical of
elevated metabolic activity, similar to those observed in meristematic or secretory cells [52–54].
These cell types also share several common features that support their specialized functions.
They typically exhibit a rapid rate of division and growth, which is essential for their functions.
Their dense cytoplasm is rich in organelles that support cell division and facilitate a high level
of metabolic activity, enabling efficient nutrient extraction from their host. Additionally, these
cells show active transcriptional metabolism, allowing for the rapid production of mRNA and
proteins necessary for their specialized roles. Their cell walls may also be thinner to facilitate
nutrient absorption and transport. Overall, these features enable them to respond quickly
to environmental changes and fulfill their biological functions efficiently. These traits have
been observed and discussed for Rafflesiaceae [16] and endoparasitic plants in general [6].
It was even possible to appreciate the presence of double nucleoli in the cells of P. berteroi, a
characteristic previously mentioned for P. thurberii [30].

In all Pilostyles species studied, the flower origin was described as endogenous. The
mass of tissue embedded in the host phloem that gives rise to flowers was described as the
“floral cushion” [25]. Contrary to earlier reports [25,27,31], our observations of P. berteroi
revealed the polarization of endophytic patches and the subsequent formation of floral
meristems from these patches. Kuijt [30], studying P. thurberii, was the only author to
show some degree of specialization of the endophyte. He recognized three cell types in
larger cortical strands and radial sinkers using transmission microscopy. Two cell types are
distinguished by the density of cytoplasm and degree of vacuolation, while a sieve element
identifies the third cell type. This author did not observe xylem elements in sinkers, nor
did he recognize the histology of those portions of the endophyte that give rise to floral
meristems. We were unable to identify such cell types in the EPs or sinkers of P. berteroi
with the techniques used in the present study. However, our observations have shown
the same difference in vacuolation that identifies two cell types in the EP that give rise to
floral meristems. The study carried out here did not allow recognition of the sieve elements
described; additional studies that identify callose using fluorescence, for example, will
be necessary.

It is only after the floral meristem is formed and develops whorl primordia that the
connection with the xylem of the host is established. These connections were named
sinkers [55–57]. Kuijt [57], defined them as “a portion of an endophytic system which
extends radially into host tissues” and cited them, especially for the genus Pilostyles [29].
The formation of sinkers is a common feature of Pilostyles parasitism, previously described
for other species [23,25,27–29,31]. In the Pilostyles species examined in the studies cited
above, it was possible to describe that the sinkers penetrate the xylem of the host, often
following a ray. In the analysis of P. berteroi presented here, the sinkers only reach the
cambium, without penetrating the xylem of A. trijuga. Kummerow [28] states that he has
not been able to prove the presence of sinkers (in German: Senker), only that he has seen
individual cell threads that have broken through the cambium and penetrated the xylem or
ray. Although the images in the study do not show structures consistent with sinkers, they
provide details of the parasitic cells penetrating a ray of the host’s xylem [28].

The sinkers of P. berteroi have a peculiar structure; they are composed of parenchyma
and tracheoids of P. berteroi mixed with tracheary elements of Adesmia. These vascular
elements could be in direct contact or separated by parenchyma cells. Several authors
have reported the presence of tracheary elements in sinkers of Pilostyles, always discussing
whether they are tracheids or modified vessels [21,23,25–27,29]. In his study of P. berteroi,
Kummerow [28] mentions the presence of so-called tracheids (in German: Tracheiden) only
for the “large haustorial complexes”. According to Kummerow, the “large haustorial
complexes” refer to the connections between the flowers and the host’s xylem, which he
clarifies he did not observe [28]. However, citing other authors, he references the presence
of tracheids and illustrates them specifically in the petals [28]. In another study being
carried out on P. berteroi flowers, the presence of tracheids in the different floral parts has
been confirmed [38].
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According to the current bibliography, we chose to name the tracheary elements in the
sinker of P. berteroi as tracheoids, resembling tracheids in their pitted or spirally thickened
walls but differing in their form, size and general topography [54,55]. Tracheoids are
common elements at vein endings, either in foliar leaf laminae or vascular terminals of
nectaries [58–60]. They differ from vessels in the absence of perforation plates and from
true tracheids in that they are shorter and wider. Tracheoids can occur either as isolated
cells or in clusters. When they are found as isolated cells surrounded by parenchyma tissue,
they are referred to as tracheoid idioblasts [57]. Alternatively, tracheoids may form clusters
within the plant tissue [61].

These cells are also described as being associated with parenchyma in transfusion
tissue in several organs, such as staminodes and petals [62], hilum of seeds of faboidean
species [63], stylopodium in Bulbostylis (Cyperaceae) fruits [64], and they even occur
outside the vascular bundles in diverse tissues of cacti [61], epiphytic orchids [65], and
ferns [66]. Despite being found in various locations, it has been hypothesized that tracheoids
function as water storage cells, or to maximize apoplastic transport, like in Orchidaceae [67].
Considering that the holoparasite requires both nutrients from the host phloem, with which
it is in intimate contact, and water, it is hypothesized that tracheoids here play the role of
increasing apoplastic transport, which will be addressed in future studies.

This is the first time that tracheoids are described together with host tracheary elements
in the haustorial connection between a Pilostyles species and its host. The cells of A. trijuga
within the sinkers are quite sinuous and the perforation plates are difficult to discern;
therefore, we decided to name them as “tracheary elements”. Using SEM and CLSM, it was
easy to distinguish between the parasite tracheoids and the host tracheary elements. In
addition, the presence of vestured pits in the tracheary elements of Adesmia is a characteristic
feature of fabaceans [68,69]. This confirms that they belong to Adesmia.

The vascular cells in the sinkers of the P. berteroi/A. trijuga system (tracheoids and trac-
heary elements), and the parenchyma cells between them, form a special type of transfusion
tissue. This structure is consistent with the historical and histological definition of a chimera,
“which are formed from conglomeration cells that originated from separate zygotes” [70].
Chimeras have been previously described to exist in other holoparasites [4,71]. The interface
between host and parasite in the tubers of the Balanophoraceae shows two main patterns,
although there are also intermediate forms. In some species, the interface is discrete. The
boundaries of the two individuals are well defined, as in Helosis and Lophophytum [72,73].
In other genera, such as Balanophora and Langsdorffia, the host/parasite interface is diffuse,
and the vascular tissues of the host penetrate the tuber of the parasite, forming chimeric
vascular filaments composed of parasite and host cells [74–77]. In P. berteroi, the sinkers
are a highly modified chimeric structure, similar to that described in the tuberous organ of
Balanophoraceae. However, there is no tissue hypertrophy in the P. berteroi/A. trijuga system
leading to the formation of the typical galls or woodrose of Balanophoraceae.

The flowers of P. berteroi obtain their nutrients and water through these chimeric
sinkers, as they have greater needs than the vegetative body of the endophyte. Only further
ultrastructural analysis will reveal whether there is a direct or indirect connection (via
parenchyma) between the vascular elements of both taxa. Such analysis would also allow
us to clarify whether the parenchymal cells described here between vessels and tracheoids
are transfer cells as reported in other parasites [78,79].

4. Materials and Methods
4.1. Plant (Parasite and Host) Material

Plants of A. trijuga parasitized by P. berteroi were selected from two different pop-
ulations in the province of Jujuy in Argentina. Approximately twenty branches from
five parasitized A. trijuga plants were collected and fixed in each location. Additionally, two
non-parasitized plants from each site were collected and fixed for anatomical comparison.

Material studied, localities, data of the vouchers, and herbaria. A. trijuga: Argentina.
Jujuy. Tilcara. 23◦33′48.7′′ S 65◦23′59.7′′ W 2562 msm. 9 May 2015. Sato HA 444 (JUA).
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Idem 4 December 2015. Gonzalez AM and Sato H 497 (CTES). Idem. Gonzalez AM and Sato
H 498 (CTES). Idem. Tumbaya. Volcán. 23◦56′18′′ S 65◦27′47.5′′ W 2021 msm. 4 December
2015. Gonzalez AM and Sato H 496 (CTES). Idem. 20 November 2021. Sato HA 480 (JUA).
Idem. 20 November 2022. Sato HA 497 (JUA).

4.2. Light Microscopy (LM)

Materials were collected and fixed in FAA (formaldehyde, 70% alcohol, glacial acetic
acid, 5:90:5) in the field and preserved in the same fixative at room temperature in the
laboratory. To assess the degree of colonization by P. berteroi, stems of A. trijuga with visible
parasite flowers were selected. The parasitized stems were divided into three sections:
apical (without P. berteroi floral buds), median (with flower buds and anthetical flowers),
and basal (with old flowers, scars, or fruits). From each section, five stem samples, each
0.3–0.5 cm in length, were collected and processed. Additionally, five samples of similar
sizes were taken from non-parasitized A. trijuga stems for comparison.

Both healthy and parasitized A. trijuga branches were subjected to histological dehy-
dration followed by a tertiary butanol series [80] and then paraffin infiltration [81]. Serial
transversal and longitudinal sections were cut with a rotary microtome (Microm HM 330)
to a thickness of 10–12 µm. All sections were stained with Safranin–Astra blue [82] and
mounted in synthetic Canada balsam (Biopur). A DM LB2 microscope (LEICA) equipped
with a digital camera (Leica ICC50 W) was used for observation and photography. The
histochemical tests used were Lugol (starch), Sudan III, and Sudan Black (oils, suberin,
wax, cutin) and ferric chloride, (tannins, soluble polyphenols) [81,83,84]. The secondary
xylem was described in accordance with IAWA requirements and terminology [85].

4.3. Scanning Electron Microscopy (SEM)

Paraffin-embedded sections of parasitized A. trijuga stems were also processed for
SEM. Serial sections of 30 µm thickness were cut and mounted on glass slides using Haupt’s
adhesive [86] and dried for 48 h. Sections were deparaffinized in xylol, dehydrated in
an ascending series of acetone, and dried to the critical point in CO2. To perform critical
point drying, the slides used were pre-cut (4 cm in length) so that they could be placed in
the chamber of the critical point drying unit (Denton Desk II, Moorestown, NJ USA). The
specimens were gold–palladium coated and observed at the Electron Microscopy Service
of the UNNE, Corrientes, using a Jeol LV 5800 SEM (Tokyo, Japan) at 20 kV.

4.4. Confocal Laser Scanning Microscope (CLSM)

For the analysis by CLSM, two types of preparations were carried out. Paraffin-
embedded material cut at 12 µm thickness (see technical LM) was deparaffinized and
mounted in pure glycerol without staining. Additionally, samples of the interface between
the host and the base of the parasite flowers were excised under stereoscopic microscopy
(avg. 5 mm × 5 mm × 5 mm) and subjected to maceration with a solution of hydrogen
peroxide (30%), distilled water (DW), and glacial acetic acid (>99.8%, V:V:V = 1:4:5) in the
oven (60 ◦C) for 48 h [87]. The macerated samples were rinsed three times with DW, stained
with 1% Safranin O in DW for 20 min and then washed with DW until the wash solution
was clear. After staining, small portions of excised samples were put on a glass slide on
a drop of pure glycerol, the cells were separated with a needle under a stereomicroscope,
and covered by a cover glass.

Confocal images were acquired with a Stellaris 8 White Light Laser (Leica Microsys-
tems, Wetzlar, Germany) inverted confocal microscope using HC PL APO 10× dry (NA
0.4) and 63× oil immersion (NA 1.4) objectives. Excitation/emission wavelengths were set:
blue: 405/413–489, green: 503/508–633, red: 627/635–750 nm. The LAS Navigator software
(Leica Microsystems, Germany) was used in conjunction with a 63× objective to view and
merge tiles into a single image. Images and three-dimensional (3D) reconstructions were
performed using Leica LAS X Stellaris Compass software (Leica Microsystems, Germany).
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Serial optical sections were taken in the xyz mode to the specimens in three dimensions
(3D), from the surface down to the required depths.

5. Conclusions

This study provides an in-depth analysis of the characteristics of the endophyte, the
origin of the flowers, and the structure of the chimeric sinkers of P. berteroi growing inside
A. trijuga stem. These characteristics have not been studied in such detail before. This is
in contrast to the earlier work by Kummerow [28], which only gave a brief overview of
these features. There is considerable uniformity of characters among the various species of
the genus that have been studied, as noted in a study of the flowers of P. berteroi (Romero
MF, Sato H and Gonzalez AM, unpublished manuscript]. The different species subject to
the most extensive study (P. boyacensis, P. blanchetii, and P. berteroi) show a striking conver-
gence of floral and embryological characteristics. The extensive reduction in holoparasites
results in a lack of consistent morphological characters for taxonomic diagnose [21,27,37].
Consequently, the host taxon has been included as a criterion for distinguishing Pilostyles
species [14]. In this study, several previously undescribed differences were identified,
prompting the following question: Does the host determine the structure of the parasite? It
appears that the host species indeed influences the structure of the endophyte. The data
collected so far suggest new research directions, and a future comparative study of all hosts
and the different Pilostyles species that parasitize them could help answer the questions
raised by these fascinating plants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13213010/s1. Figure S1: Stems of A. trijuga parasitized by
P. berteroi. (A) Tangential section of a stem in the initial stage of infestation. Transversal (B–D) and
tangential sections (E,F) of older stems showing changes in the cambial zone and mp. Abbreviations:
ahv: axial host vessel; cz: cambial zone; EP: endophytic patches; he: host tracheary element; lf:
libriform fibers; lra: lignified rays; nra: non-lignified rays; pe: periderm; ph: phloem; xy: secondary
xylem. Scales: A,B,E,F: 100 µm; C,D: 10 µm. Figure S2: Stems of A. trijuga showing floral primordia
and flowers at various stages of development. Abbreviations: ch: collapsed host cells; co: cortex;
cz: cambial zone; EP: endophytic patches; fb: flower bud; pe: periderm; sk: sinker; xy: xylem.
Scales: A: 20 µm; B,C: 100 µm; D: 0.5 mm. Figure S3: Host tracheary elements and parasite tracheoids.
(A–C) Tracheoids from the flower of P. berteroi, and CLSM images of maximum projection of 70 optical
sections at 0.45-µm intervals (green: 503/508–633, red: 627/635–750 nm); (A) image digitally colored
in red; (B) image digitally colored in green; (C) overlaid images from (A,B). (D–F) LM images of
sinkers showing parasite tracheoids and host tracheary elements intermixed, in contact or separated
by parenchymatic cells. Abbreviations: ca: cambium; hv: host tracheary elements; pc: parenchyma
cell; pt: parasite tracheoids; tr: tracheids. Scales: A–E: 20 µm; F: 50 µm.
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